

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 729

FPGA Implementation of New Architecture for a 16-Bit
High Speed Redundant BCD Coded Radix-10 Multiplier

K.Suresh1 : J.E.N.Abhilash 2 &Ch.K.L.Rao3
1
M.Tech Student Department of ECE,SCET, Narasapur, Andhra Pradesh. INDIA

2 M.Tech(Ph.D)Associative Professor Department of ECE,SCET, Narasapur, Andhra Pradesh.

INDIA
3
Assistant Professor Department of ECE,SCET, Narasapur, Andhra Pradesh. INDIA

sureshvarma.0447@gmail.com
1
, abhilash.jen@gmail.com

2
, klr_mani786@yahoo.co.in

3

ABSTRACT:

The paper mainly focus on a development of a

new architecture of a BCD parallel multiplier

that utilizes some properties of two different

redundant BCD codes to speed up its

computation: the redundant BCD excess-3 code

(XS-3), and the overloaded BCD representation

(ODDS). In this we have developed some new

techniques to reduce the latency and area of

some previously high-performance

implementations. Here the main role plays by

the Partial product generation in parallel with

the signed-digit radix-10 recoding of the BCD

multiplier with the digit set of [-5, 5], and a set

of positive multiplicand multiples such as (0X,

1X, 2X, 3X, 4X, 5X) coded in XS-3.By using the

XS-3 approach with signed digit radix-10

recoding had several advantages like mostly it

is self inverting code, which means negative

number can be obtained by just inverting the

bits of a positive number. Also, its available

redundancy allows a simple and fast

multiplicand multiples with a carry-free way

and lastly, the partial products can be recoded

to ODDS representation by simply adding a

constant factor to its partial product reduction

tree. Since the ODDS uses a 4-bit binary

encoding similarly as non redundant BCD,

conservative binary VLSI circuit technique. We

developed a new approach of BCD addition for

the final stage. The above developed

architecture of has been synthesized a RTL

model and given better performance compared

to old version multipliers

Keywords: Binary Coded Decimal (BCD);

Overloaded BCD (ODDS); signed-digit; Radix-

10; Carry Save Adder.

1.INTRODUCTION

DECIMAL fixed-point and floating-point
formats are very important in commercial, financial,

and user-oriented computing, where the conversion

and rounding errors are inherent tothe floating-point
binary representations cannot be tolerated [3]. The

new IEEE 754-2008 Standard for Floating- Point

Arithmetic, which contain the design and

specification of a decimal floating-point (DFP)
arithmetic [1], [2],has been encouraged a significant

amount of research in decimal hardware [6], [9],

[10], [28],. Moreover, at present IBM Power

and organization families of microprocessors [5],

[8], [23], and the Fujitsu Sparc X microprocessor
[26] are oriented to servers and mainframes and they

already include fully IEEE 754-2008 compliant

decimal floating-point units (DFPUs) for Decimal64

(16 precision digits) and Decimal128 (34 precision
digits) formats. Since the area and power dissipation

factors are critical design in state-of-the-art DFPUs,

division and multiplication are performed constantly
by means of digit-by-digit algorithms [4],

[5], and therefore they present a low performance.
However, the processor aggressive cycle time puts in

an additional constraint with the use of parallel

techniques [6], [19], [30] for reducing latency of the

DFP multiplication in an high speed performance

mailto:suneetha.kanala@gmail.com
mailto:rajasekhar.reddy61@gmail.com
mailto:raghavareddy89@gmail.com

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 730

DFPUs. Therefore, for the most capable algorithms

accelerating DFP multiplication should result in
regular VLSI layouts that may allows an aggressive

pipelining.

For an easy conversion between machine

and user representations [21], [25], hardware

iplementations normally used a BCD rather than
binary to manipulate decimal fixed-point operands

and integer significands of DFP numbers. BCD

encodes a number X in decimal format (non-

redundant radix-10), with each decimal digit Xi ;
represents a 4-bit binary number system. However,

Binary is more efficient for encoding integers than

BCD, since the codes 10 to 15 are unused in BCD.
Moreover, the functioningof arithmetic BCD

increases more difficulties than binary, which direct

to increase area and delay in the resulting arithmetic
units. A variety of techniques have been proposed to

increase the performance of BCD multiplication,

such as redundant decimal formats and arithmetics.

The BCD carry-save format [9] represents a radix-10
operand using a BCD digit and a carry bit at each

decimal position. It is intended to generate a carry-

free accumulation of BCD partial products using
rows of BCD digit adders arranged in linear [9], or

tree-like structured configuration's [19]. Decimal

signed-digit representation [10],[14], rely on a
redundant digit set to

allow decimal carry-free addition.

Moreover, these codes are self-
complementing, so the 9’s complement of a digit,

necessary for reversal, it can be easily obtained

bybit-inversion of 4-bit representation.A
disadvantage of 4221 and 5211 codes, is the use of a

non-redundant radix-10 digit-set [0, 9]equivalent as

BCD. Hence, the redundancy is constrained to the
digit bounds, suchthat complex decimal multiples

ofX, cannot be obtained in a carry-freeway.

In this work, we mainly focus on the
improvement of parallel decimal multiplication by

utilizng the redundancy of two decimal

representations: the ODDS and the redundant BCD
excess-3 (XS-3) representation, a self-

complementing code with the digit set [3, 12].For

the recording of the BCD multiplier digits we use a
redundant digit set, the signed-digit radix-10

recoding [30], that is, the recodedsign digits are in

the set For

this digit set, the main setback is to carry out the

multiple without a long carry-propagation (note that,
they are easy multiples for decimal [30] and that is

generated in two consecutive operations). We

propose the advantage of general redundant BCD
arithmetic which includes the ODDS, For the

particular digit set, the main problem is to generate

the multiple without a long carry-propagation (note
that they are easy multiples of decimal [30] and that

is generated as two consecutive operations). We

introduce the use of general redundant BCD

arithmetic (which includes the ODDS,XS-3 and
BCD representations) to accelerate the parallel BCD

multiplication can be done in two ways.Partial

product generation (PPG) is used to generate
positive multiplicand multiples coded in XS-3 in a

carry-free form. An advantage of XS-3

representation over an non-redundant decimal codes
(BCD and 4221/5211 [30]) is that all multiples for

decimal partial product generation, with the X

multiple, can be implemented in constant time with

an corresponding delay of about three XOR gate
levels. Furthermore, since XS-3 is a self

complementing code, The 9’s complement of

positive multiples can be generated by just
complementing its bits as in binary form. Partial

product reduction (PPR) is uesd to performing the

reduction of partial products coded in ODDS by

binary carry-save arithmetic. By just adding a
constant factor to the partial product reduction tree,

the partial products can be easily recoded from XS-3

to the ODDS representation. Hence the resultant
partial product reduction tree can be implemented

usingastandard structures of binary carry-save

adders or compressors. The 4-bit binary encoding of
ODDS operands allows a more efficient mapping of

decimal algorithms into binary techniques. Hence

the signed-digit radix-10 and BCD carry-save

redundant representations requires specific radix-10
digit adders [14], [22], [27].

The paper is structured as follows. Section
2 introduces theredundant BCD representation is

used in this work. Section 3 intoduces the high level

algorithm and architecture of the proposed BCD
parallel multiplier. In Section 4 we introduce the

techniques for the generation of decimal partial

products. Finally the conversion to a non-redundant

BCD product and Decimal partial product reduction
are detailed in Sections 5 and 6 respectively.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 731

2. REDUNDANT BCD REPRESENTATIONS

The proposed decimal multiplier uses

internally a disused BCD arithmetic to speed up its

computation and simplify the implementation. This
arithmetic deals with a radix-10 ten’s

complementintegers is of theform:
where d represents the number of digits, sz

represents the sign bit, On the other hand, the binary

value of a 4-bit vector representation of Zi is given
by

zi;j is the jth bit of ith digit. Hence, the value of the
digit Zi can be done by decreasing the excess e from

the representation of the of its 4-bit binary

encoding, that is,

Note that, the bit-weighted code such as
BCD and ODDS representation uses the 4-bit binary

encoding (or BCD encoding) defined in an

Expression (2). Hence the, ZiZi for operands of Z
represent in BCD or ODDS. This binary encoding of

the hardware implementation simplifies the decimal

arithmetic units, hence we can employ the state-of-

art binary logic and binary arithmetic techniques are
to implement the digit operations. In general, the

ODDS representation presenta very interesting

properties, such as redundancy and binary encoding
of its digit set, for an high efficiency and fast

implementation of multi-operand addition.

Furthermore, the conversions from a BCD to ODDS
representation is a straight- forward, hence the digit

set of a BCD is subset of the ODDS representation.

In our paper we make use of SD radix-10 recoding

of the BCD multiplier [30], requires to compute a set
of decimal multiples of the

BCD multiplicand. Here the main issue is to perform

the X3 multiple without a long carry-propagation.

Forthe input digits of a multiplicand in an

conventional BCD (i.e., the range [0, 9], e , r), the
multiplication by 3 which leads to a maximum

decimal carry to next position of 2 and to a

maximum value of the interim digit (the result digit

before adding the carry from the lower position) of
9. Hence the resultant maximum digit (after adding

the decimal carry and the interim digit) is 11. Thus,

the range of the digits after the 3 multiplication is in

the range [0, 11]. Hence the redundant BCD
representations can represent the resultant digits with

justa one decimal carry propagation. Here the

important issue for this representation is ten’s
complement operation. Since after recoding the

multiplier digits, negative multiplication digits may

come into extent, it is necessary to negate (ten’s
complement) the multiplicand to obtain the negative

partial products. This operation can be done by

computing the nine’s complement of a multiplicand

and by adding a one in the proper place of the digit
array. The nine’s complement of the positive

decimal operand cn be obtained by

The implementation of 9-Zi which leads to a

very complex implementation, hence the digitsZi of

the multiples can be generated may take the values
higher than 9. A simple implementation is obtained

by just observing the excess-3 of the nine’s

complement of an operand which is equal to the bit-

complement of an operand coded in excess-3.

3. HIGH-LEVEL ARCHITECTURE

The higher level block diagram of a

proposed parallel architecture for a d-digit BCD

decimal integer and a fixed-point multiplication is
shown in Fig. 1. This architecture accepts of the

conventional (non-redundant) BCD inputs X,

Y,which generatesan redundant BCD partial

products PP, and computes a BCD product P= X *
Y. It consists of three stages (1) Parallel generation

of the partial products coded in XS-3,which includes

generation of multiplicand multiples and recoding of
the multiplier operand, (2) recoding of the partial

products from XS-3 to the ODDS representation and

subsequent reduction, and (3) final conversion to
non-redundant d-digit BCD product..

Stage 1:- Decimal partial product

generation. A SDradix-10 of the recoding BCD
multiplier has been used. This recoding reduces a

number of partial products which leads to a

significant reduction of the overall multiplier area
[29]. Hence, the recoding of the d-digit multiplier Y

into SD radix-10 digits Y ; ;Yb ,produces d partial

products PP d ; ;PP ,one per digit; note that each

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 732

Ybk recoded digit can be represented in a 6–bit hot-

one code and this code can be used as control input
of the multiplexers to select a proper multiplicand

multiple, An additional partial product PPd is

produced by the most significantmultiplier digit after
the recoding, so that the total number of partial

products generated is d.

Stage 2:- Decimal partial product reduction.

In this stage the array of d ODDS partial products

can be reduced to two d-digit words (A and B). This

proposal relies on a binary carry- save adder tree to
perform a carry-free additions of decimal partial

products. The array of d ODDS partial products can

be observed as adjacent digit columns of height
h<=d . Hence the ODDS digits are to be encoded in

binary, the rules of a binary arithmetic can be

applied within the digit bounds, hence only carries
are generated between radix-10 digits (4-bit

columns) contribute a decimal correction of the

binary sum. That is, if a carry out is generated as a

result of 4-bit (modulo 16) binary addition, the
binary sum is incremented by 6 at the certain

position to obtain a correct decimal sum (modulo 10

addition).

Stage 2:- Decimal partial productreduction.

In this stage the array of d ODDS partial
productscan bereduced to two d-digit words (A and

B). This proposal relies on a binary carry- save adder

tree to performa carry-free additions of decimal
partial products. The array of d ODDS partial

products can be observed as adjacent digit columns

of height h<=d . Hence the ODDS digits are to

beencoded in binary, the rules of a binary arithmetic

can be applied within the digit bounds, hence only
carries are generated between radix-10 digits (4-bit

columns) contribute a decimal correction of the

binary sum. That is, if a carry out is generated as a
result of 4-bit (modulo 16) binary addition, the

binary sum is incremented by 6 at the certain

position to obtain a correct decimal sum (modulo 10
addition).

Two early designs [12], [18] implement a

tree structures for an addition of ODDS operands. In
the non speculative BCD adder [18], a

combinational logic block can be used to determine

the sum correction once all the operands can be
added in a binary CSA tree, with the maximum

number of inputs limited to 19 BCD operands. In

our method the sum correction can be evaluated
concurrently with binary carry-save additions using

the columns of binary counters. Normally we count

the number of carries per decimal column, since a

multiplication by 6 is performed (a correction by 6
for each carry-out from each column). The result is

added to the correction term to the output of a binary

carry-save reduction tree. Significantly this can
improves the latency of the partial product reduction

tree. Furthermore, the proposed architecture can

accepts the arbitrary number of ODDS or input
operands of the BCD. Some of PPR tree structures

presented in [12] (the area-improved PPR

tree)alsoutilize a similar idea, but they rely on a

custom designed ODDS adder to perform the
reductions of stages. Our proposal aims is to provide

an optimal reuse of any binary CSA tree for

themultioperand decimal addition, as it can done in
[31] for the 5211 and 4221 decimal codings.

Stage 3:- Conversion to (non redundant)
BCD. We have to consider the use of BCD carry-

propagate adder [29] to perform the final conversion

to an non-redundant BCD product P= A+ B. Here

the proposed architecture is a BCD Quaternary Tree
adder, a d-digit hybrid parallel prefix/carry-select

adder,. The sum of input digits Ai, Bi at each

position i has to be in the range [0,18]; so that at
most one decimal carry is propagated to the next

position i+1 [22]. Moreover, to generate a correct

decimal carry, the BCD addition algorithm

implemented requires Ai+ Bi must be obtained in
excess-6. Several choices are possible. We opt for

representing operand A in BCD excess-6

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 733

4.DECIMAL PARTIAL PRODUCT

GENERATION

Thedecimal partial product generation stage

comprises of recoding the multiplier to a SD radix-
10 representation, the generation of the ODDS

partial products and the calculation of multiplicand

multiples in XS-3 code.

The negative multiples can be easily

obtained by ten’s complementing of the positive
ones. This is equivalent to the nine’s complement of

the positive multiple and then adding 1. We have

been shown in Section 2, the nine’s complement can

be obtained easily by bit inversion. This needs the
positive multiplicand multiples to be coded in XS-3

with digits in range (-3-12).The d least significant

partial products PP[d]....PP[0] are generated from
digits Ybk by using a set of 5:1 muxes, as shown in

Fig_2. The xor gates at the output of the mux is to

invert the multiplicand multiples, to obtain the 9’s

complement, if the SD radix-10 digit is negative
(Ysk =1).

On the other hand, if the signals
Y1K,Y2K,Y3K,Y4K,Y5K are all zero then PP(k)=0 ,

but it can aslo be coded in XS-3 (bit encoding 0011).

Then, to set the two least significant bits to 1, the
input to the XOR gate is YskYskYbk is zero (

denotes the boolean OR operator), where Ybkiszero

equals 1 if all the signals (Y1 k;Y2 k;Y3 k;Y4 k;Y5

k) are zero. In addition, the partial product signs are
encoded into their MSDs (seen in Section 4.2). The

generation of a most significant partial product

PP(d),it only depends on Ysd , the sign of most
significant SD radix-10 digit.

4.1 Generation of the Multiplicand Multiples

We denote by NX multiples(1X, 2X, 3X,

4X, 5X) are the set of multiplicand multiples which

are coded in the XS-3 representation, with the digits
NXi in the range(-3 to 12) , being [NXi]=NXi+3

with in the range(0 to 15), the corresponding value

of a 4-bit binary encoding of NXi given by
Equation (2).Fig. 3 shows the high-level block

diagram of the multiples generation with just one

carry propagation. This is performed in two steps

1) digit recoding of the BCD multiplicand digits Xi

into a decimal carry and a digit

such as
being Tmax the maximum

possible value for the decimal carry.

2) The decimal carries transferred between adjacent

digits are assimilated to obtained the correct 4-bit

representation of XS-3 digits NXi, that is

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 734

 Most-Significant Digit Encoding

The most significant digit(MSD) of each

PP[k] , PPd[k] , is directly obtained in ODDS
representation. Hence these digits can store the

carries that are to be generated in the computation

of the multiplicand multiples and the sign bit of the

partial product. For the positive and negative partial
products we have

4.3.Correction Term:

The resultant partial product sum must be
corrected off the-critical-path by adding a pre-

computed term, fcwhich only depends on format

precision d. This term has to gather: (a) the constants
that does not included in the MSD encoding and (b)

a constant for an every XS-3 partial product digit

(introduced to simplify the nine’s complement
operation). Actually, the sum of these constants are

equivalent to convert the XS-3 digits of the partial

products to the ODDS representation. Note that the

4-bit encoding of a XS-3 digit.

5.DECIMAL PARTIAL PRODUCT

REDUCTION

The PPR tree consists of three parts: (1) a

regular binary CSA tree to compute an estimation of

the decimal partial product sum in a binary carry-
save form (S, C), (2) a sum correction block to count

the carries generated between the digit columns, and

(3) a decimal digit 3:2 compressor which increments

the carry-save sum according to the carries count to

obtain the final double-word product (A;B), A being
represented with excess-6 BCD digits and B being

represented with BCD digits. The PPR tree can be

viewed as adjacent columns of h ODDS digits each,
h being the column height (see Fig. 4), and h < =

d+1.Fig. 5 shows the high-level architecture of a

column of the PPR tree (the ith column) with h
ODDS digits in [0, 15]. (4 bits per digit). Each digit

column of the binary CSA tree (the graycolored box

in Fig. 5) reduces the h input digits and n cin input

carry bits, transferred from the previous

6. RESULTS& DISCUSSION

 We had verified this by writing the VHDL

code,we can simulated and synthesized it on FPGA

board. The following results have been shown below
in these two examples we have given two different

values and seen the correct values. We have taken

two 4 bit BCD number and performed

multiplication.

FIG 4. Simulation Results Of Proposed Bcd Multiplier

Table III: without mod-10 logic

Table IV: with mod-10 logic

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 735

Fig 5 comparison graph without mod-10 logic

Fig6 Comparison graph with mod-10 logic

7.CONCLUSION

 Finally we have observed that this product is

better than older BCD multipliers. We have
implemented using VHDL and simulated along with

synthesis on Sparton -3e FPGA board. We have

dumped into Xilinx Chip (xcv3s400e-5s). Thearea

has been minimized by 23% which shows the
decrease of power consumption by 37% than

previous BCD Multiplier

REFERENCES:

[1]Alvaro Vazquez, Member, IEEE, ElisardoAntelo,
and Javier D. Bruguera, Member, IEEE “Fast Radix-

10 Multiplication Using Redundant BCD Codes

“IEEE TRANSACTIONS ON COMPUTERS, VOL.

63, NO. 8, AUGUST 2014

[2] A. Aswal, M. G. Perumal, and G. N. S. Prasanna,

“On basic finanial decimal operations on binary
machines,” IEEE Trans. Comput.,vol. 61, no. 8, pp.

1084–1096, Aug. 2012.

[3] M. F. Cowlishaw, E. M. Schwarz, R. M. Smith,

and C. F. Webb, “A decimal floating-point

specification,” in Proc. 15th IEEE Symp.Comput.
Arithmetic, Jun. 2001, pp. 147–154.

[4] M. F. Cowlishaw, “Decimal floating-point:

Algorism for computers,” in Proc. 16th IEEE Symp.
Comput. Arithmetic, Jul. 2003,pp. 104–111.

[5] S. Carlough and E. Schwarz, “Power6 decimal
divide,” in Proc. 18

th
 IEEE Symp. Appl.-Specific

Syst., Arch., Process., Jul. 2007, pp. 128–133.

[6] S. Carlough, S. Mueller, A. Collura, and M.

Kroener, “The IBM zEnterprise-196 decimal floating

point accelerator,” in Proc. 20
th
 IEEE Symp.Comput.

Arithmetic, Jul. 2011, pp. 139–146.

[7] L. Dadda, “Multioperand parallel decimal adder:

A mixed binary and BCD approach,” IEEE Trans.
Comput., vol. 56, no. 10, pp. 1320–1328, Oct. 2007.

[8] L. Dadda and A. Nannarelli, “A variant of a
Radix-10 combinational multiplier,” in Proc. IEEE

Int. Symp. Circuits Syst., May 2008, pp. 3370–3373.

[9] L. Eisen, J. W. Ward, H.-W.Tast, N. Mading, J.

Leenstra, S. M. Mueller, C. Jacobi, J. Preiss, E. M.

Schwarz, and S. R. Carlough, “IBM POWER6

accelerators: VMX and DFU,” IBM J. Res. Dev.,
vol. 51, no. 6, pp. 663–684, Nov. 2007.

[10] M. A. Erle and M. J. Schulte, “Decimal
multiplication via carry- save addition,” in Proc.

IEEE Int. Conf Appl.-Specific Syst., Arch., Process.,

Jun. 2003, pp. 348–358

[11] M. A. Erle, E. M. Schwarz, and M. J. Schulte,

“Decimal multiplication with efficient partial

product generation,” in Proc. 17th IEEE

[12] Faraday Tech. Corp. (2004). 90nm UMC L90

standard performance low-K library (RVT).[Online].
Available: http://freelibrary.faraday-tech.com/

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 736

[13] S. Gorgin and G. Jaberipur, “A fully redundant

decimal adder and its application in parallel decimal
multipliers,” Microelectron. J., vol. 40, no. 10, pp.

1471–1481, Oct. 2009.

[14] L. Han and S. Ko, “High speed parallel decimal

multiplication with redundant internal encodings,”

IEEE Trans. Comput., vol. 62,no. 5, pp. 956–968,
May 2013.

[15] IEEE Standard for Floating-Point Arithmetic,
IEEE Std 754(TM)-2008 IEEE Comput. Soc., Aug.

2008.

[16] G. Jaberipur and A. Kaivani, “Improving the
speed of parallel decimal multiplication,” IEEE

Trans. Comput., vol. 58, no. 11, pp. 1539–1552,

Nov. 2009.

[17] R. D. Kenney,M. J. Schulte, and M. A. Erle,

“High-frequency deci-mal multiplier,” in Proc. IEEE
Int. Conf. Comput. Des.: VLSI Comput. Process.,

Oct. 2004, pp. 26–29.

[18] R. D. Kenney and M. J. Schulte, “High-speed
multioperand decimal adders,” IEEE Trans.

Comput., vol. 54, no. 8, pp. 953–963, Aug. 2005.

[19] T. Lang and A. Nannarelli, “A Radix-10

combinational multiplier,” in Proc. 40th Asilomar

Conf. Signals, Syst., Comput., Oct.2006, pp. 313–
317.

[20] T. Ohtsuki, Y. Oshima, S. Ishikawa, H. Yabe,
and M. Fukuta,“Apparatus for decimal

multiplication,” U.S. Patent 4 677 583, Jun.1987.

[21] R. K. Richards, Arithmetic Operations in
Digital Computers. NewYork, NY, USA: Van

Nostrand, 1955.

[22] M. Schmookler and A.Weinberger, “High speed

decimal addition,”IEEE Trans. Comput., vol. C-20,

no. 8, pp. 862–866, Aug. 1971.

[23] E. M. Schwarz, J. S. Kapernick, and M. F.

Cowlishaw, “Decimal floating-point support on the

IBM System z10 processor,” IBM J.Res.Develop.,
vol. 51, no. 1, pp. 4:1–4:10, Jan./Feb. 2009.

[24] B. Shirazi, D. Y. Y. Yun, and C. N. Zhang,
“RBCD: Redundant binary coded decimal adder,”

IEE Proc. E Comput. Digit.Techn., vol. 136, pp.

156–160,Mar. 1989.

[25] H. Schmid, Decimal Computation. Hoboken,

NJ, USA:Wiley, 1974.

[26] T. Yoshida, T. Maruyama, Y. Akizuki, R. Kan,

N. Kiyota, K. Ikenishi, S. Itou, T. Watahiki, H.
Okano, “Sparc64 X: Fujitsu’s new-generation 16-

core processor for unix servers”, IEEE Micro., vol.

33, no. 6, pp. 16–24, Nov.-Dec. 2013.

[27] A. Svoboda, “Decimal adder with signed digit

arithmetic,” IEEE Trans. Comput., vol. C-18, no. 3,

pp. 212–215,Mar. 1969.

[28] C. Tsen, S. Gonzalez-Navarro, M. Schulte, B.

Hickmann, and K.Compton, “A combined decimal
and binary floating-point multiplier,” in Proc. 20th

IEEE Int. Conf. Appl.-Specific Syst., Archit.

Process., Jul. 2009, pp. 8–15.

[29] A. Vazquez, E. Antelo, and P. Montuschi, “A

new family of high-performance parallel decimal

multipliers,” in Proc. 18th IEEE Symp.Comput.
Arithmetic, Jun. 2007, pp. 195–204.

[30] A. Vazquez, E. Antelo, and P. Montuschi,
“Improved design of high-performance parallel

decimal multipliers,” IEEE Trans. Comput., vol. 59,

no. 5, pp. 679–693,May 2010.

[31] A. Vazquez and E. Antelo, “Multi-operand

decimal addition by efficient reuse of a binary carry-
save adder tree,” in Proc. 44th ASI-LOMAR Conf.

Signals, Syst. Comput., Nov. 2010, pp. 1685–1689.

[32] A. Vazquez and E. Antelo.(2012, Jun.).Area
and Delay Evaluation Model for CMOS

Circuits.Internal Report, Univ. of Santiago de

Compostela, [Online]. Available:
http://www.ac.usc.es/node/1607

[33] K.Suneetha, B.Rajasekharareddy,
D.Raghavareddy, “FPGA Implementation of a new

design in Radix-10 multiplier with Redundant BCD

codes for better performance using VHDL”.

