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ABSTRACT:   

The paper mainly focus on a development of a 

new architecture of a BCD parallel multiplier 

that utilizes some properties of two different 

redundant BCD codes to speed up its 

computation: the redundant BCD excess-3 code 

(XS-3), and the overloaded BCD representation 

(ODDS). In this we have developed some new 

techniques to reduce the latency and area of 

some previously high-performance 

implementations. Here the main role plays by 

the Partial product  generation in parallel with 

the signed-digit radix-10 recoding of the BCD 

multiplier with the digit set of [-5, 5], and a set 

of positive multiplicand multiples such as (0X, 

1X, 2X, 3X, 4X, 5X) coded in XS-3.By using the 

XS-3 approach with signed digit radix-10 

recoding had several advantages like mostly it 

is self inverting code, which means  negative 

number can be obtained by just inverting the 

bits of a positive number. Also, its available 

redundancy allows a simple and fast 

multiplicand multiples with a carry-free way 

and lastly, the partial products can be recoded 

to  ODDS representation by simply adding a 

constant factor to its partial product reduction 

tree. Since the ODDS uses a  4-bit binary 

encoding similarly as non redundant BCD, 

conservative binary VLSI circuit technique. We 

developed a new approach of BCD addition for 

the final stage. The above developed 

architecture of has been synthesized a RTL  

 

 

 

model and given better performance compared 

to old version multipliers 

Keywords: Binary Coded Decimal (BCD); 

Overloaded BCD (ODDS); signed-digit; Radix-

10; Carry Save Adder. 

1.INTRODUCTION 

DECIMAL fixed-point and floating-point 
formats are very important in commercial, financial, 

and user-oriented computing, where the conversion 

and rounding errors are inherent tothe  floating-point 
binary representations cannot be tolerated [3]. The 

new IEEE 754-2008 Standard for Floating- Point 

Arithmetic, which contain the design and 

specification of a decimal floating-point (DFP) 
arithmetic [1], [2],has been encouraged a significant 

amount of research in decimal hardware [6], [9], 

[10], [28],. Moreover, at present IBM Power 

and organization families of microprocessors [5], 

[8], [23], and the Fujitsu Sparc X microprocessor 
[26] are oriented to servers and mainframes and they 

already include fully IEEE 754-2008 compliant 

decimal floating-point units (DFPUs) for Decimal64 

(16 precision digits) and Decimal128 (34 precision 
digits) formats. Since the area and power dissipation 

factors are critical design  in state-of-the-art DFPUs, 

division and multiplication are performed constantly 
by means of  digit-by-digit algorithms [4],  

[5], and therefore they present a low performance. 
However, the processor aggressive cycle time puts in 

an additional constraint with the use of parallel 

techniques [6], [19], [30] for reducing  latency of the 

DFP multiplication in an high speed performance 
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DFPUs. Therefore, for the most capable algorithms 

accelerating DFP multiplication should result in 
regular VLSI layouts that may allows an aggressive 

pipelining. 

For an easy conversion between machine 

and user representations [21], [25], hardware 

iplementations normally used a BCD rather than 
binary to manipulate decimal fixed-point operands 

and integer significands of DFP numbers. BCD 

encodes a number X in decimal format (non-

redundant radix-10), with each decimal digit Xi ; 
represents a 4-bit binary number system. However, 

Binary is more efficient for encoding integers than 

BCD, since the codes 10 to 15 are unused in BCD. 
Moreover, the functioningof  arithmetic BCD  

increases more difficulties than binary, which direct 

to increase area and delay  in the resulting arithmetic 
units. A variety of techniques have been proposed to 

increase the performance of BCD multiplication, 

such as redundant decimal formats and arithmetics. 

The BCD carry-save format [9] represents a radix-10 
operand using a BCD digit and a carry bit at each 

decimal position. It is intended to generate a carry-

free accumulation of BCD partial products using 
rows of BCD digit adders arranged in linear [9], or 

tree-like structured configuration's [19]. Decimal 

signed-digit representation [10],[14], rely on a 
redundant digit set   to 

allow decimal carry-free addition. 

Moreover, these codes are self-
complementing, so  the 9’s complement of a digit, 

necessary for reversal, it can be  easily obtained 

bybit-inversion of  4-bit representation.A 
disadvantage of 4221 and 5211 codes, is the use of a 

non-redundant radix-10 digit-set [0, 9]equivalent as 

BCD. Hence, the redundancy is constrained to the 
digit bounds, suchthat complex decimal multiples 

ofX, cannot be obtained in a carry-freeway. 

In this work, we mainly focus on the 
improvement of parallel decimal multiplication by 

utilizng the redundancy of two decimal 

representations: the ODDS and the redundant BCD 
excess-3 (XS-3) representation, a self-

complementing code with the digit set [ 3, 12].For 

the recording of the BCD multiplier digits we use a  
redundant digit set, the signed-digit radix-10 

recoding [30], that is, the recodedsign digits are in 

the set For 

this digit set, the main setback is to carry out the 

multiple without a long carry-propagation (note that, 
they are easy multiples for decimal [30] and that is 

generated in two consecutive operations). We 

propose the advantage of  general redundant BCD 
arithmetic which includes the ODDS, For the 

particular digit set, the main problem is to generate 

the multiple without a long carry-propagation (note 
that they are easy multiples of decimal [30] and that 

is generated as two consecutive operations). We 

introduce the use of  general redundant BCD 

arithmetic (which includes the ODDS,XS-3 and 
BCD representations) to accelerate the parallel BCD 

multiplication can be done in two ways.Partial 

product generation (PPG) is used to generate 
positive multiplicand multiples coded in XS-3 in a 

carry-free form. An advantage of  XS-3 

representation over an non-redundant decimal codes 
(BCD and 4221/5211 [30]) is that all multiples for 

decimal partial product generation, with the X 

multiple, can be implemented in constant time with 

an corresponding delay of about three XOR gate 
levels. Furthermore, since XS-3 is a self 

complementing code, The 9’s complement of 

positive multiples can be generated by just 
complementing its bits as in binary form. Partial 

product reduction (PPR) is uesd to performing the 

reduction of partial products coded in ODDS by 

binary carry-save arithmetic. By just adding a 
constant factor to the partial product reduction tree, 

the partial products can be easily recoded from XS-3 

to the ODDS representation. Hence the resultant 
partial product reduction tree can be implemented 

usingastandard structures of binary carry-save 

adders or compressors. The 4-bit binary encoding of 
ODDS operands allows a more efficient mapping of 

decimal algorithms into binary techniques. Hence 

the signed-digit radix-10 and BCD carry-save 

redundant representations requires specific radix-10 
digit adders [14], [22], [27]. 

The paper is structured as follows.   Section 
2 introduces  theredundant BCD representation is 

used in this work. Section 3 intoduces the high level 

algorithm and architecture of the proposed BCD 
parallel multiplier. In Section 4 we introduce the 

techniques for the generation of decimal partial 

products. Finally the conversion to a non-redundant 

BCD product and Decimal partial product reduction 
are detailed in Sections 5 and 6 respectively. 
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2. REDUNDANT BCD REPRESENTATIONS 

The proposed decimal multiplier uses 

internally a disused BCD arithmetic to speed up its 

computation and simplify the implementation. This 
arithmetic deals with a radix-10 ten’s 

complementintegers is of theform: 
where d represents the number of digits, sz 

represents the sign bit, On the other hand, the binary 

value of a 4-bit vector representation of Zi is given 
by  

 

zi;j is the jth bit of ith digit. Hence, the value of  the 
digit Zi can be done by decreasing the excess e from 

the representation of  the  of its 4-bit binary 

encoding, that is,         

  

Note that, the bit-weighted code such as 
BCD and ODDS representation uses the 4-bit binary 

encoding (or BCD encoding) defined in an 

Expression (2). Hence the, ZiZi for operands of Z 
represent in BCD or ODDS. This binary encoding of 

the hardware implementation simplifies the decimal 

arithmetic units, hence we can employ the state-of-

art binary logic and binary arithmetic techniques are 
to implement the digit operations. In general, the 

ODDS representation presenta very interesting 

properties, such as redundancy and binary encoding 
of its digit set, for an high efficiency and fast 

implementation of multi-operand addition. 

Furthermore, the conversions from a BCD to ODDS 
representation is a straight- forward, hence the digit 

set of a BCD is  subset of the ODDS representation. 

In our paper we make use of SD radix-10 recoding 

of the BCD multiplier [30], requires to compute a set 
of decimal multiples of the 

BCD multiplicand. Here the main issue is to perform 

the X3 multiple without a long carry-propagation. 

Forthe input digits of a multiplicand in an 

conventional BCD (i.e., the range [0, 9], e , r ), the 
multiplication by 3 which leads to a maximum 

decimal carry to  next position of 2 and to a 

maximum value of the interim digit (the result digit 

before adding the carry from the lower position) of 
9. Hence the resultant maximum digit (after adding 

the decimal carry and the interim digit) is 11. Thus, 

the range of the digits after the 3 multiplication is in 

the range [0, 11]. Hence the redundant BCD 
representations can represent the resultant digits with 

justa one decimal carry propagation. Here the  

important issue for this representation is  ten’s 
complement operation. Since after  recoding the 

multiplier digits, negative multiplication digits may 

come into extent, it is necessary to negate (ten’s 
complement) the multiplicand to obtain the negative 

partial products. This operation can be done by 

computing the nine’s complement of a multiplicand 

and by adding a one in the proper place of the digit 
array. The nine’s complement of the positive 

decimal operand cn be obtained  by

 

The implementation of 9-Zi which leads to a 

very complex implementation, hence the digitsZi of 

the multiples can be generated may take the values 
higher than 9. A simple implementation is obtained 

by just observing  the excess-3 of the nine’s 

complement of an operand which is equal to the bit-

complement of an operand coded in excess-3. 

3. HIGH-LEVEL ARCHITECTURE 

The higher level block diagram of a 

proposed parallel architecture for a d-digit BCD 

decimal integer and a fixed-point multiplication is 
shown in Fig. 1. This architecture accepts of the 

conventional (non-redundant) BCD inputs X, 

Y,which  generatesan redundant BCD partial 

products PP, and computes a BCD product P= X * 
Y. It consists of three stages (1) Parallel generation 

of the partial products coded in XS-3,which includes 

generation of multiplicand multiples and recoding of 
the multiplier operand, (2) recoding of the partial 

products from XS-3 to the ODDS representation and 

subsequent reduction, and (3) final conversion to  
non-redundant d-digit BCD product.. 

Stage 1:- Decimal partial product 

generation. A SDradix-10 of the recoding BCD 
multiplier has been used. This recoding reduces a 

number of partial products which leads to a 

significant reduction of the overall multiplier area 
[29]. Hence, the recoding of the d-digit multiplier Y 

into SD radix-10 digits Y ; ;Yb ,produces d partial 

products PP d ; ;PP ,one per digit; note that each 
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Ybk recoded digit can be represented in a 6–bit hot-

one code and this code can  be used as control input 
of the multiplexers to select a proper multiplicand 

multiple, An additional partial product PPd is 

produced by the most significantmultiplier digit after 
the recoding, so that the total number of partial 

products generated is d. 

Stage 2:- Decimal partial product reduction. 

In this stage  the array of d ODDS partial products 

can be reduced to two d-digit words (A and B). This 

proposal relies on a binary carry- save adder tree to 
perform a carry-free additions of decimal partial 

products. The array of d ODDS partial products can 

be observed as adjacent digit columns of height 
h<=d . Hence the ODDS digits are to be encoded in 

binary, the rules of a binary arithmetic can be 

applied within the digit bounds, hence only carries 
are generated between radix-10 digits (4-bit 

columns) contribute a decimal correction of the 

binary sum. That is, if a carry out is generated as a 

result of 4-bit (modulo 16) binary addition, the 
binary sum is incremented by 6 at the certain 

position to obtain a correct decimal sum (modulo 10 

addition). 

 

Stage 2:- Decimal partial productreduction. 

In this stage  the array of d ODDS partial 
productscan bereduced to two d-digit words (A and 

B). This proposal relies on a binary carry- save adder 

tree to performa carry-free additions of decimal 
partial products. The array of d ODDS partial 

products can be observed as adjacent digit columns 

of height h<=d . Hence the ODDS digits are to 

beencoded in binary, the rules of a binary arithmetic 

can be applied within the digit bounds, hence only 
carries are generated between radix-10 digits (4-bit 

columns) contribute a decimal correction of the 

binary sum. That is, if a carry out is generated as a 
result of 4-bit (modulo 16) binary addition, the 

binary sum is incremented by 6 at the certain 

position to obtain a correct decimal sum (modulo 10 
addition). 

Two early designs [12], [18] implement a 

tree structures for an addition of ODDS operands. In 
the non speculative BCD adder [18], a 

combinational logic block can be used to determine 

the sum correction once all the operands can be 
added in a binary CSA tree, with the maximum 

number of inputs limited to 19 BCD operands. In 

our method the sum correction can be evaluated 
concurrently with binary carry-save additions using 

the columns of binary counters. Normally we count 

the number of carries per decimal column, since a 

multiplication by 6 is performed (a correction by 6 
for each carry-out from each column). The result is 

added to the correction term to the output of a binary 

carry-save reduction tree. Significantly this can 
improves the latency of the partial product reduction 

tree. Furthermore, the proposed architecture can 

accepts the arbitrary number of ODDS or input 
operands of the BCD. Some of PPR tree structures 

presented in [12] (the area-improved PPR 

tree)alsoutilize a similar idea, but they rely on a 

custom designed ODDS adder to perform  the  
reductions of stages. Our proposal aims is to provide 

an optimal reuse of any binary CSA tree for 

themultioperand decimal addition, as it can done in 
[31] for the 5211 and 4221 decimal codings. 

Stage 3:- Conversion to (non redundant) 
BCD. We have to consider the use of  BCD carry-

propagate adder [29] to perform the final conversion 

to an non-redundant BCD product P= A+ B. Here 

the proposed architecture is a BCD Quaternary Tree 
adder, a d-digit hybrid parallel prefix/carry-select 

adder,. The sum of input digits Ai, Bi at each 

position i has to be in the range  [0,18]; so that at 
most one decimal carry is propagated to the next 

position i+1 [22]. Moreover, to generate  a correct 

decimal carry, the BCD addition algorithm 

implemented requires Ai+ Bi must be obtained in 
excess-6. Several choices are possible. We opt for 

representing operand A in BCD excess-6 
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4.DECIMAL PARTIAL PRODUCT 

GENERATION  

Thedecimal  partial product generation stage 

comprises of recoding the multiplier to a SD radix-
10 representation, the generation of the ODDS 

partial products and the calculation of multiplicand 

multiples in XS-3 code. 

The negative multiples can be easily 

obtained by ten’s complementing of the positive 
ones. This is equivalent to the nine’s complement of 

the positive multiple and then adding 1. We have 

been shown in Section 2, the nine’s complement can 

be obtained easily by bit inversion. This needs the 
positive multiplicand multiples to be coded in XS-3 

with digits in range   (-3-12).The d least significant 

partial products PP[d]....PP[0] are generated from 
digits Ybk by using a set of 5:1 muxes, as shown in 

Fig_2. The xor gates at the output of the mux is to 

invert the multiplicand multiples, to obtain the  9’s 

complement, if the SD radix-10 digit is negative 
(Ysk =1 ). 

On the other hand, if the signals 
Y1K,Y2K,Y3K,Y4K,Y5K  are all zero then PP(k)=0 , 

but it can aslo be coded in XS-3 (bit encoding 0011). 

Then, to set the two least significant bits to 1, the 
input to the XOR gate is YskYskYbk is zero ( 

denotes the boolean OR operator), where Ybkiszero 

equals 1 if all the signals (Y1 k;Y2 k;Y3 k;Y4 k;Y5 

k) are zero. In addition, the partial product signs are 
encoded into their MSDs (seen in Section 4.2). The 

generation of a most significant partial product 

PP(d),it only depends on Ysd , the sign of  most 
significant SD radix-10 digit. 

 

 

4.1 Generation of the Multiplicand Multiples  

We denote by NX  multiples(1X, 2X, 3X, 

4X, 5X) are the set of multiplicand multiples which 

are coded in the XS-3 representation, with the digits 
NXi in the  range(-3 to 12) , being [NXi]=NXi+3 

with in the range(0 to 15), the  corresponding value 

of a 4-bit binary encoding of NXi  given by 
Equation (2).Fig. 3 shows the high-level block 

diagram of the multiples generation with just one 

carry propagation. This is performed in two steps  

1) digit recoding of the BCD multiplicand digits Xi 

into a  decimal carry  and a digit 

such as 
being Tmax the maximum 

possible value for the decimal carry. 

2) The decimal carries transferred between adjacent 

digits are assimilated to obtained the correct 4-bit 

representation of XS-3 digits NXi, that is  
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 Most-Significant Digit Encoding 

The most significant digit(MSD) of each 

PP[k] , PPd[k] , is directly obtained in ODDS 
representation. Hence these digits can store the 

carries that are to be  generated in the computation 

of the multiplicand multiples and the sign bit of the 

partial product. For the positive and negative partial 
products we have

 

4.3.Correction Term: 

The resultant partial product sum must be 
corrected off the-critical-path by adding a pre-

computed term, fcwhich only depends on format 

precision d. This term has to gather: (a) the constants 
that does not included in the MSD encoding and (b) 

a constant for an every XS-3 partial product digit 

(introduced to simplify the nine’s complement 
operation). Actually, the sum of these constants are 

equivalent to convert the XS-3 digits of the partial 

products to the ODDS representation. Note that the 

4-bit encoding of a XS-3 digit. 

 

 

5.DECIMAL PARTIAL PRODUCT 

REDUCTION 

The PPR tree consists of three parts: (1) a 

regular binary CSA tree to compute an estimation of 

the decimal partial product sum in a binary carry-
save form (S, C), (2) a sum correction block to count 

the carries generated between the digit columns, and 

(3) a decimal digit 3:2 compressor which increments 

the carry-save sum according to the carries count to 

obtain the final double-word product (A;B), A being 
represented with excess-6 BCD digits and B being 

represented with BCD digits. The PPR tree can be 

viewed as adjacent columns of h ODDS digits each, 
h being the column height (see Fig. 4), and h < = 

d+1.Fig. 5 shows the high-level architecture of a 

column of the PPR tree (the ith column) with h 
ODDS digits in [0, 15]. (4 bits per digit). Each digit 

column of the binary CSA tree (the graycolored box 

in Fig. 5) reduces the h input digits and n cin input 

carry bits, transferred from the previous 

6. RESULTS& DISCUSSION 

 We had verified this by writing the VHDL 

code,we can simulated and synthesized it on FPGA 

board. The following results have been shown below 
in these two examples we have given two different 

values and seen the correct values. We have taken 

two 4   bit BCD number and performed 

multiplication. 

 

FIG 4. Simulation Results Of Proposed Bcd Multiplier 

Table III:  without mod-10 logic 

 

Table IV: with mod-10 logic 
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Fig 5 comparison graph without mod-10 logic 

 

Fig6 Comparison graph with mod-10 logic 

7.CONCLUSION 

 Finally we have observed that this product is 

better than older BCD multipliers. We have 
implemented using VHDL and simulated along with 

synthesis on Sparton -3e FPGA board. We have 

dumped into Xilinx Chip (xcv3s400e-5s). Thearea 

has been minimized by 23% which shows the 
decrease of power consumption by 37% than 

previous BCD Multiplier 
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