

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 744

Design for Exterminating Synchronization Latency Using
Sequenced Latching

M.Naveen kumar*1; N.Srikanth *2& J.E.N Abhilash*3

Department of ECE, Swarnandhra College of Engg & Tech.,A.P,India

meesala434@gmail.com
*1 srikanth648@yahoo.co.in

*2 abhilash.jen@gmail.com*3

ABSTRACT:

In the present generation where the modern multi-

core systems which have a large number of

components that operate with different clock

domains and communicating through

asynchronous interfaces. And due to this

interfaces synchronizer circuits are used, which

guard against metastability failures but this

introduces delay in processing the asynchronous

input. Hence we propose a novel method that

hides synchronization abeyancy by overlapping it

with computation cycles. In this work a method

that performs speculative computations during

synchronization cycles and hence prevented

synchronization time from incurring abeyance.

Our methods relies on sequence the latching of

data using synchronizer state during

synchronization cycles and automatically re-latch

if any corrupt data is latched. Synthesis results

reveal that our approach achieves average

savings of Area, costs and power costs compared

to two similar speculative techniques. The

Proposed design will be implemented using

Verilog HDL.

Keywords: Duplication; latency; met stability;

speculation; synchronization.

1.INTRODUCTION

 For the longest part of the history of integrated

circuits, synchronous operation has allowed designers
to put together an ever-larger number of components

without having to worry much about the complex

timing issues of their interoperability. Clock domain

interfacing and the problem of flip-flop metastability
are among the challenges that must be addressed to

facilitate this transition and support the creation of

more powerful heterogeneous many-core systems.
When components in different clock domains attempt

to communicate, the receiver is always at a risk of

failure due to the finite probability that sender’s
request arrives at a bad time. Such occurrences can

Cause flip-flops on the receiving module to become

“metastable” and take a theoretically unbounded time

to decide whether to go logic high or low. And the
resulting failures and the large numbers of failed

attempts that have been made at avoiding it. Where

these failures are impossible to eliminate completely,
but can be minimized to an desired level by re-

sampling the input signal by cascading the flip-flops,

which is known as a synchronizer. However this

introduces the latency and reduces the performance of
the system. Therefore, a synchronizer design gives a

reliability versus performance, where the mean time

between failure(MTBF) of the design is traded for the
time having for synchronization(settling time ts). And

relationship between the MTBF and ts is captured by

the textbook formula.

Where t is the metastability regeneration time
constant, fc is the clock frequency, fd is the data arrival

rate, and Tw is a reference time window for the

exponential relationship.

 Here the MTBF of synchronization is adjusted by

the designer’s choice of ts. And later it is chosen as an

integer multiple of the clock period by presenting a flip

flops in chain in order to perform synchronization.
Two flip-flop synchronizers are the most common and

are likely to yield a MTBF in the order of thousands of

years in modern processes(t = 20 ps, taking fc = fd =1.0
GHz and Tw = 1ns). Designs operating with lower

mailto:meesala434@gmail.com*1
mailto:srikanth648@yahoo.co.in*2

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 745

supply voltages, extreme temperatures, high clock

frequencies exhibiting larger variations in design
parameters requires four stages of synchronization to

maintain similar MTBF.

Also latency by this synchronizer chains has impact

on the performance of latency-sensitive applications

and therefore alternative methods are used to reduce
this latency and they are:

1.1 Circuit-level Designs

 In this design where the synchronization time can

be reduced by using faster flip-flops (lower t). In the

early attempts where the jamb latch was used to meet
the requirements of synchronization. While this type of

latches provides the same level of reliability and also

requiring lower synchronizing time.

1.2 Exploiting Known Timing relationships

 In this case when the communicating clocks

which share timing relationship that avoids

synchronization latency. Whenever clock-data

conflicts might occur and can be detected and avoid
sampling the input in some critical intervals.

1.3 Using Pausible/Stretchable Clocks

When pausing the receiver’s clock to an

unbounded amount of time then the need for
synchronization can be eliminated. This can be done

by adding a mutual-exclusion element that arbitrates

between the receiver’s clock until any occurred
metastable states are resolved.

Despite the advantages in the above three contexts,

their applications remains very limited. Solutions from

first type requires full custom design flows, as less

common in use than that of standard cell libraries. In
the second type, clocks have dependable timing

relationships. And in the last type a local generator to

generate plausible clocks have poor stability. So these

applications are limited for small scale applications
and the differences are observed in table 1.

Hence to exterminate latency during synchronization a
redundant hardware is used in order to perform

speculation computations. Here the latency can be

hidden by overlapping it with the number of
computational cycles in equivalent that follows the

data arrival. In computing it requires n synchronization

cycles and m computational cycles, where for the

processing time it takes of max (m , n) . The maximum
of the cycles is the processing time in speculative

computations, where in the conventional approach the

processing time required is the addition (m + n). And
this difference is seen in fig.1.

Fig-1: Hiding synchronization latency by speculative

computations (sync = synchronization cycle, comp =

computation cycle). (a) Conventional approach. (b)

Speculative computations.

 Over the two types speculation is preferred to the
conventional type in reducing synchronizing latency.

As speculation process does not aim for the

synchronization and also it is architectural one. And
also it does not requires faster flip-flops since it is not

aiming for the synchronization. In the second context

where reliability and the duplicated hardware will be
an increasingly affordable in the future technologies

that is because of continuous growth in the design area.

But the performance of the flip-flops is becoming

worse due to supply voltage scaling [5] and growing
process variations [8] and also the clock relatively

timing relationships, which are difficult to verify [11].

However it has advantages, speculation type needs

large amount of duplicated hardware. As it requires

much hardware the area and the power costs is also
more. And now we introduced a new technique which

is called sequenced latching that has better

performance than the existing system in costs and

latency improvements.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 746

2. BACKGROUND

This section describes the existing methods of

speculative technique in reducing the synchronization
latency. And there are two methods, first (Datapath

unfolding) which is a general type hardware

duplication solution that helps in eliminating the
latency during synchronization. And secondly

(speculative synchronization) which mainly used for

the synchronization solution specifically.

2.1 Overview Of Speculation

Speculation which can be said as using either time
or resource redundancy in order to perform certain

useful work. In the modern digital systems where this

speculation is used in different abstraction levels.
Considering an example of memory management,

where the pre-fetched data is stored in the caches, this

increases the processing speed [17]. And also this
increases the though put in the branch prediction and

the execution of the instructions [18]

2.2 Datapath Unfolding [21]

In this there are two types of data path which are

pipelined and non-pipelined. Where it is easy to obtain
speculative calculations in pipelined system because

restoring the pipeline state in the case of

misspeculation is trivial. Considering an example,
when any pipelined processor mispredicts a branch,

instructions that are invalid in the fetch and decode

stages can be eliminated. And this same cannot be

done in the case of non-pipelined systems. Moreover
the speculative computations cannot be reversed in the

same straight forward manner. And this id due to

having of loop dependencies (i.e., feedback paths).

Figure-2: Asynchronous Receiver

 Apart from this the arbitrary designs can use this

speculation computations by unfolding this

designs[22]. Moreover it produces the same output as

the actual design after multiple number of cycles
which is similar to that of actual pipeline depth.

Where unfolding is widely used by the

compilers[23]-[25], and schedulers[26],[27] in order
to increase the throughput of the execution. And in

the present technology it is mainly used in the digital

signal processors [28], [29], and from here it is said to
be as datapath unfolding.

Considering an asynchronous receiver shown in

fig 2 And the receiver is taken as the moore machine

which consists of a combinational block C and and
the stste register R. and moreover the asynchronous

data which has to be transferred is controlled by the

handshake signals which are termed as REQ and
ACK. IN this case for illustration purpose four-phase

handshake protocol is used by the receiver. Hence the

data made available on the bus by the sender and then
asserts REQ. And then the data on the bus is latched

by the bus and few data dependent computations are

done and asserts ACK to acknowledge that the

consumption of data is completed. After this process
REQ is de-asserted by the sender and the receiver de-

asserts ACK.

Figure-3: Unfolded Asynchronous Receiver

In order to maintain reliability, two flip-flops are used

at the request to synchronize. But due this flip-flops

there is a delay of two subsequent cycles. However the
latency caused by this can be eliminated by using two

additional datapath instances and this arrangement is

seen in fig 3. In this it is clear that the datapath of the
receiver has been unfolded into three stages of cyclic

pipeline. In the first two stages where the speculative

computations are done holding the valid data by the

bus. And considering the third stage it is the same copy
of the datapath. When original REQ which appears at

the synchronizer output, and the state stored in the

register R2 is transferred to C3 in order to compute the
third stage. And here the actual datapath (R3, C3)

resumes its computation and after its completion sends

acknowledgement to the sender.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 747

And this process requires isochronic principle where

the REQ must arrive after a required large delay of the
data [30]. In this case even if there is any metastable

state is even latched by R1 and passing to the nest state

R2.

2.3 Speculative Synchronization [31]

 In this type where a single flip-flop is used in order to
synchronize the handshake signals and also to detect n

cycles after, if any metastable state occurred due to any

synchronizing flip-flop. As for n-cycles it requires n

datapath state register duplicates but has no
combinational logic. However any metastable state is

identified and state is restored, it has to be stated from

the beginning and requires additional delay of n cycles.
However such type of cases rarely and also has

minimum impact on overall latency and it provides a

1-2 cycles of latency which is opposed in the case of

datapath unfolding .

3. SEQUENCED LATCHING

This is a novel technique to latch data during the

synchronization cycles. And the synchronizers can be

used as a state machine to sequence the series of
latching operations. Moreover the synchronizer is fixed

such that its state does not change when the latching

operation fails. Hence any failed latching operations

are retried in the coming cycles. This technique is
known as sequenced latching. And this analysis uses

assumptions about the behavior of metastability of the

flip-flops.
Here the metastable state of the flip-flop can cause an

increase in the clock-to-q delay, but this does not

change the monotonic nature or the rise/fall time of its
output. Although toggling outputs and long transition

times due to metastability reported in [2], and these

occurs under circuit-level conditions which occurs

rarely in practice. The output may be non-monotonic
of a metastable flip-flop when the threshold voltage

(Vth) lies in between the metastable voltages of its

master and slave latches. However supply voltage
noise may disturb the metastable voltage of a latch, and

it cannot push latch which has diverged by a enough

large voltage Vm back into metastable state. Hence a

flip-flop whose Vth is far from its metastability voltage
of its latches by atleast Vm will necessarily have a

monotonic output.

3.1 Isochronicity

Similar to the datapath unfolding technique, present

method is based on isochronic handshakes[30].
Isochronicity states the data and the request signals

travel separately and the data which is available is

indicated by the request signal that has to be arrive a
sufficient time later. Another technique to this

approach is to encode valid information within the data

itself. This one eliminates the requirement of

isochronic timing constraint but requires more complex
data encoding and decoding circuits and number of

signal lines.

Figure-4: Two Stage Pipeline

3.2 Technical Overview

 Our technique is illustrated in the fig 4. In the

design where the two flipflops (s2 and s3) synchronize

an asynchronous handshake request (REQ) and it acts
as a state machine to control the passing of the data

through pipeline.

Once the input of the pipeline is held stable by the

sender, it does not change until the data item
propagates through the pipeline is acknowledged.

However when the stable data is held on DATA, the

transition of REQ propagates through the synchronizer
chain enabling the register R1 in succession. However,

problems might arise as REQ is asynchronous to

receive and may cause S2(and possibly S3 afterwards)
to become metastable. When any flip-flop experiences

prolonged clock to q transition due to metastability, the

setup condition of the path (Si to Ri) which is not

satisfied and Ri may latch corrupt values.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 748

Figure-5: Synchronizer State Machine

And the main idea of our technique is to eliminate

latching of corrupt values from the previous stages of
the pipeline by preventing late transitions of any

synchronizer flip-flop from being captured by its

successor. And this can be done by inserting delay
elements between the synchronizer flip-flops shown in

fig.4. With this enough delay the late transitions of any

flip-flop, which may not meet the setup condition of

the register Ri wil necessary fail to be captured by Si+1.
Therefore if the setup condition is not met then this

stalls the pipeline for a cycle and latches the corret

data in the next cycle.

4. IMPLEMENTATION

4.1 Operating Principle
In this section, the speculative computations are

performed using two datapath instances. Moreover this

is connected in a cyclic pipeline and sequenced

latching is used to enable them alternately. And the
basic application of the sequenced latching is seen in

the fig.6. Two datapath instances are connected in

cyclic pipeline and these are enabled alternately using
ODD and EVEN, which are combinationally derived

from the synchronizer nodes and asserted during the

odd and even cycles of synchronization.

Figure-6: Cyclic Pipeline Using Sequenced Latching

When REQ transitions indicates the validity of data,

and if none of the synchronizer flip-flops become

metastable, then the signals ODD and EVEN will be

asserted in the alternating cycles. With this the state
registers (RO and RE) will be enabled alternately and

also the datapath state will alternate between them.

And if any of the flip-flop becomes metastable then is
behaves as in the section 3.2. Therefore any corrupt

data is latched by the registers then the state will not

change ,ODD and EVEN will not toggle in the
following cycle and the corrupt state is re-latched.
4.2 Proposed implementation

Figure-7: Asynchronous Controller Using Sequenced Latching

 Fig-7 shows the proposed implementation block

diagram. In this the handshake controller sits outside

the datapath and communicates using the signals
VALID and COMPLETE. After the synchronization

then the controller asserts VALID signal. Where

COMPLETE is asserted only after the end of the
computations by the datapath. Moreover the ODD and

EVEN signals are generated by the sequencing logic

block to complete the number of datapath state

transitions equal to the number of the synchronization
cycles. In case of the datapath computations cycles (m)

are more than the synchronization cycles (n) then the

alternate behavior of the ODD and EVEN has to be
maintained after synchronization. And this can be done

by adding a toggle flip-flop in the sequencing logic

block.

5. Simulation Results:

 With the existing system using datapath path

unfolding where the simulation results can be obtained
in the fig.8. Since in the case of this technique where it

uses the two handshake protocol which has the req and

the ack in order to transmit the data. Initially the reset
is set to high for one

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 749

Figure- 8: Simulation results for reducing Latency using

Datapath Unfolding

clock cycle and from the next cycle when the request is
set to high i.e, (Req=1) then after two clock cycles

where the data is completed and then acknowledges to

the sender that is (ACK=1) after two clock cycles. But

here both acknowledges at a single clock cycle has
both has to travel for each clock cycle. Due to this the

synchronization is affected . Hence this problem is not

seen in the sequenced technique.

Figure-9: Simulation results for reducing latency using sequenced

latching

In the figure9. the simulation results of implementing the

sequenced latency for reducing latency is observed. Initially

the reset is set to high for one clock cycle then in the next

cycle request is set to high i.e., REQ=1 then the ODD and

EVEN signals will toggle for four cycles and on the fifth

cycle where the complete and ACK goes high. As this works

on the principle of four handshake protocol then after four

cycles as the data consumption is over then ACK goes high.

Figure-10: Comparison table of performance parameters for

datapath Unfolding and Sequenced Latching

Figure-11: Comparison chart of performance parameters for Datapath

Unfolding and Sequenced Latching

In performing both the techniques where the proposed

sequenced latching has better performance than the

datapath unfolding in terms of power and the delay.
And also there is a reduction of 0.024ns from the

existing model and in the case of power delay product

there is a reduction of 2.543mw. This can be clearly

seen in the fig-10

6. CONCLUSION

Here we presented a speculative technique
which is sequenced latching which performs

speculative computations during synchronization

cycles and hence prevented synchronization time from
incurring latency. Our method relies on using the

synchronizer state to sequence the latching of data

during synchronization cycles and automatically re-

latch any corrupt data. Which is the overcome of the
Datapath Unfolding which relies on loop unrolling to

create duplicate state machines whose function is to

compute speculative data-dependent states. These
states are not used by the original machine until

synchronization is complete and the validity of data is

confirmed. As this value remains same even during the
synchronization cycle which is not practical. It is

shown that this approach is functionality correct and

that it does not violate any of the principle tenets of the

metastability problem.

7. REFERENCES

[1] T. J. Chaney and C. E. Molnar, “Anomalous

behavior of synchronizer and arbiter circuits,” IEEE

Trans. Comput., vol. 22, no. 4, pp. 421–422, Apr.

1973.

[2] I. W. Jones, S. Yang, and M. Greenstreet,

“Synchronizer behavior and analysis,” in Proc. 15th

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 750

IEEE Symp. Asynchron. Circuits Syst., May 2009, pp.

117–126.

[3] R. Ginosar, “Metastability and synchronizers: A

tutorial,” IEEE Design Test Comput., vol. 28, no. 5, pp.
23–35, Sep.–Oct. 2011.

[4] D. Kinniment, A. Bystrov, and A. Yakovlev,
“Synchronization circuit performance,” IEEE J. Solid-

State Circuits, vol. 37, no. 2, pp. 202–209, Feb. 2002.

[5] J. Zhou, D. Kinniment, G. Russell, and A.
Yakovlev, “A robust synchronizer,” in Proc. IEEE

Comput. Soc. Annu. Symp. Emerg. VLSI Technol.

Archit., Mar. 2006, pp. 442–443.

[6] S. Yang, I. Jones, and M. Greenstreet,

“Synchronizer performance in deep sub-micron
technology,” in Proc. 17th IEEE Int. Symp.

Asynchron.Circuits Syst., Apr. 2011, pp. 33–42.

[7] J. Zhou, M. Ashouei, D. Kinniment, J. Huisken,
and G. Russell, “Extending synchronization from

super-threshold to sub-threshold region,” in Proc.

IEEE Symp. Asynchron. Circuits Syst., May 2010,
pp. 85–93.

[8] J. Zhou, D. Kinniment, G. Russell, and A.

Yakovlev, “Adapting synchronizers to the effects of on
chip variability,” in Proc. 14th IEEE Int. Symp.

Asynchron. Circuits Syst., Apr. 2008, pp. 39–47.

[9] M. Baghini and M. Desai, “Impact of technology

scaling on metastability performance of cmos

synchronizing latches,” in Proc. 7th Asia South
Pacific, 15th Int. Conf. VLSI Design. Proc., Design

Autom. Conf., Jan. 2002, pp. 317–322.

[10] M. Greenstreet, “Implementing a stari chip,” in
Proc. IEEE Int. Conf. Comput. Design, VLSI Comput.

Process., Oct. 1995, pp. 38–43.

[11] A. Chakraborty and M. Greenstreet, “Efficient

self-timed interfaces for crossing clock domains,” in

Proc. 9th Int. Symp. Asynchron. Circuits Syst., May
2003, pp. 78–88.

[12] L. Sarmenta, G. Pratt, and S. Ward, “Rational

clocking [digital systems design],” in Proc. IEEE Int.

Conf. Comput. Design, VLSI Comput. Process., Oct.

1995, pp. 271–278.

[13] W. Dally and S. Tell, “The even/odd

synchronizer: A fast, all-digital, periodic
synchronizer,” in Proc. IEEE Symp. Asynchron.

Circuits Syst., May 2010, pp. 75–84.

[14] J. Kessels, A. Peeters, P. Wielage, and S.-J. Kim,

“Clock synchronization through handshake signalling,”

in Proc. 8th Int. Symp. Asynchron.

[15] K. Yun and A. Dooply, “Pausible clocking-based

heterogeneous systems,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 7, no. 4, pp. 482–488,
Dec. 1999.

[16] R. Dobkin, R. Ginosar, and C. Sotiriou, “High rate
data synchronization in gals socs,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 14, no. 10, pp.

1063–1074, Oct. 2006.

[17] Z. Wang, T. O’Neil, and E.-M. Sha, “Optimal

loop scheduling for hiding memory latency based on

two-level partitioning and prefetching,” IEEE Trans.
Signal Process., vol. 49, no. 11, pp. 2853–2864, Nov.

2001.

[18] M. Younis, T. Marlowe, A. Stoyen, and G. Tsai,
“Statically safe speculative execution for real-time

systems,” IEEE Trans. Softw. Eng., vol. 25, no. 5, pp.

701–721, Sep.–Oct. 1999.

[19] G. Lakshminarayana, A. Raghunathan, and N.

Jha, “Incorporating speculative execution into
scheduling of control-flow-intensive designs,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 19, no. 3, pp. 308–324, Mar. 2000.

[20] A. Bhowmik and M. Franklin, “A general

compiler framework for speculative multithreaded

processors,” IEEE Trans. Parallel Distrib. Syst., vol.
15, no. 8, pp. 713–724, Aug. 2004.

[21] N. Park and A. Parker, “Sehwa: A software
package for synthesis of pipelines from behavioral

specifications,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 7, no. 3, pp. 356–370, Mar.

1988.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 751

[22] K. Parhi and D. Messerschmitt, “Static rate-

optimal scheduling of iterative data-flow programs via
optimum unfolding,” IEEE Trans. Comput., vol. 40,

no. 2, pp. 178–195, Feb. 1991.

[23] K. Ebcio˘glu, “A compilation technique for

software pipelining of loops with conditional jumps,”

ACM SIGMICRO Newslett., vol. 19, no. 3, pp. 36–41,
Sep. 1988.

[24] A. Aiken and A. Nicolau, “Optimal loop

parallelization,” in Proc. ACM SIGPLAN Conf.
Program. Lang. Design Implement., 1988, pp. 308–

317.

[25] M. Stoodley and C. Lee, “Software pipelining

loops with conditional branches,” in Proc. 29th Annu.

IEEE/ACM Int. Symp. Microarchit., Dec. 1996, pp.
262–273.

[26] L.-F. Chao and E. Hsing-Mean Sha, “Scheduling

data-flow graphs via retiming and unfolding,” IEEE
Trans. Parallel Distrib. Syst., vol. 8, no. 12, pp. 1259–

1267, Dec. 1997.

[27] L.-F. Chao, “Scheduling and behavioral

transformation for parallel systems,” Ph.D.

dissertation, Dept. Comput. Sci., Princeton Univ.,

Princeton, NJ, USA, 1993.

[28] L. Lucke, A. Brown, and K. Parhi, “Unfolding

and retiming for highlevel DSP synthesis,” in Proc.
IEEE Int. Symp. Circuits Syst., vol. 4. Jun. 1991, pp.

2351–2354.

[29] G. Goossens, J. Vandewalle, and H. De Man,

“Loop optimization in register-transfer scheduling for

DSP-systems,” in Proc. 26th Conf. Design Autom.,

Jun. 1989, pp. 826–831.

[30] A. Martin and M. Nystrom, “Asynchronous

techniques for system-onchip design,” Proc. IEEE, vol.
94, no. 6, pp. 1089–1120, Jun. 2006.

[31] D. J. Kinniment and A. Yakovlev, “Low latency
synchronization through speculation.” in Proc. Power

Timing Model. Optim. Simul. Conf., 2004, pp. 278–

288.

[32] Nangate 45nm Open Cell Library. (2012)

[Online]. Available:http://www.nangate.com

