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ABSTRACT:  

In the present generation where the modern multi-

core systems  which  have a large number of 

components that operate with different clock 

domains and communicating through 

asynchronous interfaces. And due to this 

interfaces synchronizer circuits are used, which 

guard against metastability failures but this 

introduces delay in processing the asynchronous 

input. Hence we propose a novel method that 

hides synchronization abeyancy by overlapping it 

with computation cycles. In this work a method 

that performs speculative computations during 

synchronization cycles and hence prevented 

synchronization time from incurring abeyance. 

Our methods relies on sequence the latching of 

data using synchronizer state during 

synchronization cycles and automatically re-latch 

if any corrupt data is latched. Synthesis results 

reveal that our approach achieves average 

savings of Area, costs and power costs compared 

to two similar speculative techniques. The 

Proposed design will be implemented using 

Verilog HDL. 
 

Keywords: Duplication; latency; met stability; 

speculation; synchronization. 

 

1.INTRODUCTION 

    For the longest part of the history of integrated 

circuits, synchronous operation has allowed designers 
to put together an ever-larger number of components 

without having to worry much about the complex 

timing issues of their interoperability. Clock domain 

interfacing and the problem of flip-flop metastability 
are among the challenges that must be addressed to  

 

facilitate this transition and support the creation of 

more powerful heterogeneous many-core systems. 
When components in different clock domains attempt 

to communicate, the receiver is always at a risk of 

failure due to the finite probability that sender’s 
request arrives at a bad time. Such occurrences can 

Cause flip-flops on the receiving module to become 

“metastable” and take a theoretically unbounded time 

to decide whether to go logic high or low. And the 
resulting failures and the large numbers of failed 

attempts that have been made at avoiding it. Where 

these failures are impossible to eliminate completely, 
but can be minimized to an desired level by re-

sampling the input signal by cascading the flip-flops, 

which is known as a synchronizer.  However this 

introduces the latency and reduces the performance of 
the system. Therefore, a synchronizer design gives a 

reliability versus performance, where the mean time 

between failure(MTBF) of the design is traded for the 
time having for synchronization(settling time ts). And 

relationship between the MTBF and ts is captured by 

the textbook formula. 

 

Where t  is the metastability regeneration time 
constant, fc is the clock frequency, fd is the data arrival 

rate, and Tw is a reference time window for the 

exponential relationship. 

     Here the MTBF of synchronization is adjusted by 

the designer’s choice of ts. And later it is chosen as an 

integer multiple of the clock period by presenting a flip 

flops in chain in order to perform synchronization. 
Two flip-flop synchronizers are the most common and 

are likely to yield a MTBF in the order of thousands of 

years in modern processes(t = 20 ps, taking fc = fd =1.0 
GHz and Tw = 1ns). Designs operating with lower 

mailto:meesala434@gmail.com*1
mailto:srikanth648@yahoo.co.in*2


  

 
International Journal of Research (IJR) 

e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 10, October 2015 

Available at http://internationaljournalofresearch.org 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 745 

supply voltages, extreme temperatures, high clock 

frequencies exhibiting larger variations  in design 
parameters requires four stages of synchronization to 

maintain similar MTBF. 

Also latency by this synchronizer chains has impact 

on the performance of latency-sensitive applications 

and therefore alternative methods are used to reduce 
this latency and they are: 

1.1  Circuit-level Designs 

       In this design where the synchronization time can 

be reduced by using faster flip-flops (lower t).   In the 

early attempts where the jamb latch was used to meet 
the requirements of synchronization. While this type of 

latches provides the same level of reliability and also 

requiring lower synchronizing  time. 

1.2   Exploiting Known Timing relationships 

 In this case when the communicating clocks 

which share timing relationship that avoids 

synchronization latency. Whenever clock-data 

conflicts might occur and can be detected and avoid 
sampling the input in some critical intervals. 

1.3  Using Pausible/Stretchable Clocks  

When pausing the receiver’s clock to an 

unbounded amount of time then the   need for 
synchronization can be eliminated. This can be done 

by adding a mutual-exclusion element that arbitrates 

between the receiver’s clock   until any occurred 
metastable states are resolved. 
 

 
   

Despite the advantages in the above three contexts, 

their applications remains very limited. Solutions from 

first type requires full custom design flows, as less 

common in use than that of standard cell libraries. In 
the second type, clocks have dependable timing 

relationships. And in the last type a local generator to 

generate plausible clocks have poor stability. So these 

applications are limited for small scale applications 
and the differences are observed in table 1.  

Hence to exterminate latency during synchronization a 
redundant hardware is used in order to perform 

speculation computations. Here the latency can be 

hidden by overlapping it with the number of 
computational cycles in equivalent that follows the 

data arrival. In computing it requires n synchronization 

cycles and m computational cycles, where for the 

processing time it takes of max (m , n) . The maximum 
of the cycles is the processing time in speculative 

computations, where in the conventional approach the 

processing time required is the addition (m + n).   And 
this difference is seen in fig.1. 

 

Fig-1: Hiding synchronization latency by speculative 

computations (sync = synchronization cycle, comp = 

computation cycle). (a) Conventional approach. (b) 

Speculative computations. 

     Over the two types speculation is preferred to the 
conventional type in reducing synchronizing latency. 

As speculation process does not aim for the 

synchronization and also it is architectural one. And 
also it does not requires faster flip-flops since it is not 

aiming for the synchronization. In the second context 

where reliability and the duplicated hardware will be 
an increasingly affordable in the future technologies 

that is because of continuous growth in the design area. 

But the performance of the flip-flops is becoming 

worse due to supply voltage scaling [5] and growing 
process variations [8] and also the clock relatively 

timing relationships, which are difficult to verify [11]. 

However it has advantages, speculation type needs 

large amount of duplicated hardware. As it requires 

much hardware the area and the power costs is also 
more. And now we introduced a new technique which 

is called sequenced latching that has better 

performance  than the existing system in costs and 

latency improvements.  
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2. BACKGROUND 

This section describes the existing methods of 

speculative technique in reducing the synchronization 
latency. And there are two methods, first (Datapath 

unfolding) which is a general type hardware 

duplication solution that helps in eliminating the 
latency during synchronization. And secondly 

(speculative synchronization) which mainly used for 

the synchronization solution specifically. 

2.1  Overview Of Speculation 

Speculation which can be said as using either time 
or resource redundancy in order to perform certain 

useful work. In the modern digital systems where this 

speculation is used in different abstraction levels. 
Considering an example of memory management, 

where the pre-fetched data is stored in the caches, this 

increases the processing speed [17]. And also this 
increases the though put in the branch prediction and 

the execution of the instructions [18] 

2.2 Datapath Unfolding [21] 
 

In this there are two types of data path which are 

pipelined and non-pipelined. Where it is easy to obtain 
speculative calculations in pipelined system because 

restoring the pipeline state in the case of 

misspeculation is trivial. Considering an example, 
when any pipelined processor mispredicts a branch, 

instructions that are invalid in the fetch and decode 

stages can be eliminated. And this same cannot be 

done in the case of non-pipelined systems. Moreover 
the speculative computations cannot be reversed in the 

same straight forward manner. And this id due to 

having of loop dependencies (i.e., feedback paths). 
 

 
Figure-2: Asynchronous Receiver 

 

 Apart from this the arbitrary designs can use this 

speculation computations by unfolding this 

designs[22]. Moreover it produces the same output as 

the actual design after multiple number of cycles 
which is similar to that of actual pipeline depth. 

Where unfolding is widely used by the 

compilers[23]-[25], and schedulers[26],[27] in order 
to increase the throughput of the execution. And in 

the present technology it is mainly used in the digital 

signal processors [28], [29], and from here it is said to 
be as datapath unfolding. 

Considering an asynchronous receiver shown in 

fig 2 And the receiver is taken as the moore machine 

which consists of a combinational block C and and 
the stste register R. and moreover  the asynchronous 

data which has to be transferred is controlled by the 

handshake signals which are termed as REQ and 
ACK. IN this case for illustration purpose four-phase 

handshake protocol is used by the receiver. Hence the 

data made available on the bus by the sender and then 
asserts REQ. And then the data on the bus is latched 

by the bus and few data dependent computations are 

done and asserts ACK to acknowledge that the 

consumption of data is completed. After this process 
REQ is de-asserted by the sender and the receiver de-

asserts ACK. 

 
Figure-3: Unfolded Asynchronous Receiver 

 

In order to maintain reliability, two flip-flops are used 

at the request to synchronize. But due this flip-flops 

there is a delay of two subsequent cycles. However the 
latency caused by this can be eliminated by using two 

additional datapath instances and this arrangement is 

seen in fig 3. In this it is clear that the datapath of the 
receiver has been unfolded into three stages of cyclic 

pipeline. In the first two stages where the speculative 

computations are done holding the valid data by the 

bus. And considering the third stage it is the same copy 
of the datapath. When original REQ which appears at 

the synchronizer output, and the state stored in the 

register R2 is transferred to C3 in order to compute the 
third stage. And here the actual datapath (R3, C3) 

resumes its computation and after its completion sends 

acknowledgement to the sender. 
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And this process requires isochronic principle where 

the REQ must arrive after a required large delay of the 
data [30]. In this case even if there is any metastable 

state is even latched by R1 and passing to the nest state 

R2. 
 

2.3     Speculative Synchronization [31] 

 

 In this type where a single flip-flop is used in order to 
synchronize the handshake signals and also to detect n 

cycles after, if any metastable state occurred due to any 

synchronizing flip-flop. As for n-cycles it requires n 

datapath state register duplicates but has no 
combinational logic. However any metastable state is 

identified and state is restored, it has to be stated from 

the beginning and requires additional delay of n cycles. 
However such type of cases rarely  and also has 

minimum impact on overall latency and it provides a 

1-2 cycles of latency which is opposed in the case of 

datapath unfolding . 
 

3. SEQUENCED LATCHING 

 
This is a novel technique to latch data during the 

synchronization cycles. And the synchronizers can be 

used as a state machine to sequence the series of 
latching operations. Moreover the synchronizer is fixed 

such that its state does not change when the latching 

operation fails. Hence any failed latching operations 

are retried in the coming cycles. This technique is 
known as sequenced latching. And this analysis uses 

assumptions about the behavior of metastability of the 

flip-flops. 
Here the metastable state of the flip-flop can cause an 

increase in the clock-to-q delay, but this does not 

change the monotonic nature or the rise/fall time of its 
output. Although toggling outputs and long transition 

times due to metastability reported in [2], and these 

occurs under circuit-level conditions which occurs 

rarely in practice. The output may be non-monotonic 
of a metastable flip-flop when the threshold voltage 

(Vth) lies in between the metastable voltages of its 

master and slave latches. However supply voltage 
noise may disturb the metastable voltage of a latch, and 

it cannot push latch which has diverged by a enough 

large voltage Vm  back into metastable state. Hence a 

flip-flop whose Vth is far from its metastability voltage 
of its latches by atleast Vm will necessarily have a 

monotonic output. 

 

3.1  Isochronicity 

 

Similar to the datapath unfolding technique, present 

method is based on  isochronic handshakes[30]. 
Isochronicity states the data and the request signals 

travel separately and the data  which is available is 

indicated by the request signal that has to be arrive a 
sufficient time later. Another technique  to this 

approach is to encode valid information within the data 

itself. This one eliminates the requirement of 

isochronic timing constraint but requires more complex 
data encoding  and decoding circuits and number of 

signal lines. 

 
Figure-4: Two Stage Pipeline  

 

3.2 Technical Overview 

 
 Our technique is illustrated in the fig 4. In the 

design where the two flipflops (s2 and s3) synchronize 

an asynchronous handshake request (REQ) and it acts 
as a state machine to control the passing of the data 

through pipeline.  

Once the input of the pipeline is held stable by the 

sender, it does not change until the data item 
propagates through the pipeline is acknowledged. 

However when the stable data is held on DATA, the 

transition of REQ propagates through the synchronizer 
chain enabling the register R1 in succession. However,  

problems might arise as REQ is asynchronous to 

receive and may cause  S2(and possibly S3 afterwards) 
to become metastable. When any flip-flop experiences 

prolonged clock to q transition due to metastability, the 

setup condition of the path (Si to Ri) which is not 

satisfied and Ri may latch corrupt values. 
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Figure-5: Synchronizer State Machine 

 

And the main idea of our technique is to eliminate 

latching of corrupt values from the previous stages of 
the pipeline by preventing late transitions of any 

synchronizer flip-flop from being captured by its 

successor. And this can be done by inserting delay 
elements between the synchronizer flip-flops shown in 

fig.4. With this enough delay the late transitions of any 

flip-flop, which may not meet the setup condition of 

the register Ri wil necessary fail to be captured by Si+1. 
Therefore if the setup condition is not met then this 

stalls the pipeline  for a cycle and latches the corret 

data in the next cycle. 
 

4. IMPLEMENTATION 

4.1 Operating Principle 
In this section, the speculative computations  are 

performed using two datapath instances. Moreover this 

is connected in a cyclic pipeline and sequenced 

latching is used  to enable them alternately. And the 
basic application of the sequenced latching is seen in 

the fig.6. Two datapath instances are connected in 

cyclic pipeline and these are enabled alternately using 
ODD and EVEN, which are combinationally derived 

from the synchronizer nodes and asserted during the 

odd and even cycles of synchronization. 

 
Figure-6: Cyclic Pipeline Using Sequenced Latching 

 

When REQ transitions indicates the validity of data, 

and if none of the synchronizer flip-flops become 

metastable, then the signals ODD and EVEN will be 

asserted in the alternating cycles. With this the state 
registers (RO and RE ) will be enabled alternately and 

also the datapath state will alternate between them. 

And if any of the flip-flop  becomes metastable then is 
behaves as in the section 3.2. Therefore any corrupt 

data is latched by the registers then the state will not 

change ,ODD and EVEN will not toggle  in the 
following cycle and the corrupt state is re-latched.         
4.2 Proposed implementation 

 

 
Figure-7: Asynchronous Controller Using Sequenced Latching 

 

 Fig-7 shows the proposed implementation block 

diagram. In this the handshake controller sits outside 

the datapath and communicates using the signals 
VALID and COMPLETE. After the synchronization 

then the controller asserts VALID signal. Where 

COMPLETE is asserted only after the end of the 
computations by the datapath. Moreover the ODD and 

EVEN signals are generated by the sequencing logic 

block  to complete the number of datapath state 

transitions equal to the number of the synchronization 
cycles. In case of the datapath computations cycles (m) 

are more than the synchronization cycles (n) then the 

alternate behavior of the ODD and EVEN has to be 
maintained after synchronization. And this can be done 

by adding a toggle flip-flop in the sequencing logic 

block. 

 

5. Simulation Results: 

  With the existing system using datapath path 

unfolding where the simulation results can be obtained 
in the fig.8. Since in the case of this technique where it 

uses the two handshake protocol which has the req and 

the ack in order to transmit the data. Initially the reset 
is set to high for one  
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Figure- 8: Simulation results for reducing Latency using 

Datapath Unfolding 

 

clock cycle and from the next cycle when the request is 
set to high i.e, (Req=1) then after two clock cycles 

where the data is completed and then acknowledges to 

the sender that is (ACK=1) after two clock cycles. But 

here both acknowledges at a single clock cycle has 
both has to travel for each clock cycle. Due to this the 

synchronization is affected . Hence this problem is not 

seen in the sequenced technique. 
 

 
 

Figure-9: Simulation results for reducing latency using sequenced 

latching 

In the figure9. the simulation results of implementing the 

sequenced latency for reducing latency is observed. Initially 

the reset is set to high for one clock cycle then in the next 

cycle request is set to high i.e., REQ=1  then the ODD and 

EVEN signals will toggle for four cycles and on the fifth 

cycle where the complete and ACK goes high. As this works 

on the principle of four handshake protocol then after four 

cycles as the data consumption is over then ACK goes high. 

 
 
Figure-10:  Comparison table of performance parameters for  

datapath Unfolding and Sequenced Latching 

 

 

 
 

Figure-11: Comparison chart of performance parameters for Datapath 

Unfolding and Sequenced Latching 

In performing both the techniques where the proposed 

sequenced latching has better performance than the 

datapath unfolding in terms of power and the delay.  
And also there is a reduction of 0.024ns from the 

existing model and in the case of power delay product 

there is a reduction of 2.543mw. This can be clearly 

seen in the fig-10  

 

6. CONCLUSION 

Here we presented a speculative technique 
which is  sequenced latching which performs 

speculative computations during synchronization 

cycles and hence prevented synchronization time from 
incurring latency. Our method relies on using the 

synchronizer state to sequence the latching of data 

during synchronization cycles and automatically re-

latch any corrupt data. Which is the overcome of the  
Datapath Unfolding which relies on loop unrolling to 

create duplicate state machines whose function is to 

compute speculative data-dependent states. These 
states are not used by the original machine until 

synchronization is complete and the validity of data is 

confirmed. As this value remains same even during the 
synchronization cycle which is not practical. It is 

shown that this approach is functionality correct and 

that it does not violate any of the principle tenets of the 

metastability problem.  
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