

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 981

Designing Ids for Web Security Mechanism against Injection and
Multiple Attacks

Ms. Aboli; Prof. D. M. Sable & Prof V.R. Wadhankar
Computer Science and Engineering, RTMNU University, ACE Wardha, Maharashtra, India

Abstract
In this paper we propose a philosophy and a model apparatus to assess web application security

instruments. The approach is in view of the thought that infusing sensible Vulnerabilities in a web

application and assaulting them naturally can be utilized to bolster the evaluation of existing security

systems and apparatuses in custom setup situations. To give consistent with life comes about, the proposed

helplessness and assault infusion procedure depends on the investigation of an expansive number of

vulnerabilities in genuine web applications. Notwithstanding the non-specific approach, the paper

portrays the Vulnerability's usage & Attack Injector Tool (VAIT) that permits the whole's robotization

process. We utilized this instrument to run an arrangement of trials that exhibit the attainability and the

viability of the proposed procedure. The investigations incorporate the assessment of scope and bogus

positives of an interruption recognition framework for SQL Injection assaults and the viability's

evaluation of two top business web application defenselessness scanners. Results demonstrate that the

infusion of vulnerabilities and assaults is to be sure a viable approach to assess security components and

to bring up their shortcomings as well as courses for their change.

Keywords: SL Injection; XSS; VAIT

Introduction

Nowadays there is an increasing

dependency on web applications, ranging from

individuals to large organizations. Almost

everything is stored, available or traded on the

web. Web applications can be personal websites,

blogs, news, social networks, web mails, bank

agencies, forums, e-commerce applications, etc.

The omnipresence of web applications in our way

of life and in our economy is so important that it

makes them a natural target for malicious minds

that want to exploit this new streak.

We need means to evaluate the security of

web applications and of attack counter measure

tools. To handle web application security, new

tools need to be developed, and procedures and

regulations must be improved, redesigned or

invented. Moreover, everyone involved in the

development process should be trained properly.

All web applications should be thoroughly

evaluated, verified and validated before going into

production.

Conceptually, the attack injection consists

of the introduction of realistic vulnerabilities that

are afterwards automatically exploited (attacked).

Vulnerabilities are considered realistic because

they are derived from the extensive field study on

real web application vulnerabilities presented in

[16], and are injected according to a set of

representative restrictions and rules defined in

[17].

The attack injection methodology is based

on the dynamic analysis of information obtained

from the runtime monitoring of the web

application behavior and of the interaction with

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 982

external resources, such as the backend database.

This information, complemented with the static

analysis of the source code of the application,

allows the effective injection of vulnerabilities

that are similar to those found in the real world.

Although this methodology can be applied

to various types of vulnerabilities, we focus on of

the most widely exploited and serious web

application vulnerabilities that are SQL Injection

(SQLi) and Cross Site Scripting (XSS) [3], [6].

Attacks to these vulnerabilities basically take

advantage of improper coded applications due to

unchecked input fields at user interface. This

allows the attacker to change the SQL commands

that are sent to the database (SQLi) or through the

input of HTML and scripting languages (XSS).

A Brute-Force Attack, or exhaustive key

search, is a cryptanalytic attack that can, in theory,

be used against any encrypted data (except for

data encrypted in an information-theoretically

secure manner). Such an attack might be used

when it is not possible to take advantage of other

weaknesses in an encryption system (if any exist)

that would make the task easier. It consists of

systematically checking all possible keys or

passwords until the correct one is found. In the

worst case, this would involve traversing the

entire search space. When password guessing, this

method is very fast when used to check all short

passwords, but for longer passwords other

methods such as the dictionary attack are used

because of the time a brute-force search takes.

The resources required for a brute-force attack

grow exponentially with increasing key size, not

linearly. Although US export regulations

historically restricted key lengths to 56-bit

symmetric keys (e.g. Data Encryption Standard),

these restrictions are no longer in place, so

modern symmetric algorithms typically use

computationally stronger 128- to 256-bit keys.

There is a physical argument that a 128-bit

symmetric key is computationally secure against

brute-force attack.

Literature Review

[1]Jose Fonseca, Marco Vieira, and Henrique

Madeira “Evaluation of Web Security

Mechanisms Using Vulnerability And Attack

Injection” Transactions On Dependable And

Secure Computing, Vol. 11, No. 5,

September/October 2014.

In this paper they propose a methodology

and a prototype tool to evaluate web application

security mechanisms. The methodology is based

on the idea that injecting realistic vulnerabilities

in a web application and attacking them

automatically can be used to support the

assessment of existing security mechanisms and

tools in custom setup scenarios. To provide true to

life results, the proposed vulnerability and attack

injection methodology relies on the study of a

large number of vulnerabilities in real web

applications. In addition to the generic

methodology, the paper scribes the

implementation of the Vulnerability & Attack

Injector Tool (VAIT) that allows the automation

of the entire process. The drawback of this paper

is methods are more complicated and less efficient

[1].

 [2] D. Avresky, J. Arlat, J.C. Laprie, and Y.

Crouzet, “Fault Injection for Formal Testing of

Fault Tolerance,” IEEE Trans. Reliability, vol.

45, no. 3, pp. 443-455, Sept. 2011

In this methodology has been used to

extend a debugging tool aimed at testing fault

tolerance protocols developed by BULL France. It

has been applied successfully to the injection of

https://en.wikipedia.org/wiki/Cryptanalytic_attack
https://en.wikipedia.org/wiki/Information-theoretically_secure
https://en.wikipedia.org/wiki/Information-theoretically_secure
https://en.wikipedia.org/wiki/Key_%28cryptography%29
https://en.wikipedia.org/wiki/Passwords
https://en.wikipedia.org/wiki/Key_space_%28cryptography%29
https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Exponential_growth
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/History_of_cryptography
https://en.wikipedia.org/wiki/Symmetric_key
https://en.wikipedia.org/wiki/Data_Encryption_Standard

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 983

faults in the inter-replica protocol that supports

the application-level fault tolerance features of the

architecture of the ESPRIT-funded Delta4project.

The results of these experiments are analyzed in

detail [2].

[3]J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie,

and D. Powell, “Fault Injection and

Dependability Evaluation of Fault-Tolerant

Systems,” IEEE Trans. Computers, vol. 42, no.

8, pp. 913-923, Aug. 2011

The paper describes a dependability

evaluation method based on fault injection that

establishes the link between the experimental

evaluation of the fault tolerance process and the

fault occurrence process. The main characteristics

of a fault injection test sequence aimed at

evaluating the coverage of the fault tolerance

process are presented. Emphasis is given to the

derivation of experimental measures. The various

steps by which the fault occurrence and fault

tolerance processes are combined to evaluate

dependability measures are identified and their

interactions are analyzed [3].

[4] N. Neves, J. Antunes, M. Correia, P.

Ver_ıssimo, and R. Neves, “Using Attack

Injection to Discover New Vulnerabilities,”

Proc. IEEE/IFIP Int’l Conf. Dependable

Systems and Networks, 2006.

In this paper, due to our increasing

reliance on computer systems, security incidents

and their causes are important problems that need

to be addressed. To contribute to this objective,

the paper describes a new tool for the discovery of

security vulnerabilities on network connected

servers. The AJECT tool uses a specification of

the server's communication protocol to

automatically generate a large number of attacks

accordingly to some predefined test classes. Then,

while it performs these attacks through the

network, it monitors the behavior of the server

both from a client perspective and inside the

target machine. The observation of an incorrect

behavior indicates a successful attack and the

potential existence of a vulnerability. To

demonstrate the usefulness of this approach, a

considerable number of experiments were carried

out with several IMAP servers[4].

[5]N. Jovanovic, C. Kruegel, and E. Kirda,

“Precise Alias Analysis for Static Detection of

Web Application Vulnerabilities,” Proc. IEEE

Symp. Security Privacy, 2006.

In this methodology, the number and the

importance of web applications have increased

rapidly over the last years. At the same time, the

quantity and impact of security vulnerabilities in

such applications have grown as well. Since

manual code reviews are time-consuming, error

prone and costly, the need for automated solutions

has become evident. In this paper, we address the

problem of vulnerable web applications by means

of static source code analysis. To this end, we

present a novel, precise alias analysis targeted at

the unique reference semantics commonly found

in scripting languages. Moreover, we enhance the

quality and quantity of the generated vulnerability

reports by employing a novel, iterative two-phase

algorithm for fast and precise resolution of file

inclusions [5].

[6] J. Fonseca and M. Vieira, “Mapping

Software Faults with WebSecurity

Vulnerabilities,” Proc. IEEE/IFIP Int’l. Conf.

DependableSystems and Networks, June 2008.

Web applications are typically developed

with hard time constraints and are often deployed

with critical software bugs, making them

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 984

vulnerable to attacks. The classification and

knowledge of the typical software bugs that lead

to security vulnerabilities is of utmost importance.

This paper presents a field study analyzing 655

security patches of six widely used web

applications. Results are compared against other

field studies on general software faults (i.e., faults

not specifically related to security), showing that

only a small subset of software fault types is

related to security. Furthermore, the detailed

analysis of the code of the patches has shown that

web application vulnerabilities result from

software bugs affecting a restricted collection of

statements. A detailed analysis of the

conditions/locations where each fault was

observed in our field study is presented allowing

future definition of realistic fault models that

cause security vulnerabilities in web applications,

which is the key element to design a realistic

attack injector.

[7] J. Fonseca, M. Vieira, and H. Madeira,

“Training Security Assurance

Teams using Vulnerability Injection,” Proc.

IEEE Pacific RimDependable Computing

Conf., Dec. 2008.

Writing secure Web applications is a

complex task. In fact, a vast majority of Web

applications are likely to have security

vulnerabilities that can be exploited using simple

tools like a common Web browser. This

represents a great danger as the attacks may have

disastrous consequences to organizations, harming

their assets and reputation. To mitigate these

vulnerabilities, security code inspections and

penetration tests must be conducted by well-

trained teams during the development of the

application. However, effective code inspections

and testing takes time and cost a lot of money,

even before any business revenue. Furthermore,

software quality assurance teams typically lack

the knowledge required to effectively detect

security problems. In this paper we propose an

approach to quickly and effectively train security

assurance teams in the context of web application

development. The approach combines a novel

vulnerability injection technique with relevant

guidance information about the most common

security vulnerabilities to provide a realistic

training scenario. Our experimental results show

that a short training period is sufficient to clearly

improve the ability of security assurance teams to

detect vulnerabilities during both code inspections

and penetration tests.

[8] J. Carreira, H. Madeira, and J.G. Silva,

“Xception: Software FaultInjection and

Monitoring in Processor Functional Units,”

IEEETrans. Software Eng., vol. 24, no. 2, Feb.

1998.

This paper presents Xception, a software

faultinjection and monitoring environment.

Xception usesthe advanced debugging and

performance monitoringfeatures existing in most

of the modern processors toinject more realistic

faults by software, and tomonitor the activation of

the faults and their impacton the target system

behaviour in detail. Faults areinjected with

minimum interference with the targetapplication.

The target application is not modified,no software

traps are inserted, and it is not necessaryto execute

it in special trace mode (the application isexecuted

at full speed). Xception provides acomprehensive

set of fault triggers, including spatialand temporal

fault triggers, and triggers related tothe

manipulation of data in memory. Faults injectedby

Xception can affect any process running on the

starget system including the operating system.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 985

[9] D.T. Stott, B. Floering, D. Burke, Z.

Kalbarczpk, and R.K. Iyer, “NFTAPE: A

Framework for Assessing Dependability in

Distributed Systems with Lightweight Fault

Injectors,” Proc. Computer Performance and

Dependability Symp., 2000.

Many fault injection tools are available for

dependability assessment. Although these tools

are good at injecting

a single fault model into a single system, they

suffer from two main limitations for use in

distributed systems: (1) nosingle tool is sufficient

for injecting all necessary fault models; (2) it is

difficult to port these tools to new

systems.NFTAPE, a tool for composing

automated fault injection experiments from

available lightweight fault injectors,triggers,

monitors, and other components, helps to solve

these problems.

We have conducted experiments using NFTAPE

with several types of lightweight fault injectors,

includingdriver-based, debugger-based, target-

specific, simulation-based, hardware-based, and

performance-fault injections.Two example

experiments are described in this paper. The first

uses a hardware fault injector with aMyrinet

LAN; the other uses a Software Implemented

Fault Injection (SWIFI) fault injector to target a

spaceimagingapplication.

[10] J. Christmansson and R. Chillarege,

“Generation of an Error Setthat Emulates

Software Faults,” Proc. IEEE Fault Tolerant

ComputingSymp., 1996.

A significant issue in fault injection

experiments is thatthe injected faults are

representative of software faultsobserved in the

field. Another important issue is the time

used, as we want experiments to be conducted

withoutexcessive time spent waiting for the

consequences of afault. An approach to accelerate

the failure process wouldbe to inject errors instead

of faults, but this would requirea mapping

between representative software faults

andinjectable errors. Furthermore, it must be

assured that theinjected errors emulate software

faults and not hardwarefaults.

Proposed system

The methodology proposed was

implemented in a concrete Vulnerability & Attack

Injector Tool (VAIT) for web applications. The

tool was tested on top of widely used applications

in two scenarios. The first to evaluate the

effectiveness of the VAIT in generating a large

number of realistic vulnerabilities for the offline

assessment of security tools, in particular web

application vulnerability scanners. The second to

show how it can exploit injected vulnerabilities to

launch attacks, allowing the online evaluation of

the effectiveness of the counter measure

mechanisms installed in the target system, in

particular an intrusion detection system.

In practice, the use of both static and

dynamic analysis is a key feature of the

methodology that allows increasing the overall

performance and effectiveness, as it provides the

means to inject more vulnerability that can be

successfully attacked and discarded those that

cannot.

The proposed methodology provides a

practical environment that can be used to test

countermeasure mechanisms (such as intrusion

detection systems (IDSs), web application

vulnerability scanners, web application fire-walls,

static code analyzers, etc.), train and evaluate

security teams, help estimate security measures

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 986

(like the number of vulnerabilities present in the

code), among others.

Fig1. System Architecture

Conclusion-
The SQL - Injection Attacks are tremendously

dangerous in association to other types of Web-based

attacks, for the reason that here the end result is data

manipulation.SQL injection holes can be easily

exploited by a technique called SQL Injection Attacks.

This proposed integrated approach is an effort to add

some more security measures to databases to avoid

SQL injection attack.

References-
[1] Jose Fonseca, Marco Vieira, and Henrique Madeira

“Evaluation of Web Security MechanismsUsing

Vulnerability & Attack Injection”-IEEE

TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING, VOL. 11, NO. 5,

SEPTEMBER/OCTOBER 2014.

[2] D. Avresky, J. Arlat, J.C. Laprie, and Y. Crouzet,

“Fault Injection for Formal Testing of Fault

Tolerance,” IEEE Trans. Reliability, vol. 45, no. 3, pp.

443-455, Sept. 2011

[3] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D.

Powell, “Fault Injection and Dependability Evaluation

of Fault-Tolerant Systems,” IEEE Trans. Computers,

vol. 42, no. 8, pp. 913-923, Aug. 2011.

[4] N. Neves, J. Antunes, M. Correia, P. Ver_ıssimo,

and R. Neves, “Using Attack Injection to Discover

New Vulnerabilities,” Proc. IEEE/IFIP Int‟l Conf.

Dependable Systems and Networks, 2006.

[5]N. Jovanovic, C. Kruegel, and E. Kirda, “Precise

Alias Analysis for Static Detection of Web

Application Vulnerabilities,” Proc. IEEE Symp.

Security Privacy, 2006.

[6] IBM Global Technology Services “IBM Internet

Security Systems X-Force 2012 Trend & Risk

Report,” IBM Corp., Mar. 2013.

[7] J. Fonseca and M. Vieira, “Mapping Software

Faults with Web Security Vulnerabilities,” Proc.

IEEE/IFIP Int‟l. Conf. Dependable Systems and

Networks, June 2008

[8] J. Fonseca, M. Vieira, and H. Madeira,

“Training Security Assurance

Teams using Vulnerability Injection,” Proc. IEEE

Pacific Rim Dependable Computing Conf., Dec.

2008.

[9] J. Carreira, H. Madeira, and J.G. Silva,

“Xception: Software Fault Injection and

Monitoring in Processor Functional Units,” IEEE

Trans. Software Eng., vol. 24, no. 2, Feb. 1998.

[10] D.T. Stott, B. Floering, D. Burke, Z.

Kalbarczpk, and R.K. Iyer, “NFTAPE: A

Framework for Assessing Dependability in

Distributed Systems with Lightweight Fault

Injectors,” Proc. Computer Performance and

Dependability Symp., 2000.

[11] J. Christmansson and R. Chillarege,

“Generation of an Error Set that Emulates

Software Faults,” Proc. IEEE Fault Tolerant

Computing Symp., 1996.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 987

[12] H Madeira, M. Vieira, and D. Costa, “On the

Emulation of Software Faults by Software Fault

Injection,” Proc. IEEE/IFIP Int„l Conf.

Dependable System and Networks, 2000.

[13] J. Fonseca, M. Vieira, and H. Madeira,

“Testing and Comparing Web Vulnerability

Scanning Tools for SQLi and XSS Attacks,” Proc.

IEEE Pacific Rim Int‟l Symp. Dependable

Computing, Dec. 2007.

[14] J. Dur~aes and H. Madeira, “Emulation of

Software Faults: A Field

Data Study and a Practical Approach,” IEEE

Trans. Software Eng., vol. 32, no. 11, pp. 849-

867, Nov. 2006.

[15] Ananta Security “Web Vulnerability

Scanners Comparison,”

anantasec.blogspot.com/2009/01/web-

vulnerability-scannerscomparison.html, accessed

1 May 2013, 2009.

[16] J. Fonseca, M. Vieira, and H. Madeira,“The

Web Attacker Perspective- A Field Study,” Proc.

IEEE Int‟l. Symp. Software Reliability Eng., Nov.

2010

[17] G. Buehrer, B. Weide, and P. Sivilotti,

“Using Parse Tree Validation to Prevent SQLi

Attacks,” Proc. Int‟l Workshop Software Eng. and

Middleware, 2005

[18] I. Elia, J. Fonseca, and M. Vieira,

“Comparing SQLi Detection Tools Using Attack

Injection: An Experimental Study,” Proc. IEEE

Int‟l Symp. Software Reliability Eng., Nov. 2010.

[19] M. Buchler, J. Oudinet, and A. Pretschner,

“Semi-Automatic Security Testing of Web

Applications from a Secure Model,” Proc. Int‟l

Conf. Software Security and Reliability, 2012.

[20] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and

C.-H. Tsai, “Web Application

Security Assessment by Fault Injection and

Behavior Monitoring,” Proc. Int‟l Conf. World

Wide Web, pp. 148-159, 2003.

[21] J. Fonseca, M. Vieira, and H. Madeira,

“Detecting Malicious SQL,”

Proc. Conf. Trust, Privacy & Security in Digital

Business, Sept. 2007.

