
International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 10

October 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	1054

A Hybrid Cloud Approach for Secure Authorized

Deduplication

Samala Pravalika
M.Tech student

Email id:pravali.2001@gmail.com
Department of computer Science and Engineering

Aurora’s Technological & Research Institute

Mrs.N.Nirmala Jyothi
Senior Associate Professor

Email id:nirmala.narisetty@gmail.com
Department of computer Science and Engineering

and Information Technology
Aurora’s Technological & Research Institute

Abstract—Data deduplication is one of important
techniques for eliminating duplicate copies of existing
data, and is widely used in cloud storage to minimize the
amount of storage space and save bandwidth. To protect
the confidentiality of available data while supporting
deduplication, the convergent encryption technique is
proposed to encrypt the data before outsourcing. To
protect data security, this paper does make the first
attempt to formally address the problem of authorized
data deduplication. Different from traditional
deduplication systems, the differential privileges of users
are further considered in duplicate check besides the data
itself. We also present different new deduplication
constructions supporting authorized duplicate check in a
hybrid cloud architecture. Security analysis demonstrates
that our system is secure in terms of the definitions
specified in the proposed security model. We implement a
prototype of our proposed authorized duplicate check
scheme and conduct testbed experiments using our
prototype, As a proof of concept. We show that our
proposed authorized duplicate check scheme incurs
minimal overhead compared to normal operations.

1 INTRODUCTION

For data management scalable in cloud computing,
deduplication is a well-known technique. Data deduplication
is a specialized data compression technique for removing
duplicate copies of data in storage. The technique is used to
improve storage utilization and we can also apply to network
data transfers to reduce the number of bytes that must be sent.
Instead of keeping multiple copies of data with the same
content, deduplication eliminates redundant data by keeping
only one physical copy and referring other redundant data to
that copy. Deduplication can take

either the file level or the block level.
Although data deduplication brings a lot of benefits, security

and privacy concerns arise as users’ sensitive data are
susceptible to both insider and outsider attacks. Traditional
encryption, while providing data confiden-tiality, is
incompatible with data deduplication. Specif-ically, traditional
encryption requires different users to encrypt their data with
their own keys. Thus, identical data copies of different users
will lead to different ci-phertexts, making deduplication
impossible. Convergent encryption [8] has been proposed to
enforce data con-fidentiality while making deduplication
feasible. It en-crypts/decrypts a data copy with a convergent
key, which is obtained by computing the cryptographic hash
value of the content of the data copy. After key generation and
data encryption, users retain the keys and send the ciphertext to
the cloud. Since the encryption operation is deterministic and is
derived from the data content, iden-tical data copies will
generate the same convergent key and hence the same
ciphertext. To prevent unauthorized access, a secure proof of
ownership protocol [11] is also needed to provide the proof that
the user indeed owns the same file when a duplicate is found.
After the proof, subsequent users with the same file will be
provided a pointer from the server without needing to upload
the same file. A user can download the encrypted file with the
pointer from the server, which can only be decrypted by the
corresponding data owners with their convergent keys. Thus,
convergent encryption allows the cloud to perform
deduplication on the ciphertexts and the proof of ownership
prevents the unauthorized user to access the file

International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 10

October 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	1055

However, previous deduplication systems cannot sup-
port differential authorization duplicate check, which is
im-portant in many applications. In such an authorized
deduplication system, each user is issued a set of priv-
ileges during system initialization (in Section 3, we
elaborate the definition of a privilege with examples).
Each file uploaded to the cloud is also bounded by a set
of privileges to specify which kind of users is allowed
to perform the duplicate check and access the files.
Before submitting his duplicate check request for some
file, the user needs to take this file and his own
privileges as inputs. The user is able to find a duplicate
for this file if and only if there is a copy of this file and
a matched privilege stored in cloud. For example, in a
company, many different privileges will be assigned to
employees. In order to save cost and efficiently
management, the data will be moved to the storage
server provider (S-CSP) in the public cloud with
specified privileges and the deduplication technique
will be applied to store only one copy of the same file.
Because of privacy consid-eration, some files will be
encrypted and allowed the duplicate check by
employees with specified privileges to realize the
access control. Traditional deduplication systems based
on convergent encryption, although pro-viding
confidentiality to some extent, do not support the
duplicate check with differential privileges. In other
words, no differential privileges have been considered
in the deduplication based on convergent encryption
technique. It seems to be contradicted if we want to
realize both deduplication and differential authorization
duplicate check at the same time.

1.1 Contributions
In deduplication with differential privileges in cloud
com-puting, we consider a hybrid cloud architecture
consist-ing of a public cloud and a private cloud. Unlike
existing data deduplication systems, the private cloud is
involved as a proxy to allow data owner/users to
securely per-form duplicate check with differential
privileges. Such an architecture is practical and has
attracted much attention from researchers. The data
owners only outsource their data storage by utilizing
public cloud while the data operation is managed in
private cloud. A new dedu-plication system supporting
differential duplicate check is proposed under this
hybrid cloud architecture where the S-CSP resides in
the public cloud. The user is only allowed to perform
the duplicate check for files marked with the
corresponding privileges.

Furthermore, we enhance our system in security.
Specifically, we present an advanced scheme to support
stronger security by encrypting the file with differential
privilege keys. In this way, the users without correspond-ing
privileges cannot perform the duplicate check. Fur-thermore,
such unauthorized users cannot decrypt the ciphertext even
collude with the S-CSP. Security analysis demonstrates that
our system is secure in terms of the definitions specified in
the proposed security model.

Acronym Description

S-CSP Storage-cloud service provider
PoW Proof of Ownership
(pkU , skU)User’s public and secret key pair
kF Convergent encryption key for file F
P

U Privilege set of a user U
PF Specified privilege set of a file F

ϕF;p
′ Token of file F with privilege p

TABLE 1
Notations Used in This Paper

Finally, we implement a prototype of the proposed
authorized duplicate check and conduct testbed exper-
iments to evaluate the overhead of the prototype. We
show that the overhead is minimal compared to the nor-
mal convergent encryption and file upload operations.

2 PRELIMINARIES

In this section, we first define the notations used in this
paper, review some secure primitives used in our secure
deduplication. The notations used in this paper are
listed in TABLE 1.

Symmetric encryption. Symmetric encryption uses
a common secret key κ to encrypt and decrypt informa-
tion. A symmetric encryption scheme consists of three
primitive functions:

• KeyGenSE(1) ! κ is the key generation algorithm
that generates κ using security parameter 1 ;

• EncSE(κ, M) ! C is the symmetric encryption algo-rithm that

takes the secret κ and message M and then outputs the

ciphertext C; and
• DecSE(κ, C) ! M is the symmetric decryption algo-rithm

that takes the secret κ and ciphertext C and then
outputs the original message M.

•
Convergent encryption. Convergent encryption [4],
[8] provides data confidentiality in deduplication. A
user (or data owner) derives a convergent key from
each original data copy and encrypts the data copy with
the convergent key. In addition, the user also derives a

International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 10

October 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	1056

tag for the data copy, such that the tag will be used to
detect duplicates. Here, we assume that the tag
correctness property [4] holds, i.e., if two data copies
are the same, then their tags are the same. To detect
duplicates, the user first sends the tag to the server side
to check if the identical copy has been already stored.
Note that both the convergent key and the tag are
independently derived, and the tag cannot be used to
deduce the convergent key and compromise data
confidentiality.

Fig. 1. Architecture for Authorized Deduplication

3 SYSTEM MODEL

3.1 Hybrid Architecture for Secure Deduplication
At a high level, our setting of interest is an enterprise
network, consists of a group of affiliated clients who
will use the S-CSP and store data with deduplication
technique. In this setting, deduplication can be
frequently used in these settings for data backup and
disaster recovery applications while greatly reducing
storage space. That type of systems are widespread and
are more suitable to backup and synchronization
applications than richer storage abstractions. There are
three entities defined in our system, that is, users,
private cloud and S-CSP in public cloud as shown in
Fig. 1. The S-CSP performs deduplication by checking
if the contents of two files are the same and stores only
one of them.
The access right to a file is defined based on a set of
privileges. The exact definition of a privilege varies
across applications. For example, we may define a role-
based privilege [9], [19] according to job positions (e.g.,
Director, Project Lead, and Engineer), or we may define
a time-based privilege that specifies a valid time period

(e.g., 2014-01-01 to 2014-01-31) within which a file can
be accessed. A user, say Alice, may be assigned two
privileges “Director” and “access right valid on 2014-01-
01”, so that she can access any file whose access role is
“Director” and accessible time period covers 2014-01-
01. Each privilege is represented in the form of a short
message called token. Each file is associated with some
file tokens, which denote the tag with specified
privileges (see the definition of a tag in Section 2). A
user computes and sends duplicate-check tokens to the
public cloud for authorized duplicate check.
 Users have access to the private cloud server, a
semi-trusted third party which will aid in performing
dedu-plicable encryption by generating file tokens for
the requesting users. We will explain further the role of
the private cloud server below. Users are also
provisioned with per-user encryption keys and
credentials (e.g., user certificates). In this paper, we will
only consider the file-level deduplication for simplicity.
In another word, we refer a data copy to be a whole file
and file-level dedu-plication which eliminates the
storage of any redundant files. Actually, block-level
deduplication can be easily deduced from file-level
deduplication, which is similar to [12]. Specifically, to
upload a file, a user first performs the file-level
duplicate check. If the file is a duplicate, then all its
blocks must be duplicates as well; otherwise, the user
further performs the block-level duplicate check and
identifies the unique blocks to be uploaded. Each data
copy (i.e., a file or a block) is associated with a token
for the duplicate check.

 S-CSP. This is an entity that provides a information

storage service in cloud. The S-CSP provides the
data outsourcing service and stores data on behalf
of the users. To reduce the storage cost, the S-CSP
eliminates the storage of redundant data via dedu-
plication and keeps only unique data. In this paper,
we assume that S-CSP is always online and has
abundant storage capacity and computation power.

 Data Users. A user is an entity that wants to out-
source data storage to the S-CSP and access the
data later. In a storage system supporting dedupli-
cation, the user only uploads unique data but does
not upload any duplicate data to save the upload
bandwidth, which may be owned by the same user
or different users. In the authorized deduplication
system, each user is issued a set of privileges in the
setup of the system. Each file is protected with the
convergent encryption key and privilege keys to re-
alize the authorized deduplication with differential

International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 10

October 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	1057

privileges.
• Private Cloud. Compared with the traditional

dedu-
 plication architecture in cloud computing, this is a

new entity introduced for facilitating user’s se-cure
usage of cloud service. Specifically, since the
computing resources at data user/owner side are
restricted and the public cloud is not fully trusted in
practice, private cloud is able to provide data
user/owner with an execution environment and
infrastructure working as an interface between user
and the public cloud. The private keys for the
privileges are managed by the private cloud, who
answers the file token requests from the users. The
interface offered by the private cloud allows user to
submit files and queries to be securely stored and
computed respectively.

 This is a novel architecture, that consists of a twin
clouds and this hybrid cloud setting has attracted so
many attention recently. For example, an enterprise
might use a public cloud service, such as Amazon S3,
for archived data, but continue to maintain in-house
storage for operational customer data. Alternatively, the
trusted private cloud could be a cluster of virtualized
crypto-graphic co-processors, which are offered as a
service by a third party and provide the necessary
hardware-based security features to implement a remote
execution environment trusted by the users.

3.2 Adversary Model
Typically, we assume that the public cloud and private
cloud are both “honest-but-curious”. Specifically they
will follow our proposed protocol, but try to find out as
much secret information as possible based on their
possessions. Users would try to access data either
within or out of the scopes of their privileges.

In this paper, we suppose that all the files are sen-
sitive and needed to be fully protected against both
public cloud and private cloud. Under the assumption,
two kinds of adversaries are considered, that is, 1)
external adversaries which aim to extract secret infor-
mation as much as possible from both public cloud and
private cloud; 2) internal adversaries who aim to obtain
more information on the file from the public cloud and
duplicate-check token information from the private
cloud outside of their scopes. Such adversaries may
include S-CSP, private cloud server and authorized
users. The detailed security definitions against these
adversaries are discussed below and in Section 5, where
attacks launched by external adversaries are viewed as

special attacks from internal adversaries.

3.3 Design Goals
In this paper, we address the problem of privacy-
preserving deduplication in cloud computing and pro-
pose a new deduplication system supporting for

 Differential Authorization. Each authorized user is

able to get his/her individual token of his file to
perform duplicate check based on his privileges.
Under this assumption, any user cannot generate a
token for duplicate check out of his privileges or
without the aid from the private cloud server.

 Authorized Duplicate Check. Authorized user is
able to use his/her individual private keys to
generate query for certain file and the privileges
he/she owned with the help of private cloud, while
the public cloud performs duplicate check directly
and tells the user if there is any duplicate.

 Unforgeability of file token/duplicate-check token.
Unau-thorized users without appropriate privileges
or file should be prevented from getting or
generating the file tokens for duplicate check of
any file stored at the S-CSP. The users are not
allowed to collude with the public cloud server to
break the unforgeability of file tokens. In our
system, the S-CSP is honest but curious and will
honestly perform the duplicate check upon
receiving the duplicate request from users. The
duplicate check token of users should be issued
from the private cloud server in our scheme

 Data Confidentiality. Unauthorized users without
ap-propriate privileges or files, including the S-
CSP and the private cloud server, should be
prevented from access to the underlying plaintext
stored at S-CSP. In another word, the goal of the
adversary is to retrieve and recover the files that do
not belong to them. In our system, compared to the
previous def-inition of data confidentiality based
on convergent encryption, a higher level
confidentiality is defined and achieved.

4 SECURE DEDUPLICATION SYSTEMS

The main Idea for support authorized deduplication,
the tag of a file F is determined by the file F and the
priv-ilege. To show the difference with traditional
notation of tag, we call it file token instead. For
supporting authorized access, a secret key kp is bounded
with a privilege p to generate a file token. Let ϕ′F;p =

International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 10

October 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	1058

TagGen(F, kp) denote the token of F that is only
allowed to access by user with privilege p. In another
word, the token ϕ′F;p is computed by the users with
privilege p. As a result, if a file has been uploaded by a
user with a duplicate token ϕ′F;p, then a duplicate check
sent from another user will be successful if and only if
he also has the file F and privilege p. Such a token
generation function could be easily implemented as
H(F, kp), where H() denotes a cryptographic hash
function.
4.1 A First Attempt

Before introducing our construction of differential
deduplication, we present a straightforward attempt
with the technique of token generation TagGen(F, kp)
above to design such a deduplication system. The main
idea of this basic construction is to issue corresponding
privilege keys to each user, who will compute the file
tokens and perform the duplicate check based on the
privilege keys and files. In more details, suppose that
there are N users in the system and the privileges in the
universe is defined as P = fp1, . . . , psg. For each
privilege p in P, a private key kp will be selected. For a
user U with a set of privileges PU , he will be assigned
the set of keys fkpi gpi�PU .

File Uploading. Suppose that a data owner U with
privilege set PU wants to upload and share a file F with
users who have the privilege set PF = fpj g.

The user computes and sends S-CSP the file token ϕ′F;p
= TagGen(F, kp) for all p 2 PF .
 If a duplicate is found by the S-CSP, the user pro-

ceeds proof of ownership of this file with the S-
CSP. If the proof is passed, the user will be
assigned a pointer, which allows him to access the
file.

 Otherwise, if no duplicate is found, the user com-
putes the encrypted file CF = EncCE(kF , F) with
the convergent key kF = KeyGenCE(F) and uploads
(CF , fϕ′F;pg) to the cloud server. The convergent
key kF is stored by the user locally.

File Retrieving. Suppose a user wants to download a
file F . It first sends a request and the file name to the
S-CSP. Upon receiving the request and file name, the
S-CSP will check whether the user is eligible to
download F . If failed, the S-CSP sends back an abort
signal to the user to indicate the download failure.
Otherwise, the S-CSP returns the corresponding
ciphertext CF . Upon receiving the encrypted data from
the S-CSP, the user uses the key kF stored locally to
recover the original file F .

4.2 Our Proposed System Description

In this new dedupli-cation system, a hybrid cloud
architecture is introduced to solve the problem. The
private keys for privileges will not be issued to users
directly, which will be kept and managed by the private
cloud server instead. In this way, the users cannot share
these private keys of privileges in this proposed
construction, which means that it can prevent the
privilege key sharing among users in the above
straightforward construction. To get a file token, the
user needs to send a request to the private cloud server..
To perform the duplicate check for some file, the user
needs to get the file token from the private cloud server.
The private cloud server will also check the user’s
identity before issuing the corresponding file token to
the user. The authorized duplicate check for this file can
be performed by the user with the public cloud before
uploading this file. Based on the results of duplicate
check, the user either uploads this file or runs PoW.

Before giving our construction of the deduplication
system, we define a binary relation R = f((p, p′)g as
follows. Given two privileges p and p′, we say that p
matches p′ if and only if R(p, p′) = 1. This kind of a
generic binary relation definition could be instantiated
based on the background of applications, such as the
common hierarchical relation. More precisely, in a hier-
archical relation, p matches p′ if p is a higher-level
privi-lege. For example, in an enterprise management
system, three hierarchical privilege levels are defined as
Director, Project lead, and Engineer, where Director is
at the top level and Engineer is at the bottom level.
Obviously, in this simple example, the privilege of
Director matches the privileges of Project lead and
Engineer. We provide the proposed deduplication
system as follows.

System Setup. The privilege universe P is defined as in
Section 4.1. A symmetric key kpi for each pi 2 P will be
selected and the set of keys fkpi gpi�P will be sent to the
private cloud. An identification protocol = (Proof,
Verify) is also defined, where Proof and Verify are the
proof and verification algorithm respec-tively.
Furthermore, each user U is assumed to have a secret
key skU to perform the identification with servers.
Assume that user U has the privilege set PU . It also
initializes a PoW protocol POW for the file ownership
proof. The private cloud server will maintain a table
which stores each user’s public information pkU and its
corresponding privilege set PU . The file storage system
for the storage server is set to be ?.

International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 10

October 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	1059

5 SECURITY ANALYSIS

Our system is designed to solve the differential
privilege problem in secure deduplication. The security
is analyzed in terms of two aspects, i.e., the authoriza-
tion of duplicate check and the confidentiality of data.
Some basic tools are used to construct the secure
deduplication. These basic tools include the convergent
encryption scheme, symmetric encryption scheme, and
the PoW scheme. Based on this assumption, we show
that systems are secure with respect to the following
analysis.
5.1 Security of Duplicate-Check Token

We consider different types of privacy we need protect,
that is, i) unforgeability of duplicate-check token: There
are two types of adversaries, that is, external adversary
and internal adversary. As shown below, the external
adversary can be viewed as an internal adversary
without any privilege. If a user has privilege p, it
requires that the adversary cannot forge and output a
valid duplicate token with any other privilege p′ on any
file F , where p does not match p′. Furthermore, it also
requires that if the adversary does not make a request of
token with its own privilege from private cloud server,
it cannot forge and output a valid duplicate token with p
on any F that has been queried. The internal adversaries
have more attack power than the external adversaries
and thus we only need to consider the security against
the internal attacker, ii) indistinguishability of
duplicate-check token: this property is also defined in
terms of two aspects as the definition of unforgeability.
First, if a user has privilege p, given a token ϕ′, it
requires that the adversary cannot distinguish which
privilege or file in the token if p does not match p′.
Furthermore, it also require that if the adversary does
not make a request of token with its own privilege from
private cloud server, it cannot distinguish a valid
duplicate token with p on any other F that the adversary
has not queried. In the security definition of
indistinguishablity, we require that the adversary is not
allowed to collude with the public cloud servers.
Actually, such an assumption could be removed if the
private cloud server maintains the tag list for all the
files uploaded. Similar to the analysis of unforgeability,
the security against external adversaries is implied in
the security against the internal adversaries.
Indistinguishiability of duplicate-check token

The security of indistinguishability of token can be also
proved based on the assumption of the underlying
message authentication code is secure. The security of
message authentication code requires that the adversary
cannot distinguish if a code is generated from an un-

known key. In our deduplication system, all the
privilege keys are kept secret by the private cloud
server. Thus, even if a user has privilege p, given a
token ϕ′, the adversary cannot distinguish which
privilege or file in the token because he does not have
the knowledge of privilege key skp.

5.2 Confidentiality of Data

The data will be encrypted in our deduplication system
before outsourcing to the S-CSP. Furthermore, two
kinds of different encryption methods have been
applied in our two constructions. Thus, we will analyze
them re-spectively. In the scheme in Section 4.2, the
data is en-crypted with the traditional encryption
scheme. The data encrypted with such encryption
method cannot achieve semantic security as it is
inherently subject to brute-force attacks that can
recover files falling into a known set. Thus, several new
security notations of privacy against chosen-distribution
attacks have been defined for unpredictable message. In
another word, the adapted security definition guarantees
that the encryptions of two unpredictable messages
should be indistinguishable. Thus, the security of data
in our first construction could be guaranteed under this
security notion.
. The security anal-ysis for external adversaries and
internal adversaries is almost identical, except the
internal adversaries are pro-vided with some convergent
encryption keys addition-ally. The data are encrypted
with the symmetric key encryption technique, instead of
the convergent encryption method. Though the sym-
metric key k is randomly chosen, it is encrypted by
another convergent encryption key kF;p. Thus, we still
need analyze the confidentiality of data by considering
the convergent encryption. Different from the previous
one, the convergent key in our construction is not de-
terministic in terms of the file, which still depends on
the privilege secret key stored by the private cloud
server and unknown to the adversary. Therefore, if the
adversary does not collude with the private cloud
server, the confidentiality of our second construction is
seman-tically secure for both predictable and
unpredictable file. Otherwise, if they collude, then the
confidentiality of file will be reduced to convergent
encryption because the encryption key is deterministic

6 IMPLEMENTATION

We develop cryptographic operations of hashing and
encryption with the OpenSSL library .We also
implement the communication between the entities

International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 10

October 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	1060

based on HTTP, using GNU Libmicrohttpd [10] and
libcurl [13]. Thus, users can issue HTTP Post requests
to the servers.

Our development of the Client givess the following
function calls to support token generation and
deduplication along the file upload process.

• FileTag(File) - It computes SHA-1 hash of the File
as File Tag;

• TokenReq(Tag, UserID) - It requests the Private
Server for File Token generation with the File Tag
and User ID;

• DupCheckReq(Token) - It requests the Storage
Server for Duplicate Check of the File by sending
the file token received from private server;

• ShareTokenReq(Tag, {Priv.}) - It requests the
Private Server to generate the Share File Token
with the File Tag and Target Sharing Privilege Set;

• FileEncrypt(File) - It encrypts the File with
Convergent Encryption using 256-bit AES
algorithm in cipher block chaining (CBC) mode,
where the convergent key is from SHA-256
Hashing of the file; and

• FileUploadReq(FileID, File, Token) - It uploads
the File Data to the Storage Server if the file is
Unique and updates the File Token stored.

7 EVALUATION

Our evaluation focuses on comparing the overhead
induced by authorization steps, including file token

generation and share token generation, against the
convergent encryption and file upload steps. We
evaluate the overhead by varying different factors,
including 1) File Size
2) Number of Stored Files 3) Deduplication Ratio 4)
Privilege Set Size . We also evaluate the prototype with
a real-world workload based on VM images.
We break down the upload process into 6 steps, 1) Tag-
ging 2) Token Generation 3) Duplicate Check 4) Share
Token Generation 5) Encryption 6) Transfer . For each
step, we record the start and end time of it and therefore
obtain the breakdown of the total time spent. We
present the average time taken in each data set in the
figures.

7.1 File Size
To evaluate the effect of file size to the time pent on
different steps, we upload multiple unique files of
particular file size and record the time break down. The
average time of the steps from test sets of different file
size are plotted in Figure 2.

7.2 Number of Stored Files

To calculate the effect of number of stored files in the
system, we upload multiple 10MB unique files to the
system and record the breakdown for every file upload.
 From Figure 3, every step remains constant along the
time. Token checking is done with a hash table and a
linear search would be carried out in case of collision.
Despite of the possibility of a linear search, the time
taken in duplicate check remains stable due to the low
collision probability

7.3 Deduplication Ratio

International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 10

October 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	1061

For this ratio, we prepare two unique data sets, each of
which consists of 50 100MB files. First we upload the
first set as an initial upload. And then for second, we
pick a portion of 50 files, according to the given
deduplication ratio, from the initial set as duplicate files
and remaining files from the second set as unique files.
The average time of uploading the second set is
presented in Figure 4.

7.4 Privilege Set Size
To calculate the effect of privilege set size, we upload
100 10MB unique files with different size of the data
owner and target share privilege set size.
Figure shows the time taken in token generation
increases linearly as more number keys are associated
with the file and also the duplicate check time. While
the number of keys increases 100 times from 1000 to
100000, the total time spent only increases to 3.81
times and it is noted that the file size of the experiment
is set at a small level (10MB), the effect would become
less significant in case of big files.

7.5 Real-World VM Images
Inorder to calculate the overhead introduced under
read-world workload dataset, we take a dataset of
weekly VM image snapshots collected over a 12-week
span in a university programming course, while the
same dataset is also used in the prior work We perform
block-level deduplication with a fixed block size of
4KB. The initial data size of an image is 3.2GB
(excluding all zero blocks). After 12 weeks, the average
data size of an image increases to 4GB and the average
deduplication ratio is 97.9%. Figure 6 shows that the
time taken in token generation and duplicate checking
increases linearly as the VM image grows in data size

7.6 Summary
To conclude , the token generation introduces only
minimal overhead in the upload process and is almost
negligible for moderate file sizes, for example, less than
2% with 100MB files. This suggests that the scheme is
suitable to construct an authorized deduplication system
for backup storage.

8 CONCLUSION

In this paper, we proposed the notion of authorized data
deduplication for protecting the information security by
including differential privileges of users in the duplicate
check. And also presented different new deduplication
constructions supporting authorized duplicate check in
hybrid cloud architecture. Security analysis describes
that our systems are secure in terms of insider and
attacks specified in our security model. We developed a
prototype of our proposed authorized duplicate check
scheme and con-duct testbed experiments on our
prototype (as a proof). We showed that our authorized

International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 10

October 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	1062

duplicate check scheme incurs min-imal overhead
compared to convergent encryption and network
transfer.

REFERENCES

[1] OpenSSL Project. http://www.openssl.org/.
[2] P. Anderson and L. Zhang. Fast and secure laptop

backups with encrypted de-duplication. In Proc. of
USENIX LISA, 2010.

[3] M. Bellare, S. Keelveedhi, and T. Ristenpart. Dupless:
Server-aided encryption for deduplicated storage. In
USENIX Security Symposium, 2013.

[4] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-
locked encryption and secure deduplication. In
EUROCRYPT, pages 296– 312, 2013.

[5] M. Bellare, C. Namprempre, and G. Neven. Security
proofs for identity-based identification and signature
schemes. J. Cryptology, 22(1):1–61, 2009.

[6] M. Bellare and A. Palacio. Gq and schnorr
identification schemes: Proofs of security against
impersonation under active and concur-rent attacks.
In CRYPTO, pages 162–177, 2002.

[7] S. Bugiel, S. Nurnberger, A. Sadeghi, and T.
Schneider. Twin clouds: An architecture for secure
cloud computing. In Workshop on Cryptography and
Security in Clouds (WCSC 2011), 2011.

[8] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer. Reclaiming space from duplicate files in a
serverless distributed file system. In ICDCS, pages
617–624, 2002.

[9] D. Ferraiolo and R. Kuhn. Role-based access
controls. In 15th NIST-NCSC National Computer
Security Conf., 1992.

[10] GNU Libmicrohttpd.
http://www.gnu.org/software/libmicrohttpd/.

[11] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-
Peleg. Proofs of ownership in remote storage
systems. In Y. Chen, G. Danezis, and V. Shmatikov,
editors, ACM Conference on Computer and
Communications Security, pages 491–500. ACM,
2011.

J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou. Secure
deduplication with efficient and reliable convergent key
management. In IEEE Transactions on Parallel and Distributed
Systems, 2013.

