

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1187

A Novel Approach for Resilient Multipath Routing by Using
Independent Directed Acyclic Graphs

Student: Aakunuru.Rahul

Guide: Kalyan

(Vellore Institute of Technology, Vellore)
Abstract—

In this paper, we introduce the concept of

Independent Directed Acyclic Graphs (IDAGs) to

achieve resilient multipath routing. The algorithm

developed in this paper: (1) achieves multipath

routing; (2) guarantees recovery from single link

failure. The multipath routing scheme consists of

an algorithm to determine a set of multiple

disjoint or partially disjoint paths and a

mechanism for distributing traffic over a

multipath route to reduce the traffic load on a

congested link. Multipath routing is capable of

aggregating the resources of multiple paths and

reducing the blocking capabilities in QoS oriented

networks, allowing data transfer at higher rate

when compared to single path. To improve the

failure resiliency without jeopardizing the routing

stability, we propose a local rerouting based

approach called failure insensitive routing. Under

this approach, upon a link failure, adjacent router

suppresses global updating and instead initiates

local rerouting. We demonstrate that the proposed

approach provides higher service availability

than the existing routing schemes.

I.INTRODUCTION

Multipath routing is used to find out multiple

pairs of paths between source and destination. The

scheme provides robustness [2], load balancing

[3], and security [6]. Techniques developed for

multipath routing based on employing multiple

spanning trees or directed acyclic graphs (DAGs)

[7]. The packet needs to be dropped when

adjacent node are not available. This dropping

takes place because of potential looping of

packets when transferred from one routing table to

another. It Provides fast recovery from single-link

failures provide more than one forwarding edge to

route a packet to a destination. The techniques

categorized on the basis of the nature in which the

backup edges are employed. In [8], the developed

a method to augment any given tree rooted at a

destination with ―backup forwarding ports.‖ The

packet is received from the node attached to the

default forwarding edge for the destination; the

packets are rerouted on the backup ports. In [9],

the framework for IP fast reroute detailing three

candidate solutions for IP fast reroute that have all

gained considerable attention. These are multiple

routing conFigureurations (MRCs) [10], failure

insensitive routing (FIR) [11], [12], and tunnelling

using Not-via addresses [13]. The common

feature of all these approaches is that they employ

multiple routing tables. However, they differ in

the mechanisms employed to identify which

routing table to use for an incoming packet. The

readers are referred to [14] for a detailed

description of the above techniques. It is certainly

possible to use fast recovery techniques

(irrespective of whether they guarantee recovery

from single link failure or not) for multipath

routing. However, all the above techniques

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1188

require a significantly large number of routing

tables, hence a large number of additional bits in

the packet header. One approach that offers

resiliency to single-link failure and provides

multipath routing to some degree is ―colored

trees‖ [15], [16]. In this approach, three trees are

constructed per destination node such that the

paths from any node to the root on the two trees

are disjoint. The trees may be constructed to

obtain link-disjoint or nodded is joint paths if the

network is two-edge or two-vertex connected,

respectively. This approach is similar to those

employing multiple routing tables, except that

only two tables are required. Every packet may

carry an extra bit in its header to indicate the tree

to be used for routing. This overhead bit may be

avoided by employing a routing based on the

destination address and the incoming edge over

which the packet was received, as every incoming

edge will be present on exactly one of the trees.

The colored tree approach allows every node to

split its traffic between the three trees, thus

offering disjoint multipath routing by using red

tree approach. In addition, when a forwarding link

on a tree fails, the packet may be switched to the

other tree by using blue tree approach; else it uses

a green tree approach which is used to recover

from only a dual-link failure. A packet may be

transferred from one tree to another at most once

as the coloured tree approach. Here the colour of

the tree to be used for routing may be obtained

from the incoming interface over which the packet

was received. Thus, every packet needs to carry

only one bit overhead.

II. Independent Directed Acyclic Graphs

We consider a network with a set of nodes and

links denoted by N and L, respectively. We

assume that links are bidirectional in nature,

which may be realized using two unidirectional

links. We denote a bidirectional link between

nodes i and j as i─j, while the directed link from i

to j is denoted by i→j . When a link fails, we

assume that both directed edges i→j and j→I have

failed. A. Resilient Routing With IDAGs The

network is assumed to employ link-state protocol,

hence every node has the view of the entire

network topology. Every node computes two

DAGs, namely red and blue, for each destination

and maintains one or more forwarding entries per

destination per DAG. The DAGs may be used in

two different ways to achieve resilient routing. In

the first approach, referred to as Red DAG first

(RDF), the packets are assumed to be forwarded

on the red DAG first. When no forwarding edges

are available on the red DAG, the packet is

transferred to the blue DAG. When no blue

forwarding edges are available, the packet is

dropped. The DAG to be employed for routing is

carried in an overhead bit (DAG bit) in every

packet header. In the second approach, referred to

as Any DAG first (ADF), a packet may be

transmitted by the source on the red or blue DAG.

In addition to the DAG bit, every packet also

carries an additional bit that indicates whether the

packet has been transferred from one DAG to

another (Transfer bit). A packet is routed on the

DAG indicated in its packet header. If no

forwarding edges are available in that DAG and if

the packet has not encountered a DAG transfer

already, it is transferred to the other DAG. If no

forwarding edges are available on the DAG

indicated in the packet header and the packet has

already encountered a DAG transfer, the packet is

dropped. In both of the approaches described

above, a node may forward the packet along any

of the available forwarding edges in the DAG

indicated in the packet header

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1189

III. Constructing Node-Independent DAGS

Two-vertex-connectivity is the necessary and

sufficient requirement for constructing two node-

independent DAGs utilizing all the edges except

those emanating from the given destination node.

This necessary part of the requirement follows

directly from the condition required for

constructing two node-independent trees—a

special case of DAG. We show the sufficiency

part of the requirement by constructing the desired

DAGs. A. Procedure for NI-DAGs Construction

1. Initialize R and B to contain only the root node

d. Initialize the partial order of the nodes on the

red and blue DAGs to the empty set.

2. Find a cycle (d,v1,… vk ,d). Let vk → vk-1→

… →v1→d be the red chain. Add the blue chain

to B and the red chain to R. update the precedence

relation with d<v1<v2< … <v1<v2< … the red

DAG.

Find a path (x,v1,….,vk ,y) that connects any two

distinct nodes x and y on R and any k nodes not

on R,k ≥1, such that x<v1<v2< … →vk →y be

the blue chain. Add the blue chain to B and the

red chain to R. Update the precedence relation

with x<v1<v2< … <vk<y on the red DAG. Note

that: (i) if y=d, then vk<y is ignored; and (ii) if

y=d and/or x=d, y→vk and/or x→v1 in the red

and blue chains above, respectively

4. If B does not span all the nodes in G, goto step

3.

5. Compute a global order that is consistent with

the partial on the red DAG. We denote x precedes

y in the global order as x<y.

6. For every link i-j (i≠d,j≠d) that is not on the

DAGs: • If i<j then add i←j to the red DAG and

i→j to the blue DAG.

Otherwise, add i←j to the blue DAG and i→j to

the red DAG. • For every edge i→d that is not on

the DAGs, add i→d either to the red or the blue

DAG randomly. The above procedure is given to

construct multiple link independent DAGS. These

DAGs provide effective multipath routing.

IV. Constructing Link-Independent DAGS

Two-edge connectivity is a necessary and

sufficient condition for constructing two link-

independent DAGs. Similar to the requirement of

node-independent DAGs, the necessary part of the

requirement follows from the independent tree

construction.

A. Procedure for LI-DAGs Construction

1. Divide the network into two vertex connected

(2V) components

2. In each 2V component, select the unique

articulation node through which every path from

any node in that component must traverse to reach

d. We refer to this articulation node as the root

node of the component. In the component that

contains node d , we assume that the root node of

the component is node d itself

3. In each 2V component, construct two node

independent DAG to the root node of that

component.

4. Merge all node independent DAG to obtain the

Link independent DAGs The above procedure is

given to construct multiple link independent

DAGS. These DAGs provide effective multipath

routing [1].

V. DESIGN PROCESS

A. System Architecture Diagram

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1190

Fig 1. System Architecture Diagram

B. Modules Description

1. Topology Construction

This module is used to construct the topology.

The user gives the number of node used to

construct the topology. The node is added in given

name, IP address and port number of that node.

Unique nodes are created so that it can be logged

in separately. After adding the node, the source

node name, neighbor node name and right of that

path will be given for path connection. The node

details are stored in database table called Node

details. Routing details are stored in the routing

table.

2. Multipath Routing

The network is assumed to employ link-state

protocol; hence every node has the view of the

entire network topology. Every node computes

DAGs, for each destination and maintains one or

more forwarding entries per destination per DAG.

DAG to be employed for routing is carried in an

overhead bit (DAG bit) in every packet header.

Any DAG first (ADF), a packet may be

transmitted by the source DAG. In addition to the

DAG bit, every packet also carries an additional

bit that indicates whether the packet has been

transferred from one DAG to another (Transfer

bit). A packet is routed on the DAG indicated in

its packet header. If no forwarding edges are

available in that DAG and if the packet has not

encountered a DAG transfer already, it is

transferred to the other DAG.

3. Node Independent DAG

Two-vertex-connectivity is the necessary and

sufficient requirement for constructing two node

in dependent DAGs utilizing all the edges except

those emanating from the given destination node.

This necessary part of the requirement follows

directly from the condition required for

constructing two node-independent trees – a

special case of DAG. Initialize the partial order

for the nodes on the two DAGs. Compute the first

cycle to be augmented. Compute successive paths

to be augmented. The path starts and ends at

distinct nodes that are already added to the DAGs;

hence the paths from every node to the root of the

DAG are node-disjoint. Note that the difference

between the path augmentation employed for

DAG construction here and that employed for tree

construction.

4. Link Independent DAG

Two-edge connectivity is a necessary and

sufficient condition for constructing two link-

independent DAGs. Similar to the requirement of

node-independent DAGs, the necessary part of the

requirement follows from the independent tree

construction. The procedure to construct two link

independent DAGs. Divide the network into two

vertex- connected (2V) components. A node may

appear in more than 2Vcomponent and the

removal of such a node (articulation node) would

disconnect the graph. In addition, any two 2V-

components may share at most one node in

common. Given a destination node d, identify the

root node for every component the unique node

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1191

through which every path connecting a node in

that component and d must traverse. In

components that contain node d, the root node is

assumed to be d.

VI. CONCLUSION

In this paper, we introduced the concept of

independent directed acyclic graphs (IDAGs) and

developed a methodology for resilient multipath

routing using two IDAGs. We developed

polynomial time algorithms to construct node-

independent and link-independent DAGs using all

possible edges in the network. The IDAGs

approach was evaluated on four real-life network

topologies and compared with ITrees and multiple

pairs of colored (independent) trees approaches to

prove the Validity of the algorithm. Through

simulations, we showed that the IDAGs approach

performs significantly better than the independent

trees approach in terms of increasing number of

paths offered, reducing the probability of a two-

link failure disconnecting a node from the

destination, and average link load. Even, a

simulation result showed that the trees based on

the shortest paths on the IDAGs have better

performance than that of the ITrees approach

since the average shortest path length on the

IDAGs is shorter than the average path length on

the ITrees. Multiple pairs of colored trees

approach is better in terms of the product of the

number of critical links and average link load

compared to the ITrees and IDAGs

VII. REFERENCES

[1] S. Cho, T. Elhourani, and S.

Ramasubramanian, ―Resilient multipath routing

with independent directed acyclic graphs,‖ in

Proc. IEEE TRANSACTION ON

NETWORKING ,vol. 20, no. 1, february 2012,

pp. 153-162.

[2] Z. Ye, S. V. Krishnamurthy, and S. K.

Tripathi, ―A framework for reliable routing in

mobile ad hoc networks,‖ in Proc. IEEE

INFOCOM, Apr. 2003, pp. 270–280.

[3] P. P. Pham and S. Perreau, ―Performance

analysis of reactive shortest path and multi-path

routing mechanism with load balance,‖ in Proc.

IEEE INFOCOM, 2003, pp. 251–259.

[4] J. Tsai and T. Moors, ―A review of multipath

routing protocols: From wireless ad hoc to mesh

networks,‖ in Proc. ACoRN Early Career Res.

Workshop Wireless Multihop Netw., Jul. 17–18,

2006, pp. 17–22.

[5] S. Murthy and J. Garcia-Luna-Aceves,

―Congestion-oriented shortest multipath routing,‖

in Proc. IEEE INFOCOM, Mar. 1996, vol. 3, pp.

1028–1036.

 [6] W. Lou, W. Liu, and Y. Fang, ―A simulation

study of security performance using multipath

routing in ad hoc networks,‖ in Proc. IEEE Veh.

Technol. Conf., Oct. 2003, vol. 3, pp. 2142–2146.

[7] G. Lee and J. Choi, ―A survey of multipath

routing for traffic engineering,‖ 2002 [Online].

Available: http://academic.research

microsoft.com/Publication/10842993/a-survey-of-

multipath-routingfor-traffic-engineering

[8] K. Xi and J. Chao, ―IP fast rerouting for

single-link/node failure recovery,‖ in Proc.

BROADNETS, Internet Technol. Symp., Sep.

2007, pp. 142–151.

[9] M. Shand and S. Bryant, ―IP fast reroute

framework,‖ IETF Internet Draft draft-ietf-rtgwg-

ipfrrframework-08.txt, Feb. 2008.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1192

[10] A. Kvalbein, A. F. Hansen, T. Ĉiĉić, S.

Gjessing, and O. Lysne, ―Fast IP network

recovery using multiple routing

conFigureurations,‖ in Proc. IEEE INFOCOM,

Apr. 2006, pp. 1–11.

[11] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang,

and C.-N. Chuah, ―Proactive vs. reactive

approaches to failure resilient routing,‖ in Proc.

IEEE INFOCOM, Mar. 2004, vol. 1, pp. 176–186.

 [12] S. Nelakuditi, S. Lee, Y. Yu, and Z.-L.

Zhang, ―Failure insensitive routing for ensuring

service availability,‖ in Proc. IWQoS, Jun. 2003,

pp. 287–304.

[13] S. Bryant, M. Shand, and S. Previdi, ―IP fast

reroute using not-via addresses,‖ Internet Draft

draftietf-rtgwg-ipfrr-notvia-addresses-02.txt, Feb.

2008.

[14] S. Kini, S. Ramasubramanian, A. Kvalbein,

and A. Hansen, ―Fast recovery from dual-link

failures in IP networks,‖ in Proc. IEEE

INFOCOM, Rio de Janeiro, Brazil, Apr. 2009, pp.

1368–1376.

[15] S. Ramasubramanian, M. Harkara, and M.

Krunz, ―Distributed linear time construction of

colored trees for disjoint multlipath routing,‖ in

Proc. IFIP Netw., May 2006, pp. 1026–1038.

[16] G. Jayavelu, S. Ramasubramanian, and O.

Younis, ―Maintaining colored trees for disjoint

multipath routing under node failures,‖

IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 346–

359, Feb. 2008.

