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Abstract –  
In Cloud Computing environment we designed and 

present PACK (Predictive ACKs), end to end traffic 

redundancy elimination (TRE) system called for cloud 
computing customers.. PACK’s main advantage is its 

capability of offloading the cloud-server TRE effort to 

end clients, thus minimizing the processing costs 
induced by the TRE algorithm. Unlike previous 

solutions, PACK does not require the server to 

continuously maintain clients’ status. Cloud-based 

TRE needs to apply a judicious use of cloud resources 
so that the bandwidth cost reduction combined with 

the additional cost of TRE computation and storage 

would be optimized. This makes PACK very suitable 
for pervasive computation environments that combine 

client mobility and server migration to maintain cloud 

elasticity. We present a fully functional PACK 
implementation, transparent to all TCP-based 

applications and network devices. Finally, we analyze 

PACK benefits for cloud users, using traffic traces 

from various sources. PACK is based on a novel TRE 
technique, which allows the client to use newly 

received chunks to identify previously received chunk 

chains, which in turn can be used as reliable 
predictors to future transmitted chunks. 

 

Keywords — Caching; cloud computing; network 

optimization; traffic redundancy elimination 

 

I. INTRODUCTION 

Cloud customers are increasing day by day in the 
world where Cloud customers has to pay only for the 

actual use of computing resources, storage, and 

bandwidth, according to their changing needs, utilizing 
the cloud’s scalable and elastic computational 

capabilities. In particular, data transfer costs (i.e., 

bandwidth) is an important issue when trying to 

minimize costs [1], [2]. Consequently, cloud 
customers, applying a judicious use of the cloud’s 

resources, are motivated to use various traffic  

 
reduction techniques, in particular traffic redundancy 

elimination (TRE), for reducing bandwidth costs. 

 
Traffic redundancy stems from common end-users’ 

activities, such as repeatedly accessing, downloading, 

uploading (i.e., backup), distributing, and modifying 
the same or similar information items (documents, 

data, Web, and video). TRE is used to eliminate the 

transmission of redundant content and, therefore, to 

significantly reduce the network cost. In most common 
TRE solutions, both the sender and the receiver 

examine and compare signatures of data chunks, 

parsed according to the data content, prior to their 
transmission. When redundant chunks are detected, the 

sender replaces the transmission of each redundant 

chunk with its strong signature [3]–[5]. Commercial 
TRE solutions are popular at enterprise networks, and 

involve the deployment of two or more proprietary-

protocol, state synchronized middle-boxes at both the 

intranet entry points of data centers and branch offices, 
eliminating repetitive traffic between them While 

proprietary middle-boxes are popular point solutions 

Within enterprises, they are not as attractive in a cloud 
environment. Cloud providers cannot benefit from a 

technology whose goal is to reduce customer 

bandwidth bills, and thus are not likely to invest in 

one. The rise of ―on-demand‖ work spaces, meeting 
rooms, and work-from-home solutions [3] detaches the 

workers from their offices. In such a dynamic work 

environment, fixed-point solutions that require a 
client-side and a server-side middle-box pair become 

ineffective. On the other hand, cloud-side elasticity 

motivates work distribution among servers and 
migration among data centers. Therefore, it is 

commonly agreed that a universal, software-based, 

end-to-end TRE is crucial in today’s pervasive 

environment [4], [5]. This enables the use of a 
standard protocol stack and makes a TRE within end-

to-end secured traffic (e.g., SSL) possible. 
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Current end-to-end TRE solutions are sender-based. In 
the case where the cloud server is the sender, these 

solutions require that the server continuously maintain 

clients’ status. We show here that cloud elasticity calls 
for a new TRE solution. First, cloud load balancing 

and power optimizations may lead to a server-side 

process and data migration environment, in which 

TRE solutions that require full synchronization 
between the server and the client are hard to 

accomplish or may lose efficiency due to lost 

synchronization. Second, the popularity of rich media 
that consume high bandwidth motivates content 

distribution network (CDN) solutions, in which the 

service point for fixed and mobile users may change 
dynamically according to the relative service point 

locations and loads. Moreover, if an end-to-end 

solution is employed, its additional computational  and 

storage costs at the cloud side should be weighed 
against its bandwidth saving gains. 

 

Clearly, a TRE solution that puts most of its 
computational effort on the cloud side2may turn to be 

less cost-effective than the one that leverages the 

combined client-side capabilities. Given an end-to-end 
solution, we have found through our experiments that 

sender-based end-to-end TRE solutions [4], [3] add a 

considerable load to the servers, which may eradicate 

the cloud cost saving addressed by the TRE in the first 
place. Our experiments further show that current end-

to-end solutions also suffer from the requirement to 

maintain end-to-end synchronization that may result in 
degraded TRE efficiency. In this paper, we present a 

novel receiver-based end-to-end TRE solution that 

relies on the power of predictions to eliminate 

redundant traffic between the cloud and its end-users. 
In this solution, each receiver observes the incoming 

stream and tries to match its chunks with a previously 

received chunk chain or a chunk chain of a local file. 
Using the long-term chunks’ metadata information 

kept locally, the receiver sends to the server 

predictions that include chunks’ signatures and easy-
to-verify hints of the sender’s future data. The sender 

first examines the hint and performs the TRE 

operation only on a hint-match. The purpose of this 

procedure is to avoid the expensive TRE computation 
at the sender side in the absence of traffic redundancy. 

When redundancy is detected, the sender then sends to 

the receiver only the ACKs to the predictions, instead 
of sending the data. 

 

On the receiver side, we propose a new 
computationally lightweight chunking (fingerprinting) 

scheme termed PACK chunking. PACK chunking is a 

new alternative for Rabin fingerprinting traditionally 
used by RE applications. Experiments show that our 

approach can reach data processing speeds over 3 

Gb/s, at least 20% faster than Rabin fingerprinting. 

Offloading the computational effort from the cloud to 
a large group of clients forms a load distribution 

action, as each client processes only its TRE part. The 

receiver-based TRE solution addresses mobility 
problems common to quasi-mobile desktop/ laptops 

computational environments. One of them is cloud 

elasticity due to which the servers are dynamically 
relocated around the federated cloud, thus causing 

clients to interact with multiple changing servers. 

Another property is IP dynamics, which compel 

roaming users to frequently change IP addresses. In 
addition to the receiver-based operation, we also 

suggest a hybrid approach, which allows a battery-

powered mobile device to shift the TRE computation 
overhead back to the cloud by triggering a sender-

based end-to-end TRE similar to [5].To validate the 

receiver-based TRE concept, we implemented, tested, 
and performed realistic experiments with PACK 

within a cloud environment. Our experiments 

demonstrate a cloud cost reduction achieved at a 

reasonable client effort while gaining additional 
bandwidth savings at the client side. The 

implementation code, over 25 000 lines of C and Java, 

can be obtained from [6]. Our implementation utilizes 
the TCP Options field, supporting all TCP-based 

applications such as Web, video streaming, P2P, e-

mail, etc. In addition, we evaluate our solution and 

compare it to previous end-to-end solutions using 
terabytes of real video traffic consumed by 40 000 

distinct clients, captured within an ISP, and traffic 

brained in a social network service for over a month. 
We demonstrate hat our solution achieves 30% 

redundancy elimination without significantly affecting 

the computational effort of the sender, resulting in a 
20% reduction of the overall cost to the cloud 

customer 

II. RELATED WORK 

Several commercial TRE solutions described in [6] 
and [7] have combined the sender-based TRE ideas of 

[4] with the algorithmic and implementation approach 

of [5] along with protocol specific optimizations for 
middle-boxes solutions. In particular,[6] describes how 
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to get away with three-way handshake between the 
sender and the receiver if a full state synchronization is 

maintained. Several TRE techniques have been 

explored in recent years. A protocol-independent TRE 
was proposed in [4]. A large-scale study of real-life 

traffic redundancy is presented in [8], and [4]. In the 

latter, packet-level TRE techniques are compared 

[11].Our paper builds on their finding that ―an end to 
end redundancy elimination solution, could obtain 

most of the middle-box’s bandwidth savings,‖ 

motivating the benefit of low cost software end-to-end 
solutions.Wanax is a TRE system for the developing 

world where storage and WAN bandwidth are scarce.. 

In this scheme, the sender middle-box holds back the 
TCP stream and sends data signatures to the receiver 

whether the data is found in its local cache. Data 

chunks that are not found in the cache are fetched from 

the by receiver middle. Naturally, such a scheme 
incurs three-way-and shake latency for no cached 

datacenter [5] is a sender-based end-to-end TRE for 

enterprise networks. It uses a new chunking scheme 
that is faster than the commonly used Rabin 

fingerprint, but is restricted to chunks as small as 32–

64 B. Unlike PACK, Ender requires the server to 
maintain a fully and reliably synchronized cache for 

each client. To adhere with the server’s memory 

requirements, these caches are kept small, making the 

system inadequate for medium-to-large content or 
long-term redundancy. End RE is server-specific, 

hence not suitable for a CDN or cloud environment. 

                                 

   Fig. 1.  From stream to chain 

 

To the best of our knowledge, none of the previous 
works have addressed the requirements for a cloud-

computing- friendly, end-to-end TRE, which forms 

PACK’s focus. 
 

III. PACK ALGORITHM 

For the sake of clarity, we first describe the basic 
receiver driven operation of the PACK protocol. 

Several enhancements and optimizations are 

introduced. The stream of data received at the PACK 

receiver is parsed to a sequence of variable-size, 
content-based signed chunks similar to [3] , [9] and 

[5]. The chunks are then compared to the receiver 

local storage, termed chunk store. If a matching chunk 
is found in the local chunk store, the receiver retrieves 

the sequence of subsequent chunks, referred to as a 

chain, by traversing the sequence of LRU chunk 

pointers that are included in the chunks’ metadata. 
Using the constructed chain, the receiver sends a 

prediction to the sender for the subsequent data. Part 

of each chunk’s prediction, termed a hint, is an easy-
to-compute function with a small-enough false-

positive value, such as the value of the last byte in the 

predicted data or a byte-wide XOR checksum of all or 
selected bytes. The prediction sent by the receiver 

includes the range of the predicted data, the hint, and 

the signature of the chunk. The sender identifies the 

predicted range in its buffered data and verifies the 
hint for that range. If the result matches the received 

hint, it continues to perform the more computationally 

intensive SHA-1 signature operation. Upon a signature 
match, the sender sends a confirmation message to the 

receiver, enabling it to copy the matched data from its 

local storage. 
 

A. Receiver Chunk Store 

 

PACK uses a new chains scheme, described in Fig. 1, 
in which chunks are linked to other chunks according 

to their last received order. The PACK receiver 

maintains a chunk store, which is a large size cache of 
chunks and their associated metadata. Chunk’s 

metadata includes the chunk’s signature and a (single) 

pointer to the successive chunk in the last received 

stream containing this chunk. Caching and indexing 
techniques are employed to efficiently maintain and 

retrieve the stored chunks, their signatures, and the 

chains formed by traversing the chunk pointers. When 
the new data are received and parsed to chunks, the 

receiver computes each chunk’s signature using SHA-

1. At this point, the chunk and its signature are added 
to the chunk store. In addition, the metadata of the 

previously received chunk in the same stream is 

updated to point to the current chunk. The 

unsynchronized nature of PACK allows the receiver to 
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map each existing file in the local file system to a 
chain of chunks, saving in the chunk store only the 

metadata associated with the chunks.3 Using the latter 

observation, the receiver can also share chunks with 
peer clients within the same local network utilizing a 

simple map of network drives. The utilization of a 

small chunk size presents better redundancy 

elimination when data modifications are fine-grained, 
such as sporadic changes in an HTML page. On the 

other hand, the use of smaller chunks increases the 

storage index size, memory usage, and magnetic disk 
seeks. It also increases the transmission overhead of 

the virtual data exchanged between the client and the 

server. Unlike IP-level TRE solutions that are limited 
by the IP packet size ( B) , PACK operates on TCP 

streams and can therefore handle large chunks and 

entire chains. Although our design permits each PACK 

client to use any chunk size, we recommend an 
average chunk size of 8 kB B. 

 

 Receiver Algorithm 

 

Upon the arrival of new data, the receiver computes 

the respective signature for each chunk and looks for a 
match in its local chunk store. If the chunk’s signature 

is found, the receiver determines whether it is a part of 

a formerly received chain, using the chunks’ metadata. 

If affirmative, the receiver sends a prediction to the 
sender for several next expected chain chunks. The 

prediction carries a starting point in the byte stream 

(i.e., offset) and the identity of several subsequent 
chunks (PRED command). Upon a successful 

prediction, the sender responds with a PRED-ACK 

confirmation message. Once the PRED-ACK message 

is received and processed, the receiver copies the 
corresponding data from the chunk store to its TCP 

input buffers, placing it according to the corresponding 

sequence numbers. At this point, the receiver sends a 
normal TCP ACK with the next expected TCP 

sequence number. In case the prediction is false, or 

one or more predicted chunks are already sent, the 
sender continues with normal operation, e.g., sending 

the raw data, without sending a PRED-ACK message. 

 

Proc. 1: Receiver Segment Processing 
 

1. if segment carries payload data then 

2. calculate chunk 
3. if reached chunk boundary then 

4. activate predAttempt() 

5. end if 

6. else if PRED-ACK segment then 

7. processPredAck() 

8. activate predAttempt() 
9. end if 

 

Proc. 2: predAttempt() 

1. if received chunk matches one in chunk store then 

2. if foundChain(chunk) then 

3. prepare PREDs 

4. send single TCP ACK with PREDs according to 
Options free space 

5. exit 

6. end if 

7. else 

8. store chunk 

9. link chunk to current chain 

10. end if 

11. send TCP ACK only 

Proc. 3: processPredAck() 

1. for all offset PRED-ACK do 

2. read data from chunk store 

3. put data in TCP input buffer 

4. end for 

IV. IMPLEMENTATION 

 

In this section, we present PACK implementation, its 

performance analysis, and the projected server costs 
derived from the implementation experiments. Our 

implementation contains over 25 000 lines of C and 

Java code. It runs on Linux with Net filter Queue [11]. 
Fig. 2 shows the PACK implementation architecture.  

 

 

 
Fig. 2: Overview of the PACK implementation 

 

At the server side, we use an Intel Core 2 Duo 3 GHz, 

2 GB of RAM, and a WD1600AAJS SATA drive 
desktop. The clients laptop machines are based on an 

Intel Core 2 Duo 2.8 GHz, 3.5 GB of RAM , and a 

WD2500BJKT SATA drive. Our implementation 
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enables the transparent use of the TRE at both the 
server and the client. PACK receiver–sender protocol 

is embedded in the TCP Options field for low 

overhead and compatibility with legacy systems along 
the path. We keep the genuine operating systems’ TCP 

stacks intact, allowing a seamless integration with all 

applications and protocols above TCP. Chunking and 

indexing are performed only at the client’s side, 
enabling the clients to decide independently on their 

preferred chunk size. In our implementation, the client 

uses an average chunk size of 8 kB. We found this size 
to achieve high TRE hit-ratio in the evaluated datasets, 

while adding only negligible overheads of 0.1% in 

metadata storage and 0.15% in predictions bandwidth. 
For the experiments held in this section, we generated 

a workload consisting of datasets: IMAP e-mails, 

HTTP videos, and files downloaded over FTP. The 

workload was then loaded to the server and consumed 
by the clients. We sampled the machines’ status every 

second to measure real and virtual traffic volumes and 

CPU utilization. A. Server Operational Cost We 
measured the server performance and cost as a 

function of the data redundancy level in order to 

capture the effect of the TRE mechanisms in real 
environment. To isolate the TRE operational cost, we 

measured the server’s traffic volume and CPU 

utilization at maximal throughput without operating a 

TRE. We then used these numbers as a reference cost, 
based on present Amazon EC2 [10] pricing. The server 

operational cost is composed of both the network 

traffic volume and the CPU utilization, as derived 
from the EC2 pricing. We constructed a system 

consisting of one server and seven clients over a 1-

Gb/s network. The server was configured to provide a 

maximal throughput of 50 Mb/s per client. We then 
measured three different scenarios: a baseline no-TRE 

operation, PACK, and a sender-based TRE similar to 

End RE’s Chunk-Match [12], referred to as End RE-
like. For the End RE-like case, we accounted for the 

SHA-1 calculated over the entire outgoing traffic, but 

did not account for the chunking effort. In the case of 
End RE-like, we made the assumption of unlimited 

buffers at both the server and client sides to enable the 

same long-term redundancy level and TRE ratio of 

PACK. 
 

Presents the overall processing and networking cost 

for traffic redundancy, relative to no-TRE operation. 
As the redundancy grows, the PACK server cost 

decreases due to the bandwidth saved by unsent data. 

However, the End RE-like server does not gain a 
significant cost reduction since the SHA-1 operations 

are performed over non redundant data as well. Note 

that at above 25% redundancy, which is common to all 
reviewed datasets, the PACK operational cost is at 

least 20% lower than that of End RE-like. 

 

B. PACK Impact on the Client CPU 
 

To evaluate the CPU effort imposed by PACK on a 

client, we measured a random client under a scenario 
similar to the one used for measuring the server’s cost, 

only this time the cloud server streamed videos at a 

rate of 9 Mb/s to each client. Such 
a speed throttling is very common in real-time video 

servers that aim to provide all clients with stable 

bandwidth for  mooth view. 

Table IV summarizes the results. The average PACK-
related CPU consumption of a client is less than 4% 

for 9-Mb/s video with 36.4% redundancy. Fig. 12(a) 

presents the client CPU utilization as a function of the 
real incoming traffic bandwidth. Since the client 

chunks the arriving data, the CPU utilization grows as 

more real traffic enters the client’s machine. Fig. 12(b) 
shows the client CPU utilization as a function of the 

virtual traffic bandwidth. Virtual traffic arrives in the 

form of prediction approvals from the sender and is 

limited to a rate of 9 Mb/s by the server’s throttling. 
The approvals save the client the need to chunk data or 

sign the chunks and enable him to send more 

predictions based on the same chain that was just used 
successfully. Hence, the more redundancy is found, 

the less CPU utilization incurred by PACK. 

 

 

 
 

Fig 3:  PACK versus End RE-like cloud server 

operational cost as a function of redundancy ratio. 
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V. CONCLUSION 

In this paper, we have presented PACK , a receiver-
based, Cloud-friendly, end-to-end TRE that is based 

on novel speculative principles that reduce latency and 

cloud operational cost. PACK does not require the 

server to continuously maintain clients’ status, thus 
enabling cloud elasticity and user mobility while 

preserving long-term redundancy. Moreover, PACK is 

capable of eliminating redundancy based on content 
arriving to the client from multiple servers without 

applying a three-way handshake. Our evaluation using 

a wide collection of content types shows that PACK 

meets the expected design goals and has clear 
advantages over sender-based TRE, especially when 

the cloud computation cost and buffering requirements 

are important. Moreover, PACK imposes additional 
effort on the sender only when redundancy is 

exploited, thus reducing the cloud overall cost. Two 

interesting future extensions can provide additional 
benefits to the PACK concept. First, our 

implementation maintains chains by keeping for any 

chunk only the last observed subsequent chunk in an 

LRU fashion. An interesting extension to this work is 
the statistical study of chains of chunks that would 

enable multiple possibilities in both the chunk order 

and the corresponding predictions. The system may 
also allow making more than one prediction at a time, 

and it is enough that one of them will be correct for 

successful traffic elimination. A second promising 
direction is the mode of operation optimization of the 

hybrid sender–receiver approach based on shared 

decisions derived from receiver’s power or server’s 

cost changes. 
 

References 

 
[1] E. Zohar, I. Cidon, and O. Mokryn, ―The power of 

prediction: Cloud bandwidth and cost reduction,‖ in 

Proc. SIGCOMM, 2011, pp. 86–97. 

 
[2] M. Armbrust, A. Fox, R. Griffith, A. D. 

Joseph,R.Katz, A. Konwinski, G. Lee, D. Patterson, A. 

Rabkin, I. Stoica, and M. Zaharia, ―A view of cloud 
computing,‖ Commun. ACM, vol. 53, no. 4, pp. 50–

58, 2010. 

 
[3] U. Manber, ―Finding similar files in a large file 

system,‖ in Proc. USENIX Winter Tech. Conf., 1994, 

pp. 1–10. 

 

[4] N. T. Spring and D. Wetherall, ―A protocol-
independent technique for eliminating redundant 

network traffic,‖ in Proc. SIGCOMM, 2000, vol. 30, 

pp. 87–95. 
 

[5] A. Muthitacharoen, B. Chen, and D. Mazières, ―A 

low-bandwidth network file system,‖ in Proc. SOSP, 

2001, pp. 174–187.  
 

[6] E. Lev-Ran, I. Cidon, and I. Z. Ben-Shaul, 

―Method and apparatus for reducing network traffic 
over low bandwidth links,‖ US Patent 7636767, Nov. 

2009. 

 
[7] S.Mccanne andM. Demmer, ―Content-based 

segmentation scheme for data compression in storage 

and transmission including hierarchical segment 

representation,‖ US Patent 6828925, Dec. 2004. 
 

[8] R. Williams, ―Method for partitioning a block of 

data into subblocks and for storing and communicating 
such subblocks,‖ US Patent 5990810, Nov. 1999. 

 

[9] A. Flint, ―The next workplace revolution,‖ Nov. 
2012 [Online]. 

Available: http://m.theatlanticcities.com/jobs-and-

economy/2012/11/ 

nextworkplace-revolution/3904/ 
 

[10] B. Aggarwal, A. Akella, A. Anand, A. 

Balachandran, P. Chitnis, C. Muthukrishnan, R. 
Ramjee, and G. Varghese, ―EndRE: An end-system 

redundancy elimination service for enterprises,‖ in 

Proc. NSDI, 2010, pp. 28–28. 

 
 [11] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. 

Shenker, ―Packet caches on routers: The implications 

of universal redundant traffic elimination,‖ in Proc. 
SIGCOMM, 2008, pp. 219–230. 

 

[12] A. Anand, V. Sekar, and A. Akella, ―SmartRE: 
An architecture for coordinated network-wide 

redundancy elimination,‖ in Proc. SIGCOMM, 2009, 

vol. 39, pp. 87–98. 
 
 
 
 
 


