

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 424

A Novel Prediction-Based System for Optimal Usage of Cloud
Bandwidth

K Bindhu1& Dr. Akbar Khan2
1
M.Tech (CSE), Nimra Institute of Science and Technology, A.P., India.

2
 Principal, Dept. of Computer Science & Engineering, Nimra Institute of Science and Technology, A.P.,

India.
Abstract –
In Cloud Computing environment we designed and

present PACK (Predictive ACKs), end to end traffic

redundancy elimination (TRE) system called for cloud
computing customers.. PACK’s main advantage is its

capability of offloading the cloud-server TRE effort to

end clients, thus minimizing the processing costs
induced by the TRE algorithm. Unlike previous

solutions, PACK does not require the server to

continuously maintain clients’ status. Cloud-based

TRE needs to apply a judicious use of cloud resources
so that the bandwidth cost reduction combined with

the additional cost of TRE computation and storage

would be optimized. This makes PACK very suitable
for pervasive computation environments that combine

client mobility and server migration to maintain cloud

elasticity. We present a fully functional PACK
implementation, transparent to all TCP-based

applications and network devices. Finally, we analyze

PACK benefits for cloud users, using traffic traces

from various sources. PACK is based on a novel TRE
technique, which allows the client to use newly

received chunks to identify previously received chunk

chains, which in turn can be used as reliable
predictors to future transmitted chunks.

Keywords — Caching; cloud computing; network

optimization; traffic redundancy elimination

I. INTRODUCTION

Cloud customers are increasing day by day in the
world where Cloud customers has to pay only for the

actual use of computing resources, storage, and

bandwidth, according to their changing needs, utilizing
the cloud’s scalable and elastic computational

capabilities. In particular, data transfer costs (i.e.,

bandwidth) is an important issue when trying to

minimize costs [1], [2]. Consequently, cloud
customers, applying a judicious use of the cloud’s

resources, are motivated to use various traffic

reduction techniques, in particular traffic redundancy

elimination (TRE), for reducing bandwidth costs.

Traffic redundancy stems from common end-users’

activities, such as repeatedly accessing, downloading,

uploading (i.e., backup), distributing, and modifying
the same or similar information items (documents,

data, Web, and video). TRE is used to eliminate the

transmission of redundant content and, therefore, to

significantly reduce the network cost. In most common
TRE solutions, both the sender and the receiver

examine and compare signatures of data chunks,

parsed according to the data content, prior to their
transmission. When redundant chunks are detected, the

sender replaces the transmission of each redundant

chunk with its strong signature [3]–[5]. Commercial
TRE solutions are popular at enterprise networks, and

involve the deployment of two or more proprietary-

protocol, state synchronized middle-boxes at both the

intranet entry points of data centers and branch offices,
eliminating repetitive traffic between them While

proprietary middle-boxes are popular point solutions

Within enterprises, they are not as attractive in a cloud
environment. Cloud providers cannot benefit from a

technology whose goal is to reduce customer

bandwidth bills, and thus are not likely to invest in

one. The rise of ―on-demand‖ work spaces, meeting
rooms, and work-from-home solutions [3] detaches the

workers from their offices. In such a dynamic work

environment, fixed-point solutions that require a
client-side and a server-side middle-box pair become

ineffective. On the other hand, cloud-side elasticity

motivates work distribution among servers and
migration among data centers. Therefore, it is

commonly agreed that a universal, software-based,

end-to-end TRE is crucial in today’s pervasive

environment [4], [5]. This enables the use of a
standard protocol stack and makes a TRE within end-

to-end secured traffic (e.g., SSL) possible.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 425

Current end-to-end TRE solutions are sender-based. In
the case where the cloud server is the sender, these

solutions require that the server continuously maintain

clients’ status. We show here that cloud elasticity calls
for a new TRE solution. First, cloud load balancing

and power optimizations may lead to a server-side

process and data migration environment, in which

TRE solutions that require full synchronization
between the server and the client are hard to

accomplish or may lose efficiency due to lost

synchronization. Second, the popularity of rich media
that consume high bandwidth motivates content

distribution network (CDN) solutions, in which the

service point for fixed and mobile users may change
dynamically according to the relative service point

locations and loads. Moreover, if an end-to-end

solution is employed, its additional computational and

storage costs at the cloud side should be weighed
against its bandwidth saving gains.

Clearly, a TRE solution that puts most of its
computational effort on the cloud side2may turn to be

less cost-effective than the one that leverages the

combined client-side capabilities. Given an end-to-end
solution, we have found through our experiments that

sender-based end-to-end TRE solutions [4], [3] add a

considerable load to the servers, which may eradicate

the cloud cost saving addressed by the TRE in the first
place. Our experiments further show that current end-

to-end solutions also suffer from the requirement to

maintain end-to-end synchronization that may result in
degraded TRE efficiency. In this paper, we present a

novel receiver-based end-to-end TRE solution that

relies on the power of predictions to eliminate

redundant traffic between the cloud and its end-users.
In this solution, each receiver observes the incoming

stream and tries to match its chunks with a previously

received chunk chain or a chunk chain of a local file.
Using the long-term chunks’ metadata information

kept locally, the receiver sends to the server

predictions that include chunks’ signatures and easy-
to-verify hints of the sender’s future data. The sender

first examines the hint and performs the TRE

operation only on a hint-match. The purpose of this

procedure is to avoid the expensive TRE computation
at the sender side in the absence of traffic redundancy.

When redundancy is detected, the sender then sends to

the receiver only the ACKs to the predictions, instead
of sending the data.

On the receiver side, we propose a new
computationally lightweight chunking (fingerprinting)

scheme termed PACK chunking. PACK chunking is a

new alternative for Rabin fingerprinting traditionally
used by RE applications. Experiments show that our

approach can reach data processing speeds over 3

Gb/s, at least 20% faster than Rabin fingerprinting.

Offloading the computational effort from the cloud to
a large group of clients forms a load distribution

action, as each client processes only its TRE part. The

receiver-based TRE solution addresses mobility
problems common to quasi-mobile desktop/ laptops

computational environments. One of them is cloud

elasticity due to which the servers are dynamically
relocated around the federated cloud, thus causing

clients to interact with multiple changing servers.

Another property is IP dynamics, which compel

roaming users to frequently change IP addresses. In
addition to the receiver-based operation, we also

suggest a hybrid approach, which allows a battery-

powered mobile device to shift the TRE computation
overhead back to the cloud by triggering a sender-

based end-to-end TRE similar to [5].To validate the

receiver-based TRE concept, we implemented, tested,
and performed realistic experiments with PACK

within a cloud environment. Our experiments

demonstrate a cloud cost reduction achieved at a

reasonable client effort while gaining additional
bandwidth savings at the client side. The

implementation code, over 25 000 lines of C and Java,

can be obtained from [6]. Our implementation utilizes
the TCP Options field, supporting all TCP-based

applications such as Web, video streaming, P2P, e-

mail, etc. In addition, we evaluate our solution and

compare it to previous end-to-end solutions using
terabytes of real video traffic consumed by 40 000

distinct clients, captured within an ISP, and traffic

brained in a social network service for over a month.
We demonstrate hat our solution achieves 30%

redundancy elimination without significantly affecting

the computational effort of the sender, resulting in a
20% reduction of the overall cost to the cloud

customer

II. RELATED WORK

Several commercial TRE solutions described in [6]
and [7] have combined the sender-based TRE ideas of

[4] with the algorithmic and implementation approach

of [5] along with protocol specific optimizations for
middle-boxes solutions. In particular,[6] describes how

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 426

to get away with three-way handshake between the
sender and the receiver if a full state synchronization is

maintained. Several TRE techniques have been

explored in recent years. A protocol-independent TRE
was proposed in [4]. A large-scale study of real-life

traffic redundancy is presented in [8], and [4]. In the

latter, packet-level TRE techniques are compared

[11].Our paper builds on their finding that ―an end to
end redundancy elimination solution, could obtain

most of the middle-box’s bandwidth savings,‖

motivating the benefit of low cost software end-to-end
solutions.Wanax is a TRE system for the developing

world where storage and WAN bandwidth are scarce..

In this scheme, the sender middle-box holds back the
TCP stream and sends data signatures to the receiver

whether the data is found in its local cache. Data

chunks that are not found in the cache are fetched from

the by receiver middle. Naturally, such a scheme
incurs three-way-and shake latency for no cached

datacenter [5] is a sender-based end-to-end TRE for

enterprise networks. It uses a new chunking scheme
that is faster than the commonly used Rabin

fingerprint, but is restricted to chunks as small as 32–

64 B. Unlike PACK, Ender requires the server to
maintain a fully and reliably synchronized cache for

each client. To adhere with the server’s memory

requirements, these caches are kept small, making the

system inadequate for medium-to-large content or
long-term redundancy. End RE is server-specific,

hence not suitable for a CDN or cloud environment.

 Fig. 1. From stream to chain

To the best of our knowledge, none of the previous
works have addressed the requirements for a cloud-

computing- friendly, end-to-end TRE, which forms

PACK’s focus.

III. PACK ALGORITHM

For the sake of clarity, we first describe the basic
receiver driven operation of the PACK protocol.

Several enhancements and optimizations are

introduced. The stream of data received at the PACK

receiver is parsed to a sequence of variable-size,
content-based signed chunks similar to [3] , [9] and

[5]. The chunks are then compared to the receiver

local storage, termed chunk store. If a matching chunk
is found in the local chunk store, the receiver retrieves

the sequence of subsequent chunks, referred to as a

chain, by traversing the sequence of LRU chunk

pointers that are included in the chunks’ metadata.
Using the constructed chain, the receiver sends a

prediction to the sender for the subsequent data. Part

of each chunk’s prediction, termed a hint, is an easy-
to-compute function with a small-enough false-

positive value, such as the value of the last byte in the

predicted data or a byte-wide XOR checksum of all or
selected bytes. The prediction sent by the receiver

includes the range of the predicted data, the hint, and

the signature of the chunk. The sender identifies the

predicted range in its buffered data and verifies the
hint for that range. If the result matches the received

hint, it continues to perform the more computationally

intensive SHA-1 signature operation. Upon a signature
match, the sender sends a confirmation message to the

receiver, enabling it to copy the matched data from its

local storage.

A. Receiver Chunk Store

PACK uses a new chains scheme, described in Fig. 1,
in which chunks are linked to other chunks according

to their last received order. The PACK receiver

maintains a chunk store, which is a large size cache of
chunks and their associated metadata. Chunk’s

metadata includes the chunk’s signature and a (single)

pointer to the successive chunk in the last received

stream containing this chunk. Caching and indexing
techniques are employed to efficiently maintain and

retrieve the stored chunks, their signatures, and the

chains formed by traversing the chunk pointers. When
the new data are received and parsed to chunks, the

receiver computes each chunk’s signature using SHA-

1. At this point, the chunk and its signature are added
to the chunk store. In addition, the metadata of the

previously received chunk in the same stream is

updated to point to the current chunk. The

unsynchronized nature of PACK allows the receiver to

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 427

map each existing file in the local file system to a
chain of chunks, saving in the chunk store only the

metadata associated with the chunks.3 Using the latter

observation, the receiver can also share chunks with
peer clients within the same local network utilizing a

simple map of network drives. The utilization of a

small chunk size presents better redundancy

elimination when data modifications are fine-grained,
such as sporadic changes in an HTML page. On the

other hand, the use of smaller chunks increases the

storage index size, memory usage, and magnetic disk
seeks. It also increases the transmission overhead of

the virtual data exchanged between the client and the

server. Unlike IP-level TRE solutions that are limited
by the IP packet size (B) , PACK operates on TCP

streams and can therefore handle large chunks and

entire chains. Although our design permits each PACK

client to use any chunk size, we recommend an
average chunk size of 8 kB B.

 Receiver Algorithm

Upon the arrival of new data, the receiver computes

the respective signature for each chunk and looks for a
match in its local chunk store. If the chunk’s signature

is found, the receiver determines whether it is a part of

a formerly received chain, using the chunks’ metadata.

If affirmative, the receiver sends a prediction to the
sender for several next expected chain chunks. The

prediction carries a starting point in the byte stream

(i.e., offset) and the identity of several subsequent
chunks (PRED command). Upon a successful

prediction, the sender responds with a PRED-ACK

confirmation message. Once the PRED-ACK message

is received and processed, the receiver copies the
corresponding data from the chunk store to its TCP

input buffers, placing it according to the corresponding

sequence numbers. At this point, the receiver sends a
normal TCP ACK with the next expected TCP

sequence number. In case the prediction is false, or

one or more predicted chunks are already sent, the
sender continues with normal operation, e.g., sending

the raw data, without sending a PRED-ACK message.

Proc. 1: Receiver Segment Processing

1. if segment carries payload data then

2. calculate chunk
3. if reached chunk boundary then

4. activate predAttempt()

5. end if

6. else if PRED-ACK segment then

7. processPredAck()

8. activate predAttempt()
9. end if

Proc. 2: predAttempt()

1. if received chunk matches one in chunk store then

2. if foundChain(chunk) then

3. prepare PREDs

4. send single TCP ACK with PREDs according to
Options free space

5. exit

6. end if

7. else

8. store chunk

9. link chunk to current chain

10. end if

11. send TCP ACK only

Proc. 3: processPredAck()

1. for all offset PRED-ACK do

2. read data from chunk store

3. put data in TCP input buffer

4. end for

IV. IMPLEMENTATION

In this section, we present PACK implementation, its

performance analysis, and the projected server costs
derived from the implementation experiments. Our

implementation contains over 25 000 lines of C and

Java code. It runs on Linux with Net filter Queue [11].
Fig. 2 shows the PACK implementation architecture.

Fig. 2: Overview of the PACK implementation

At the server side, we use an Intel Core 2 Duo 3 GHz,

2 GB of RAM, and a WD1600AAJS SATA drive
desktop. The clients laptop machines are based on an

Intel Core 2 Duo 2.8 GHz, 3.5 GB of RAM , and a

WD2500BJKT SATA drive. Our implementation

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 428

enables the transparent use of the TRE at both the
server and the client. PACK receiver–sender protocol

is embedded in the TCP Options field for low

overhead and compatibility with legacy systems along
the path. We keep the genuine operating systems’ TCP

stacks intact, allowing a seamless integration with all

applications and protocols above TCP. Chunking and

indexing are performed only at the client’s side,
enabling the clients to decide independently on their

preferred chunk size. In our implementation, the client

uses an average chunk size of 8 kB. We found this size
to achieve high TRE hit-ratio in the evaluated datasets,

while adding only negligible overheads of 0.1% in

metadata storage and 0.15% in predictions bandwidth.
For the experiments held in this section, we generated

a workload consisting of datasets: IMAP e-mails,

HTTP videos, and files downloaded over FTP. The

workload was then loaded to the server and consumed
by the clients. We sampled the machines’ status every

second to measure real and virtual traffic volumes and

CPU utilization. A. Server Operational Cost We
measured the server performance and cost as a

function of the data redundancy level in order to

capture the effect of the TRE mechanisms in real
environment. To isolate the TRE operational cost, we

measured the server’s traffic volume and CPU

utilization at maximal throughput without operating a

TRE. We then used these numbers as a reference cost,
based on present Amazon EC2 [10] pricing. The server

operational cost is composed of both the network

traffic volume and the CPU utilization, as derived
from the EC2 pricing. We constructed a system

consisting of one server and seven clients over a 1-

Gb/s network. The server was configured to provide a

maximal throughput of 50 Mb/s per client. We then
measured three different scenarios: a baseline no-TRE

operation, PACK, and a sender-based TRE similar to

End RE’s Chunk-Match [12], referred to as End RE-
like. For the End RE-like case, we accounted for the

SHA-1 calculated over the entire outgoing traffic, but

did not account for the chunking effort. In the case of
End RE-like, we made the assumption of unlimited

buffers at both the server and client sides to enable the

same long-term redundancy level and TRE ratio of

PACK.

Presents the overall processing and networking cost

for traffic redundancy, relative to no-TRE operation.
As the redundancy grows, the PACK server cost

decreases due to the bandwidth saved by unsent data.

However, the End RE-like server does not gain a
significant cost reduction since the SHA-1 operations

are performed over non redundant data as well. Note

that at above 25% redundancy, which is common to all
reviewed datasets, the PACK operational cost is at

least 20% lower than that of End RE-like.

B. PACK Impact on the Client CPU

To evaluate the CPU effort imposed by PACK on a

client, we measured a random client under a scenario
similar to the one used for measuring the server’s cost,

only this time the cloud server streamed videos at a

rate of 9 Mb/s to each client. Such
a speed throttling is very common in real-time video

servers that aim to provide all clients with stable

bandwidth for mooth view.

Table IV summarizes the results. The average PACK-
related CPU consumption of a client is less than 4%

for 9-Mb/s video with 36.4% redundancy. Fig. 12(a)

presents the client CPU utilization as a function of the
real incoming traffic bandwidth. Since the client

chunks the arriving data, the CPU utilization grows as

more real traffic enters the client’s machine. Fig. 12(b)
shows the client CPU utilization as a function of the

virtual traffic bandwidth. Virtual traffic arrives in the

form of prediction approvals from the sender and is

limited to a rate of 9 Mb/s by the server’s throttling.
The approvals save the client the need to chunk data or

sign the chunks and enable him to send more

predictions based on the same chain that was just used
successfully. Hence, the more redundancy is found,

the less CPU utilization incurred by PACK.

Fig 3: PACK versus End RE-like cloud server

operational cost as a function of redundancy ratio.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 429

V. CONCLUSION

In this paper, we have presented PACK , a receiver-
based, Cloud-friendly, end-to-end TRE that is based

on novel speculative principles that reduce latency and

cloud operational cost. PACK does not require the

server to continuously maintain clients’ status, thus
enabling cloud elasticity and user mobility while

preserving long-term redundancy. Moreover, PACK is

capable of eliminating redundancy based on content
arriving to the client from multiple servers without

applying a three-way handshake. Our evaluation using

a wide collection of content types shows that PACK

meets the expected design goals and has clear
advantages over sender-based TRE, especially when

the cloud computation cost and buffering requirements

are important. Moreover, PACK imposes additional
effort on the sender only when redundancy is

exploited, thus reducing the cloud overall cost. Two

interesting future extensions can provide additional
benefits to the PACK concept. First, our

implementation maintains chains by keeping for any

chunk only the last observed subsequent chunk in an

LRU fashion. An interesting extension to this work is
the statistical study of chains of chunks that would

enable multiple possibilities in both the chunk order

and the corresponding predictions. The system may
also allow making more than one prediction at a time,

and it is enough that one of them will be correct for

successful traffic elimination. A second promising
direction is the mode of operation optimization of the

hybrid sender–receiver approach based on shared

decisions derived from receiver’s power or server’s

cost changes.

References

[1] E. Zohar, I. Cidon, and O. Mokryn, ―The power of

prediction: Cloud bandwidth and cost reduction,‖ in

Proc. SIGCOMM, 2011, pp. 86–97.

[2] M. Armbrust, A. Fox, R. Griffith, A. D.

Joseph,R.Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia, ―A view of cloud
computing,‖ Commun. ACM, vol. 53, no. 4, pp. 50–

58, 2010.

[3] U. Manber, ―Finding similar files in a large file

system,‖ in Proc. USENIX Winter Tech. Conf., 1994,

pp. 1–10.

[4] N. T. Spring and D. Wetherall, ―A protocol-
independent technique for eliminating redundant

network traffic,‖ in Proc. SIGCOMM, 2000, vol. 30,

pp. 87–95.

[5] A. Muthitacharoen, B. Chen, and D. Mazières, ―A

low-bandwidth network file system,‖ in Proc. SOSP,

2001, pp. 174–187.

[6] E. Lev-Ran, I. Cidon, and I. Z. Ben-Shaul,

―Method and apparatus for reducing network traffic
over low bandwidth links,‖ US Patent 7636767, Nov.

2009.

[7] S.Mccanne andM. Demmer, ―Content-based

segmentation scheme for data compression in storage

and transmission including hierarchical segment

representation,‖ US Patent 6828925, Dec. 2004.

[8] R. Williams, ―Method for partitioning a block of

data into subblocks and for storing and communicating
such subblocks,‖ US Patent 5990810, Nov. 1999.

[9] A. Flint, ―The next workplace revolution,‖ Nov.
2012 [Online].

Available: http://m.theatlanticcities.com/jobs-and-

economy/2012/11/

nextworkplace-revolution/3904/

[10] B. Aggarwal, A. Akella, A. Anand, A.

Balachandran, P. Chitnis, C. Muthukrishnan, R.
Ramjee, and G. Varghese, ―EndRE: An end-system

redundancy elimination service for enterprises,‖ in

Proc. NSDI, 2010, pp. 28–28.

 [11] A. Anand, A. Gupta, A. Akella, S. Seshan, and S.

Shenker, ―Packet caches on routers: The implications

of universal redundant traffic elimination,‖ in Proc.
SIGCOMM, 2008, pp. 219–230.

[12] A. Anand, V. Sekar, and A. Akella, ―SmartRE:
An architecture for coordinated network-wide

redundancy elimination,‖ in Proc. SIGCOMM, 2009,

vol. 39, pp. 87–98.

