
  

c 
International Journal of Research (IJR) 

e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 11, November 2015 

Available at http://internationaljournalofresearch.org 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 499 

Automatic Test Packet Generation 
Mr. K.L.Narsimha Rao 1& A Chiranjeevi 2 

 1 
Associate Professor, Dept of CSE, Marri Laxman Reddy Institute Of Technology & Management,  

Hyderabad, Telangana 
 2 

M.Tech CS (PG Scholar), Dept of CSE, Marri Laxman Reddy Institute Of Technology & Management, 

Hyderabad, Telangana

ABSTRACT 

Networks are getting larger and more complex, yet 

administrators rely on rudimentary tools such as 

and to debug problems. We propose an automated 

and systematic approach for testing and debugging 

networks called “Automatic Test Packet 

Generation” (ATPG). ATPG reads router 

configurations and generates a device-independent 

model. The model is used to generate a minimum set 

of test packets to (minimally) exercise every link in 

the network or (maximally) exercise every rule in 

the network. Test packets are sent periodically, and 

detected failures trigger a  separate mechanism to 

localize the fault. ATPG can detect both functional 

(e.g., incorrect firewall rule) and performance 

problems (e.g., congested queue). ATPG 

complements but goes beyond earlier work in static 

checking (which cannot detect liveness or 

performance faults) or fault localization (which 

only localize faults given liveness results). We 

describe our prototype ATPG implementation and 

results on two real-world data sets: Stanford 

University’s backbone network and Internet2. We 

find that a small number of test packets suffices to 

test all rules in these networks: For example, 4000 

packets can cover all rules in Stanford backbone 

network, while 54 are enough to cover all links. 

Sending 4000 test packets 10 times per second 

consumes less than 1% of link capacity. ATPG code 

and the datasets are publicly available. 

 

Index Terms—Data plane analysis; network 

troubleshooting; test packet generation 

 

 

 

I. INTRODUCTION 

Its notoriously hard to debug networks. Every day 

network engineers wrestle with router 

misconfigurations fiber cuts, faulty interfaces, 

mislabeled cables, software bugs, intermittent links, 

and a myriad other reasons that cause networks to 

misbehave or fail completely. Network engineers 

hunt down bugs using the most rudimentary tools 

and track down root causes using a combination of 

accrued wisdom and intuition. Debugging networks 

is only becoming harder as networks are getting 

bigger and are getting more complicated with over 

6000 RFCs, router software is based on millions of 

lines of source code, and network chips often 

contain billions of gates It is a mall wonder that 

network engineers have been labeled ―masters of 

complexity. The main contribution of this paper is 

what we call an Automatic Test Packet Generation 

(ATPG) framework that automatically generates a 

minimal set of packets to test the liveness of the 

underlying topology and the congruence between 

data plane state and configuration specifications. 

The tool can also automatically generate packets to 

test performance assertions such as packet latency. 

In Example 1, instead of Alice manually deciding 

which packets to send, the tool does so periodically 

on her behalf. In Example 2, the tool determines 

that itmust send packets with certain headers to 

―exercise‖ the video queue, and then determines 

that these packets are being dropped. 

Example: 

We tested our method on two real-world data sets—

the backbone networks of Stanford University, 

Stanford, CA, USA, and Internet2, representing an 
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enterprise network and a nationwide ISP. The 

results are encouraging: Thanks to the structure of 

real world rulesets, the number of test packets 

needed is surprisingly small. For the Stanford 

network with over 757 000 rules and more than 100 

VLANs, we only need 4000 packets to exercise all 

forwarding rules and ACLs. On Internet2, 35 000 

packets suffice to exercise all IPv4 forwarding 

rules. Put another way, we can check every rule in 

every router on the Stanford backbone 10 times 

every second by sending test packets that consume 

less than 1% of network bandwidth. The link cover 

for Stanford is even smaller, around 50 packets, 

which allows proactive liveness testing every 

millisecond using 1% of network bandwidth Based 

on the network model, ATPG generates the minimal 

number of test packets so that every forwarding rule 

in the network is exercised and covered by at least 

one test packet When an error is detected, ATPG 

uses a fault localization algorithm to determine the 

failing rules or links. of the ATPG system. The 

system first collects all the forwarding state from 

the network this usually involves reading the FIBs, 

ACLs, and config files, as well as obtaining the 

topology. ATPG uses Header Space Analysis to 

compute reachability between all the test terminals 

The result is then used by the test packet selection 

algorithm to compute a minimal set of test packets 

that can test These packets will be sent periodically 

by the test terminals If an error is detected, the fault 

localization algorithm is invoked to narrow down 

the cause of the error described Networking is the 

word basically relating to computers and their 

connectivity. It is very often used in the world of 

computers and their use in different connections. 

The term networking implies the link between two 

or more computers and their devices, with the vital 

purpose of sharing the data stored in the computers, 

with each other. The networks between the 

computing devices are very common these days due 

to the launch of various hardware and computer 

software which aid in making the activity much 

more convenient to build and use. 

 

General Network Techniques - When computers 

communicate on a network, they send out data 

packets without knowing if anyone is listening. 

Computers in a network all have a connection to the 

network and that is called to be connected to a 

network bus. What one computer sends out will 

reach all the other computers on the local network. 

For the different computers to be able to distinguish 

between each other, every computer has a unique 

ID called MAC-address (Media Access Control 

Address). This address is not only unique on your 

network but unique for all devices that can be 

hooked up to a network. The MAC-address is tied 

to the hardware and has nothing to do with IP-

addresses. Since all computers on the network 

receives everything that is sent out from all other 

computers the MAC-addresses is primarily used by 

the computers to filter out incoming network traffic 

that is addressed to the individual computer. 

When a computer communicates with another 

computer on the network, it sends out both the other 

computers MAC-address and the MAC-address of 

its own. In that way the receiving computer will not 

only recognize that this packet is for me but also, 

who sent this data packet so a return response can 

be sent to the sender. 

 

On an Ethernet network as described here, all 

computers hear all network traffic since they are 

connected to the same bus. This network structure is 

called multi-drop. 

One problem with this network structure is that 

when you have, let say ten (10) computers on a 

network and they communicate frequently and due 

to that they sends out there data packets randomly, 

collisions occur when two or more computers sends 

data at the same time. When that happens data gets 

corrupted and has to be resent. On a network that is 

heavy loaded even the resent packets collide with 

other packets and have to be resent again. In reality 

this soon becomes a bandwidth problem. If several 

computers communicate with each other at high 

speed they may not be able to utilize more than 25% 

of the total network bandwidth since the rest of the 
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bandwidth is used for resending previously 

corrupted packets. The way to minimize this 

problem is to use network switches. 

 

II. RELATED WORK 

Testing liveness of a network is a fundamental 

problem for ISPs and large data center operators. 

Sending probes between every pair of edge ports is 

neither exhaustive nor scalable . It suffices to find a 

minimal set of end-to-end packets that traverse each 

link. However, doing this requires a way of 

abstracting across device specific configuration 

files, generating headers and the links they reach, 

and finally determining a minimum set of test 

packets  (Min-Set-Cover). To check enforcing 

consistency between policy and the configuration. 

Not designed to identify liveness failures, bugs 

router hardware or software, or performance 

problems. The two most common causes of network 

failure are hardware failures and software bugs, and 

that problems manifest themselves both as 

reachability failures and throughput/latency 

degradation. We will only consider action faults 

because they cover most likely failure conditions 

and can be detected using only one test packet per 

rule. We leave match faults for future work. 

 

We can typically only observe a packet at the edge 

of the network after it has been processed by every 

matching rule we define an end-to-end version of 

the result function 

 

The test packet generator, written in Python, 

contains a Cisco IOS configuration parser and a 

Juniper Junos parser. The data plane information, 

including router configurations, FIBs, MAC 

learning tables, and network topologies, is collected 

and parsed through the command line interface or 

XML files The generator then uses the Hassel 

header space analysis library to construct switch 

and topology functions We also found that 100% 

link coverage (instead of rule coverage) only 

needed 54 packets for Stanford The table also 

shows the large benefit gained by compressing the 

number of test packets—in most cases, the total 

number of test packets is reduced by a factor of 20–

100 using the minimum set cover algorithm. This 

compression may make proactive link testing 

feasible for large networks 

 

III. PROPOSED SYSTEM 

Automatic Test Packet Generation (ATPG) 

framework that automatically generates a minimal 

set of packets to test the liveness of the underlying 

topology and the congruence between data plane 

state and configuration specifications. The tool can 

also automatically generate packets to test 

performance assertions such as packet latency. 

It can also be specialized to generate a minimal set 

of packets that merely test every link for network 

liveness. 

Based on the network model, ATPG generates the 

minimal number of test packets so that every 

forwarding rule in the network is check and covered 

by at least one test packet. When an error is 

detected, ATPG uses a fault localization algorithm 

to determine the failing rules or links [1]. 

 

Fig.1 is a block diagram of the ATPG system. The 

system first collects all the forwarding state from 

the network then all below test perform on network. 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1- This involves reading the FIBs, ACLs, and 

config file, and obtaining the topology. ATPG uses 

Header Space Analysis to compute reach ability 

between all the test terminals. 
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Step 2- The result is then used by the test packet 

selection algorithm to compute a minimal set of test 

packets that can test ll rules. 

 

Step 3 - These packets will be sent periodically by 

the test terminals 

 

Step 4 - If an error is erected, the fault localization 

algorithm is down the cause of the error. 

 

Advantages of Proposed System 

  A survey of network operators revealing 

common failures and root causes. 

 A test packet generation algorithm. 

 A fault localization algorithm to isolate 

faulty devices and rules. 

 ATPG use cases for functional and 

performance testing. 

 Evaluation of a prototype ATPG system 

using rule sets collected from the Stanford and 

Internet2 backbones. 

Conclusion: 

Testing liveness of a network is a fundamental 

problem for ISPs and large data center operators. 

Sending probes between every pair of edge ports is 

neither exhaustive nor scalable [30]. It suffices to 

find a minimal set of end-to-end packets that 

traverse each link. However, doing this requires a 

way of abstracting across device specific 

configuration files (e.g., header space), generating 

headers and the links they reach (e.g., all-pairs 

reachability), and finally determining a minimum 

set of test packets (Min-Set-Cover). Even the 

fundamental problem of automatically generating 

test packets for efficient liveness testing requires 

techniques akin to ATPG. 

ATPG, however, goes much further than liveness 

testing with the same framework. ATPG can test for 

reachability policy (by testing all rules including 

drop rules) and performance health (by associating 

performance measures such as latency and loss with 

test packets). Our implementation also augments 

testing with a simple fault localization scheme also 

constructed using the header space framework. As 

in software testing, the formal model helps 

maximize test coverage while minimizing test 

packets. Our results show that all forwarding rules 

in Stanford backbone or Internet2 can be exercised 

by a surprisingly small number of test packets (for 

Stanford, and for Internet2). 

Network managers today use primitive tools such as 

and. Our survey results indicate that they are eager 

For more sophisticated tools. Other fields of 

engineering indicate that these desires are not 

unreasonable: For example, both the ASIC and 

software design industries are buttressed by billion- 

Dollar tool businesses that supply techniques for 

both static (e.g., design rule) and dynamic (e.g., 

timing) verification. In fact, many months after we 

built and named our system, we discovered to our 

surprise that ATPG was a well-known acronym in 

hardware chip testing, where it stands for Automatic 

Test Pattern Generation [2]. We hope network 

ATPG will be equally useful for automated 

dynamic testing of production networks. 
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