

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 499

Automatic Test Packet Generation
Mr. K.L.Narsimha Rao 1& A Chiranjeevi 2

 1
Associate Professor, Dept of CSE, Marri Laxman Reddy Institute Of Technology & Management,

Hyderabad, Telangana
 2

M.Tech CS (PG Scholar), Dept of CSE, Marri Laxman Reddy Institute Of Technology & Management,

Hyderabad, Telangana

ABSTRACT

Networks are getting larger and more complex, yet

administrators rely on rudimentary tools such as

and to debug problems. We propose an automated

and systematic approach for testing and debugging

networks called “Automatic Test Packet

Generation” (ATPG). ATPG reads router

configurations and generates a device-independent

model. The model is used to generate a minimum set

of test packets to (minimally) exercise every link in

the network or (maximally) exercise every rule in

the network. Test packets are sent periodically, and

detected failures trigger a separate mechanism to

localize the fault. ATPG can detect both functional

(e.g., incorrect firewall rule) and performance

problems (e.g., congested queue). ATPG

complements but goes beyond earlier work in static

checking (which cannot detect liveness or

performance faults) or fault localization (which

only localize faults given liveness results). We

describe our prototype ATPG implementation and

results on two real-world data sets: Stanford

University’s backbone network and Internet2. We

find that a small number of test packets suffices to

test all rules in these networks: For example, 4000

packets can cover all rules in Stanford backbone

network, while 54 are enough to cover all links.

Sending 4000 test packets 10 times per second

consumes less than 1% of link capacity. ATPG code

and the datasets are publicly available.

Index Terms—Data plane analysis; network

troubleshooting; test packet generation

I. INTRODUCTION

Its notoriously hard to debug networks. Every day

network engineers wrestle with router

misconfigurations fiber cuts, faulty interfaces,

mislabeled cables, software bugs, intermittent links,

and a myriad other reasons that cause networks to

misbehave or fail completely. Network engineers

hunt down bugs using the most rudimentary tools

and track down root causes using a combination of

accrued wisdom and intuition. Debugging networks

is only becoming harder as networks are getting

bigger and are getting more complicated with over

6000 RFCs, router software is based on millions of

lines of source code, and network chips often

contain billions of gates It is a mall wonder that

network engineers have been labeled ―masters of

complexity. The main contribution of this paper is

what we call an Automatic Test Packet Generation

(ATPG) framework that automatically generates a

minimal set of packets to test the liveness of the

underlying topology and the congruence between

data plane state and configuration specifications.

The tool can also automatically generate packets to

test performance assertions such as packet latency.

In Example 1, instead of Alice manually deciding

which packets to send, the tool does so periodically

on her behalf. In Example 2, the tool determines

that itmust send packets with certain headers to

―exercise‖ the video queue, and then determines

that these packets are being dropped.

Example:

We tested our method on two real-world data sets—

the backbone networks of Stanford University,

Stanford, CA, USA, and Internet2, representing an

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 500

enterprise network and a nationwide ISP. The

results are encouraging: Thanks to the structure of

real world rulesets, the number of test packets

needed is surprisingly small. For the Stanford

network with over 757 000 rules and more than 100

VLANs, we only need 4000 packets to exercise all

forwarding rules and ACLs. On Internet2, 35 000

packets suffice to exercise all IPv4 forwarding

rules. Put another way, we can check every rule in

every router on the Stanford backbone 10 times

every second by sending test packets that consume

less than 1% of network bandwidth. The link cover

for Stanford is even smaller, around 50 packets,

which allows proactive liveness testing every

millisecond using 1% of network bandwidth Based

on the network model, ATPG generates the minimal

number of test packets so that every forwarding rule

in the network is exercised and covered by at least

one test packet When an error is detected, ATPG

uses a fault localization algorithm to determine the

failing rules or links. of the ATPG system. The

system first collects all the forwarding state from

the network this usually involves reading the FIBs,

ACLs, and config files, as well as obtaining the

topology. ATPG uses Header Space Analysis to

compute reachability between all the test terminals

The result is then used by the test packet selection

algorithm to compute a minimal set of test packets

that can test These packets will be sent periodically

by the test terminals If an error is detected, the fault

localization algorithm is invoked to narrow down

the cause of the error described Networking is the

word basically relating to computers and their

connectivity. It is very often used in the world of

computers and their use in different connections.

The term networking implies the link between two

or more computers and their devices, with the vital

purpose of sharing the data stored in the computers,

with each other. The networks between the

computing devices are very common these days due

to the launch of various hardware and computer

software which aid in making the activity much

more convenient to build and use.

General Network Techniques - When computers

communicate on a network, they send out data

packets without knowing if anyone is listening.

Computers in a network all have a connection to the

network and that is called to be connected to a

network bus. What one computer sends out will

reach all the other computers on the local network.

For the different computers to be able to distinguish

between each other, every computer has a unique

ID called MAC-address (Media Access Control

Address). This address is not only unique on your

network but unique for all devices that can be

hooked up to a network. The MAC-address is tied

to the hardware and has nothing to do with IP-

addresses. Since all computers on the network

receives everything that is sent out from all other

computers the MAC-addresses is primarily used by

the computers to filter out incoming network traffic

that is addressed to the individual computer.

When a computer communicates with another

computer on the network, it sends out both the other

computers MAC-address and the MAC-address of

its own. In that way the receiving computer will not

only recognize that this packet is for me but also,

who sent this data packet so a return response can

be sent to the sender.

On an Ethernet network as described here, all

computers hear all network traffic since they are

connected to the same bus. This network structure is

called multi-drop.

One problem with this network structure is that

when you have, let say ten (10) computers on a

network and they communicate frequently and due

to that they sends out there data packets randomly,

collisions occur when two or more computers sends

data at the same time. When that happens data gets

corrupted and has to be resent. On a network that is

heavy loaded even the resent packets collide with

other packets and have to be resent again. In reality

this soon becomes a bandwidth problem. If several

computers communicate with each other at high

speed they may not be able to utilize more than 25%

of the total network bandwidth since the rest of the

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 501

bandwidth is used for resending previously

corrupted packets. The way to minimize this

problem is to use network switches.

II. RELATED WORK

Testing liveness of a network is a fundamental

problem for ISPs and large data center operators.

Sending probes between every pair of edge ports is

neither exhaustive nor scalable . It suffices to find a

minimal set of end-to-end packets that traverse each

link. However, doing this requires a way of

abstracting across device specific configuration

files, generating headers and the links they reach,

and finally determining a minimum set of test

packets (Min-Set-Cover). To check enforcing

consistency between policy and the configuration.

Not designed to identify liveness failures, bugs

router hardware or software, or performance

problems. The two most common causes of network

failure are hardware failures and software bugs, and

that problems manifest themselves both as

reachability failures and throughput/latency

degradation. We will only consider action faults

because they cover most likely failure conditions

and can be detected using only one test packet per

rule. We leave match faults for future work.

We can typically only observe a packet at the edge

of the network after it has been processed by every

matching rule we define an end-to-end version of

the result function

The test packet generator, written in Python,

contains a Cisco IOS configuration parser and a

Juniper Junos parser. The data plane information,

including router configurations, FIBs, MAC

learning tables, and network topologies, is collected

and parsed through the command line interface or

XML files The generator then uses the Hassel

header space analysis library to construct switch

and topology functions We also found that 100%

link coverage (instead of rule coverage) only

needed 54 packets for Stanford The table also

shows the large benefit gained by compressing the

number of test packets—in most cases, the total

number of test packets is reduced by a factor of 20–

100 using the minimum set cover algorithm. This

compression may make proactive link testing

feasible for large networks

III. PROPOSED SYSTEM

Automatic Test Packet Generation (ATPG)

framework that automatically generates a minimal

set of packets to test the liveness of the underlying

topology and the congruence between data plane

state and configuration specifications. The tool can

also automatically generate packets to test

performance assertions such as packet latency.

It can also be specialized to generate a minimal set

of packets that merely test every link for network

liveness.

Based on the network model, ATPG generates the

minimal number of test packets so that every

forwarding rule in the network is check and covered

by at least one test packet. When an error is

detected, ATPG uses a fault localization algorithm

to determine the failing rules or links [1].

Fig.1 is a block diagram of the ATPG system. The

system first collects all the forwarding state from

the network then all below test perform on network.

Step 1- This involves reading the FIBs, ACLs, and

config file, and obtaining the topology. ATPG uses

Header Space Analysis to compute reach ability

between all the test terminals.

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 502

Step 2- The result is then used by the test packet

selection algorithm to compute a minimal set of test

packets that can test ll rules.

Step 3 - These packets will be sent periodically by

the test terminals

Step 4 - If an error is erected, the fault localization

algorithm is down the cause of the error.

Advantages of Proposed System

 A survey of network operators revealing

common failures and root causes.

 A test packet generation algorithm.

 A fault localization algorithm to isolate

faulty devices and rules.

 ATPG use cases for functional and

performance testing.

 Evaluation of a prototype ATPG system

using rule sets collected from the Stanford and

Internet2 backbones.

Conclusion:

Testing liveness of a network is a fundamental

problem for ISPs and large data center operators.

Sending probes between every pair of edge ports is

neither exhaustive nor scalable [30]. It suffices to

find a minimal set of end-to-end packets that

traverse each link. However, doing this requires a

way of abstracting across device specific

configuration files (e.g., header space), generating

headers and the links they reach (e.g., all-pairs

reachability), and finally determining a minimum

set of test packets (Min-Set-Cover). Even the

fundamental problem of automatically generating

test packets for efficient liveness testing requires

techniques akin to ATPG.

ATPG, however, goes much further than liveness

testing with the same framework. ATPG can test for

reachability policy (by testing all rules including

drop rules) and performance health (by associating

performance measures such as latency and loss with

test packets). Our implementation also augments

testing with a simple fault localization scheme also

constructed using the header space framework. As

in software testing, the formal model helps

maximize test coverage while minimizing test

packets. Our results show that all forwarding rules

in Stanford backbone or Internet2 can be exercised

by a surprisingly small number of test packets (for

Stanford, and for Internet2).

Network managers today use primitive tools such as

and. Our survey results indicate that they are eager

For more sophisticated tools. Other fields of

engineering indicate that these desires are not

unreasonable: For example, both the ASIC and

software design industries are buttressed by billion-

Dollar tool businesses that supply techniques for

both static (e.g., design rule) and dynamic (e.g.,

timing) verification. In fact, many months after we

built and named our system, we discovered to our

surprise that ATPG was a well-known acronym in

hardware chip testing, where it stands for Automatic

Test Pattern Generation [2]. We hope network

ATPG will be equally useful for automated

dynamic testing of production networks.

REFERENCES

 [1] ―ATPG code repository,‖ [Online]. Available:

http://eastzone.github. com/atpg/

[2] ―Automatic Test Pattern Generation,‖ 2013

[Online]. Available:

http://en.wikipedia.org/wiki/Automatic_test_pattern

_generation

[3] P. Barford, N. Duffield, A. Ron, and J.

Sommers, ―Network performance

anomaly detection and localization,‖ in Proc. IEEE

INFOCOM, Apr. , pp. 1377–1385.

[4] ―Beacon,‖ [Online]. Available:

http://www.beaconcontroller.net/

[5] Y. Bejerano and R. Rastogi, ―Robust monitoring

of link delays and faults in IP networks,‖

IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 1092–

1103, Oct. 2006.

http://eastzone.github/
http://en.wikipedia.org/wiki/Automatic_test_pattern_generation
http://en.wikipedia.org/wiki/Automatic_test_pattern_generation
http://www.beaconcontroller.net/

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 503

[6] C. Cadar, D. Dunbar, and D. Engler, ―Klee:

Unassisted and automatic generation of high-

coverage tests for complex systems programs,‖ in

Proc. OSDI, Berkeley, CA, USA, 2008, pp. 209–

224.

[7] M. Canini,D.Venzano, P. Peresini,D.Kostic, and

J. Rexford, ―A NICE way to test OpenFlow

applications,‖ in Proc. NSDI, 2012, pp. 10–10.

[8] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C.

Diot, ―Netdiagnoser: Troubleshooting network

unreachabilities using end-to-end probes and

routing data,‖ in Proc. ACM CoNEXT, 2007, pp.

18:1–18:12..

[9] N. Duffield, ―Network tomography of binary

network performance characteristics,‖ IEEE Trans.

Inf. Theory, vol. 52, no. 12, pp. 5373–5388, Dec.

2006.

[10] N. Duffield, F. L. Presti, V. Paxson, and D.

Towsley, ―Inferring link loss using striped unicast

probes,‖ in Proc. IEEE INFOCOM, 2001, vol. 2,

pp. 915–923.

[11] N. G. Duffield and M. Grossglauser,

―Trajectory sampling for direct traffic observation,‖

IEEE/ACM Trans. Netw., vol. 9, no. 3, pp. 280–292,

Jun. 2001.

[12] P. Gill, N. Jain, and N. Nagappan,

―Understanding network failures in data centers:

Measurement, analysis, and implications,‖ in Proc.

ACM SIGCOMM, 2011, pp. 350–361.

[13] ―Hassel, the Header Space Library,‖ [Online].

Available: https://bitbucket. org/peymank/hassel-

public/

[14] Internet2, Ann Arbor, MI, USA, ―The Internet2

observatory data collections,‖[Online]. Available:

http://www.internet2.edu/observatory/archive/data-

collections.html

[15] M. Jain and C. Dovrolis, ―End-to-end available

bandwidth: Measurement methodology, dynamics,

and relation with TCP throughput,‖ IEEE/ACM

Trans. Netw., vol. 11, no. 4, pp. 537–549, Aug.

2003.

[16] P. Kazemian, G. Varghese, and N. McKeown,

―Header space analysis: Static checking for

networks,‖ in Proc. NSDI, 2012, pp. 9–9.

[17] R. R. Kompella, J. Yates, A. Greenberg, and A.

C. Snoeren, ―IP fault localization via risk

modeling,‖ in Proc. NSDI, Berkeley, CA, USA,

2005, vol. 2, pp. 57–70.

[18] M. Kuzniar, P. Peresini, M. Canini, D.

Venzano, and D. Kostic, ―A SOFT way for

OpenFlow switch interoperability testing,‖ in Proc.

ACM CoNEXT, 2012, pp. 265–276.

[19] K. Lai and M. Baker, ―Nettimer: A tool for

measuring bottleneck link, bandwidth,‖ in Proc.

USITS, Berkeley, CA, USA, 2001, vol. 3, pp. 11–

11.

[20] B. Lantz, B. Heller, and N. McKeown, ―A

network in a laptop: Rapid prototyping for

software-defined networks,‖ in Proc. Hotnets, 2010,

pp. 19:1–19:6.

[21] F. Le, S. Lee, T. Wong, H. S. Kim, and D.

Newcomb, ―Detecting network-wide and router-

specific misconfigurations through data mining,‖

IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 66–79,

Feb. 2009.

[22] H. V. Madhyastha, T. Isdal, M. Piatek, C.

Dixon, T. Anderson, A. Krishnamurthy, and A.

Venkataramani, ―iplane: An information plane for

distributed services,‖ in Proc. OSDI, Berkeley, CA,

USA, 2006, pp. 367–380.

[23] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y.

Zhang, J. Emmons, B.

https://bitbucket/

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 11, November 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 504

Huntley, and M. Stockert, ―Rapid detection of

maintenance induced changes in service

performance,‖ in Proc. ACM CoNEXT, 2011, pp.

13:1–13:12.

[24] A. Mahimkar, J. Yates, Y. Zhang, A. Shaikh,

J.Wang, Z. Ge, and C. T. Ee, ―Troubleshooting

chronic conditions in large IP networks,‖ in Proc.

ACM CoNEXT, 2008, pp. 2:1–2:12.

[25] H. Mai, A. Khurshid, R. Agarwal, M. Caesar,

P. B. Godfrey, and S. T. King, ―Debugging the data

plane with Anteater,‖ Comput. Commun. Rev., vol.

41, no. 4, pp. 290–301, Aug. 2011.

[26] A. Markopoulou, G. Iannaccone, S.

Bhattacharyya, C.-N. Chuah, Y. Ganjali, and C.

Diot, ―Characterization of failures in an operational

ip backbone network,‖ IEEE/ACM Trans. Netw.,

vol. 16, no. 4, pp. 749–762, Aug. 2008.

[27] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner, ―Openflow: Enabling innovation in

campus networks,‖ Comput. Commun. Rev., vol. 38,

pp. 69–74, Mar. 2008.

[28] ―OnTimeMeasure,‖ [Online]. Available:

http://ontime.oar.net/

[29] ―Open vSwitch,‖ [Online]. Available:

http://openvswitch.org/

[30] H. Weatherspoon, ―All-pairs ping service for

PlanetLab ceased,‖ 2005 [Online]. Available:

http://lists.planet-lab.org/pipermail/users/2005-

July/001518.html

[31] M.Reitblatt,N.Foster, J. Rexford, C.

Schlesinger, andD.Walker, ―Abstractions for

network update,‖ in Proc. ACM SIGCOMM, 2012,

pp. 323–334.

[32] S. Shenker, ―The future of networking, and the

past of protocols,‖ 2011 [Online].Available:

http://opennetsummit.org/archives/oct11/shenkertue

Pdf

[33] ―Troubleshooting the network survey,‖ 2012

[Online]. Available:

http://eastzone.github.com/atpg/docs/NetDebugSurv

ey.pdf

[34] D. Turner, K. Levchenko, A. C. Snoeren, and

S. Savage, ―California fault lines: Understanding

the causes and impact of network failures,‖ Comput.

Commun. Rev., vol. 41, no. 4, pp. 315–326, Aug.

2010.

[35] P. Yalagandula, P. Sharma, S. Banerjee, S.

Basu, and S.-J. Lee, ―S3: A scalable sensing service

for monitoring large networked systems,‖ in Proc.

INM, 2006, pp. 71–76.

http://ontime.oar.net/
http://openvswitch.org/
http://lists.planet-lab.org/pipermail/users/2005-%20July/001518.html
http://lists.planet-lab.org/pipermail/users/2005-%20July/001518.html
http://eastzone.github.com/atpg/docs/NetDebugSurvey.pdf
http://eastzone.github.com/atpg/docs/NetDebugSurvey.pdf

