
 International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 11
November 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	753

Instant	Fuzzy	Search	Proximity	
Information	by	Novel	Indexing	Technique	

Srivaishnav Gandhe1, Snigdha Cheekoty2
1B-Tech Dept. of ECE Sreenidhi institute of science & technology, Hyderabad, Telangana

Mail Id: - srivaishnavg@gmail.com
2B-Tech Dept. of ECE Sreenidhi institute of science & technology, Hyderabad, Telangana,

Mail Id: - madcheekoty@gmail.com

Abstract— Instant search retrieves results as a user type’s keyword character by character.

On every keystroke result of previously typed prefixed query is used to generate result of

newly typed query with one new character. We are using phrase threshold value which is

used to limit the answer set generated by instant fuzzy search. For that main challenge is that

to improve the performance as well as get answer set to retrieval of desired documents for the

user query. At the same time, we also need better searching operates that look at the

proximity of keywords to calculate relevance scores. In this paper, we study how to calculate

proximity information with help of instant-fuzzy search while reaching efficient time and

space complexities. A novel indexing technique is used to overcome the space and time

restrictions of these solutions, we propose an approach that concentrates on common phrases

in the database. The string generation algorithm based on pruning is assured to give the

optimal top k candidates. The proposed method is utilized to reformulation of queries in web

search and develops a computational algorithm for efficiently segmenting a query into

phrases and computing these phrases using algorithm to find relevant answers to the user

query.

Keywords: Instant Fuzzy Search, proximity information, a novel indexing technique.

1. INTRODUCTION

Information retrieval (IR) is the method of

obtaining necessary information from a

collection of large data set. User usually

searches by providing the keyword or

query. Queries can be a single or multiple

keywords. In information retrieval, search

for a query will not show single result

instead many results which match the

query will be shown. In Information

Retrieval ranking the result set is very

much important as the user will be

interested in getting required information

from first few documents of result set.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 11
November 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	754

While entering characters there may be

some typographical errors (typos), fuzzy

search finds similar keywords and displays

results for the predicted keywords. If the

user wants to search for a documents

containing keyword Sachin Tendlukar but

by mistake he or she types Tendlukar then

because of fuzzy search [1] the system will

be able to retrieve the document

containing Sachin Tendlukar. In case a

query contains more than one term, then

considering proximity [1] (the distance

between keywords) is very important. To

illustrate the importance of proximity let

us consider the query “knowledge

management”. Systems that do not take

proximity into account return general

documents in which all the two terms

knowledge and management are

individually important, but the document

does not necessarily contain information

about knowledge management. On the

other extreme an exact phrase match

would make sure that the document

retrieved matches the query but

implementing such phrase matching search

would result in not displaying many

relevant results. A proximity ranking,

ranks query results based on distance

between query keywords.

Pre-processing is an important step

for fast retrieval of search results. Pre-

processing involves text extraction from

data set files, stop word removal,

stemming, unique words extraction and

Index creation. Indexes are very important

in any search engine. Combination of

indexes like Tree Index[2] and Inverted

List index[3] is used in current research.

Tree Index is a special kind of trie; unique

words are inserted into Tree Index which

helps in fuzzy search. Inverted Index

contains a word ID and list of Document

ID i.e. all those documents which contains

the word. Along with document ID list of

position ID will be stored, i.e. where and

all the word is present in the document.

Storing position ID is necessary for

ranking search results based on proximity

ranking.

Fuzzy search is based on finding similar

words from the dictionary. Levenshtein

distance or edit distance in combination

with Trie index finds similar words faster.

Edit distance here refers to number of

single character operations such as

insertion, replacement or deletion need to

be done in order to transform one word to

another word. For example edit distance

between “bin” and “pin” is one, since

replacing character ‘b’ by ‘p’ word “bin”

can be converted to “pin”. Based on the

length of the word a threshold for edit

distance is deter-mined all similar words

 International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 11
November 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	755

within the threshold distance will be

considered for fuzzy search.

Proximity ranking is implemented based

on binning concept. Inverted index

contains document ID which is associated

with list of bin ID. The document is

divided into bins, the number of bins

varies from document to document but

each bin contains equal number of words.

For proximity ranking Inverted index is

searched to find if two or more query

words are within the same bin or in

adjacent bin. If the query words are in

same bin or adjacent bin the document is

ranked higher otherwise the document is

ranked lower.

2 PROBLEM STATEMENTS

Implementation of search system with

advanced search features such as fuzzy

search with proximity ranking. Existing

search systems provide different kinds of

ranking such as page ranking, ranking

based on number of citations of the

documents and ranking based on term

frequency and inverse document frequency

(tf-idf). Proximity ranking is very

important since it determine the relevance

of the answers as search queries usually

contain related keywords and user is

mostly looking for documents which have

query keywords together.

3 RELATED WORK

Instant Query Search: Instant search

retrieves results to the user as they types

query character by character. For example,

one database has a search interface that

returns results to user while user typing a

query character by character. When user

types in “Laptop Customer Service”, then

the system returns “Laptop Customer

Service reviews ” , ” Laptop Customer

Service comparison”, “Laptop Customer

Services ranking”. This instant search

technique provides user quick access of

answers while typing instead of left in the

blank until user types whole query and

enter on search[1].

Fuzzy Keyword Search: When user

makes typing mistakes in the query, then

in this type the system can’t find the

related answers by finding keywords in the

database similar to query keyword. But by

using fuzzy search this problem can be

solved as the system finds answers to the

query that are similar to the database

keywords and not exactly same. Figure 1.

shows an instant fuzzy search interface.

The system finds answers to query

“cloud” even though user mistyped a

query as “cloud computing” then system

retrieves result[3].

 International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 11
November 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	756

Time Limit on Retrieving Answers: In

current era the challenging part in

searching is required very high speed.

Results needs to retrieve within some

milliseconds only. This time again

includes the time required over the

network, time taken at server and time

taken by browser to execute & show

results. So, our main aim to provide high

speed requirement by reducing the time

required at server side for finding results in

database [2]. More challenging here to use

perfect database and algorithms which will

reduces time required to search in database

as server have lots of data and searching

sequentially or by old methods of search

it’s difficult to achieve high speed

requirement.

Proximity Ranking: Proximity ranking

means the document that are more

correlated with query words are provided

at higher in result. So it provides more

efficient top results [9]. Studies related to

this improves query efficiency by using

early-termination techniques [10],[11].

4 PROPOSED METHOD

4.1 Proposed system Architecture

Fig. 2. System Architecture

Fig. 2. Shows the proposed system

architecture, pre-processing module is

meant for creating and retrieval of indexes.

Searching and ranking module is

responsible for searching suitable

documents using query keywords and

indexes, this module ranks documents

based on proximity distance between

query keywords. User uses the system to

search relevant documents. File system

stores data set as well as index files. Data-

base holds abstract information of each

file.

Preprocessing

Text data from each of data set file is read

special characters are ignored, stop words

[14] are ignored, duplicate words are

 International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 11
November 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	757

ignored and stemming [15] is performed.

Words are arranged alphabetically. Each

unique word is given a word Id. The

collection of word Id and word name

corresponds to Dictionary. Dictionary will

be stored in file system during this phase.

It will be retrieved to main memory during

the start of search server. Dictionary will

also be represented as Trie data structure

since using Trie data structure helps in

faster retrieval of similar words for fuzzy

search. Trie data structure will be stored in

file system during this phase. It will be

retrieved to main memory during the start

of search server. During this phase an

inverted list is created by reading in each

file of data set word by word if the word in

the dictionary exists then in which bin the

word falls will be noted. The bin position

helps in proximity ranking. The inverted

index is created as a map-ping between

word Id and list of document Id’s i.e. the

documents in which the word exists and

list of bin Id’s i.e. the bin position at which

the word is present in the document

4.2 Rule Index

The rule index storages all the rules plus

their weights using an Aho-Corasick tree

(AC tree) [13], which can make the

references of rules very efficient. The AC

tree is a trie with “failure links”, on which

the Aho-Corasick string corresponding

algorithm can be performed. The Aho-

Corasick algorithm is a well-known

dictionary-matching algorithm which can

rapidly locate the elements of a finite set

of strings (here strings are these in the

rules α  β) within an input string. The

time complexity of the algorithm is of

linear order in the length of input string

plus the number of matched entries. We

construct an AC tree using all these within

rules. Each leaf node corresponds to an α,

and the matching βs are stored in an

associated list in decreasing order of rule

weights, as illustrated in Fig. 3. One may

want to further improve the efficiency by

using a trie rather than a ranking list to

store the βs associated with the same α.

However the improvement would not be

significant because the number of βs

associated with each α is usually small. In

string generation, given an input string, we

first retrieve all the applicable rules and

their weights from the AC tree in time

complexity of input string length plus

number of matched entries.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 11
November 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	758

Fig 3: Rule Based Index AC Tree

The entire set of documents which have all

query keywords or words similar to query

keywords are considered for ranking. The

model consists of rules and weights. A rule

is formally represented as α  β which

denotes an operation of replacing substring

α in the input string with substring β,

where α, β € 2 {s|s = t ; s = ^t; s = t$, or s

= ^t$} of possible strings overthe

alphabet, and ^ and $ are the start and end

symbols respectively.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 11
November 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	759

Algorithm Name: search

Input:

Query Wordlist, // List of query keywords

Output:

Search Result

Steps:

1. Remove stop words from query word list
2. Apply stemming to each query keyword
3. For each keyword in query Word List
4. Find threshold edit distance
5. Similar Word List = find Similar Words(keyword, node, threshold)
6. Documents with phrases = proximity Ranking (similar-Word List, word Id List) .
7. For each keyword
8. Find documents without phrases
9. Result = (documents with phrases) union (documents without phrases)

Above algorithm search, is used to search

relevant documents. Initially preprocessing

of query keywords is done, this involves

removal of stop words from the keyword

list. For each query keyword stemming is

performed. To find list of similar words to

each query keyword threshold distance is

calculated based on length of query

keyword. Similar words are found using

AC Tree.

5 EXPERIMENTAL RESULTS

In particular, our experiments on real data

showed the efficiency of the proposed

technique for 2-keyword and 3-keyword

queries that are common in search

applications. We concluded that

computing all the answers for the other

queries would give the best performance

and satisfy the high-efficiency requirement

of instant search.

Fig 4: Graph representing Average

interpolated precision versus recall of

Existing & Proposed Sysetm..

6 CONCLUSIONS

 International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 11
November 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	760

In this paper we studied how to improve

ranking of an instant-fuzzy search system

by considering proximity information

when we need to compute top-k answers.

We studied how to adapt existing solutions

to solve this problem, including computing

all answers, doing early termination, and

indexing term pairs. We proposed a

technique to index important phrases to

index store all the rules and their weights

using an Aho-Corasick tree. We compared

our techniques to the instantfuzzy

adaptations of basic approaches. We

conducted a very thorough analysis by

considering space, time, and relevancy

tradeoffs of these approaches. In

particular, our experiments on real data

showed the efficiency of the proposed

technique for 2-keyword and 3-keyword

queries that are common in search

applications. We concluded that

computing all the answers for the other

queries would give the best performance

and satisfy the high-efficiency requirement

of instant search.

7 REFERENCES

[1]I. Cetindil, J. Esmaelenzhad, C. Li, and

D. Newman, “ Analysis of instant search

query logs,”in WebDB,2012,pp.7-12.

[2]R. B. Miller, “Response time in man-

computer conversational transactions,” in

Proceedings of the December 9-11, 1968,

fall joint computer conference, part I, ser.

AFIPS ’68 (Fall, part I). NewYork, NY,

USA: ACM, 1968, pp. 267– 277.

[3] G. Li, J. Wang, C. Li, and J. Feng,

“Supporting efficient top-k queries in type-

ahead search,” in SIGIR, 2012, pp. 355–

364

[4] M. Persin, J. Zobel, and R. Sacks-

Davis, “Filtered document retrieval with

frequency-sorted indexes,” JASIS, vol. 47,

no. 10, pp. 749–764, 1996

[5] A. Singhal. “Modern information

retrieval: A brief overview.” Bulletin of

the IEEE Computer Society Technical

Committee on Data Engineering

[6] C. Silverstein, m. R. Henzinger, H.

Marais, and M. Moricz, “Analysis of a

very large web search engine quearylog,”

SIGIR Forum. Vol. 33, no. 1, pp. 6-12,

1999.

[7] A. Nandi and H. V. Jagadish,

“Effective phrase prediction,” in VLDB,

2007, pp. 219–230.

[8] H. Bast and I. Weber, “Type less, find

more: fast autocompletion search with a

succinct index,” in SIGIR, 2006, pp. 364–

371.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p‐ISSN: 2348‐6848
e‐ISSN: 2348‐795X
Volume 02 Issue 11
November 2015

Available online: www.edupediapublications.org/journals	 P a g e 	|	761

[9] R. Song, M. J. Taylor, J.-R. Wen, H.-

W. Hon, and Y. Yu, “Viewing term

proximity from a different perspective,” in

ECIR, 2008, pp. 346–357.

[10] R. Schenkel, A. Broschart, S. won

Hwang, M. Theobald, and G. Weikum,

“Efficient text proximity search,” in

SPIRE, 2007, pp. 287– 299.

[11] M. Zhu, S. Shi, M. Li, and J.-R. Wen,

“Effective top-k computation in retrieving

structured documents with term-proximity

support,” in CIKM,2007, pp. 771–780.

[12] S. Ji, G. Li, C. Li, and J. Feng,

“Efficient interactive fuzzy

keywordsearch,” in WWW, 2009, pp. 371–

380.

[13] A. V. Aho and M. J. Corasick,

“Efficient string matching: an aid to

bibliographic search,” Commun. ACM,

vol. 18, pp. 333–340, June 1975

[14] Stopword Lists

“http://www.ranks.nl/stopwords”

[15] The Porter Stemming Algorithm

“http://tartarus.org/martin/PorterStemmer/

”

