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Introduction 
Solving partial differential equations is an art that 

can be difficult, especially when done 

numerically. There are many factors that must be 

considered. Our goal is to pick a numerical 

method that not only makes sense for the 

equation we are solving, but one that is stable 

over a given amount of time, one that has a 

sufficiently high order accuracy, and one that 

minimizes the time required to compute the 

solution while keeping the accuracy. Also, 

boundary conditions must be considered as they 

can effect a solution drastically and may cause 

discontinuities. 

Applications in numerical partial differential 

equations fall under gravitational wave research 

and numerical relativity, to name a few. Current 

research in the study of gravitational waves 

includes projects like LIGO (Laser 

Interferometer Gravitational- Wave Observatory) 

which are looking to find the existence of gravity 

waves (see [BW], [W], or [KT] for more 

information). In finding  gravity waves, we 

require a way to model them in order to 

understand exactly what is happening. Numerical 

methods are required to determine whether 

gravity waves are produced by such events as 

black holes colliding. 

Nonlinear Systems 

In [HKN], the authors present the nonlinear 

hyperbolic partial differential equation 

 

 

 

This equation has nonlinearity similar to that of 

general relativity, and, in particular, Einstein's 

equations. By studying this system, we can learn 

about the strengths and weaknesses of each 

method as applied to general relativity. The 

authors of [HKN] show the stability for four 

different numerical methods, the Iterative Crank-

Nicholson, third-order Runge-Kutta, fourth-order 

Runge- Kutta, and the Courant-Friedrichs-Levy 

Nonlinear (CFLN) schemes. The CFLN method 

is similar to Leapfrog, however there is a 

difference in their evaluation of gt: In our study, 

we will look at the three methods we have 

studied over the past three chapters, with 

Dirichlet boundary conditions. 

We will use the exponential growth function 

 

as our initial condition. This is a solution of the 

nonlinear wave equation as 

 

 

Unfortunately, by using the exponentially 

growing solution, we will not be able to consider 

the types of graphs we have considered 

previously. The wave, and therefore the norm, 

grow exponentially, as we expect the error to. 

Thus, we we will look at plots of the relative 

error, that is, plots of 
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where the calculated value is the value of the 

function given by our numerical methodand the 

actual value is 

 

As with the wave equation, we will again look at 

two different systems that areequivalent to our 

wave. The first system is 

 

and the second system is 

 

Three-Variable System Lax-

Wendroff Method 
How It Works Recall that Lax-Wendroff 

approximates g by the second-order Taylor 

series, where the derivatives are replaced by 

there difference equation equivalents. Computing 

the first- and second-order time derivatives of 

each variable, we get the difference equations. 

Since 

 
we get the difference equations 

 
 

Solutions Consider Figure 1. 

We see for a Courant factor of .8, our method is 

stable up to around 330 crossingtimes. At this 

point, the graph seems to disappear, but not 

because of instability. 
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Figure 1: Lax-Wendroff method for Three-

Variable Nonlinear Equation (a) α= :8; 

(b) α= :1 

This is because the values of the function are 

becoming too large for the computer to handle. 

Also notice the magnitude of the error: 10
-7

There 

is very little difference between the two 

functions! Thus, for all purposes, Lax-Wend off 

is stable for our nonlinear system (with a Courant 

factor of .8). Let's look at how Leapfrog models 

our solution. 

Leapfrog Method 

How It Works Recall from the wave equation 

that we used half-steps for the Leapfrog method. 

We will again use half-steps for our nonlinear 

system. In fact, we will use the same grid system 

as in the three-variable wave equation. That is, 

our lattice will be constructed so that we find the 

values of g at the lattice points (i,n), 

the values of K at the lattice points

and the values of w at the lattice points

Thus our difference equations will 

be 

 

Solutions Unfortunately, Leapfrog is not as 

stable for as long as Lax-Wend off 

Consider Figure 2. 

For a Courant factor of .8, our solution blows up 

after about 50 crossing times. 

In plot (b) we see that Leapfrog is stable for 

much longer. Up to 100 crossing 

 

 

Figure 2: Leapfrog method for Three-Variable 

Nonlinear Equation (a) α = :8          (b) α = 

:1times, Leapfrog models our exponential 
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function quite accurately with an error on the 

order of 10
-6

 (not as small as Lax-Wendroff, but 

still significantly small). We could check beyond 

100 crossing times; however, using such a small 

Courant factor means a much longer time to 

produce results. In fact, it takes the same amount 

of time to run a plot for α = :1 for 100 crossing 

times as it takes to run a plot for α= :8 for 1000 

crossing times. Let's see how Crank-Nicholson 

behaves, using our nonlinear equation. 

 

Iterative Crank-Nicholson Method 
 

How It Works Recall from before that for the 

Iterated Crank-Nicholson method, we took each 

term in the second term on the right hand side of 

the FTCS method and replaced it by the average 

of that value and the value of the function at the 

next time step. Thus our difference equations are 

 

SolutionsFora Courant factor of .8, Figure 3(a) 

shows that Crank-Nicholson blows up at only 4.5 

crossing times! This is a very short amount of 

time, especially compared to our previous two 

methods. In plot (b), however, we see that Crank-

Nicholson gives the same amount of error as 

Leapfrog. Perhaps the stability condition is 

stricter than α ˂ 1 for the Leapfrog and Crank-

Nicholson methods. 

 

 

Figure 3: Crank-Nicholson method for Three-

Variable Nonlinear Equation (a) α = 

:8; (b) α = :1 

Let's see how the two-variable system shapes up. 

Two-Variable System 

Lax-Wendroff Method 
How It Works Recall that Lax-Wendroff 

approximates g by the second-order Taylor 

series, where the derivatives are replaced by 

there difference equation equivalents. Computing 

the first- and second-order time derivatives of 

each variable, we get the difference equations 
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Where  

 

 

 

Solutions Compare Figure 4 below to Figure 1 

above. 

Interestingly, although the three-variable system 

is stable for higher Courant factors, the relative 

error for α = :1 is smaller for the two-variable 

system. In 

Figure 55(a), we see that the solution blows up 

before .5 crossing times whereas in 

Figure 52, the solution was steady up to 330 

crossing times. Of course, as with the 

 

 

Figure 4: Lax-Wendroff method for Two-

Variable Nonlinear Equation (a) α= :8; 

(b) α= :1: 

previous methods, the solution is stable and has a 

very small magnitude of error for 

a Courant factor of .1. 

Leapfrog Method 
How It Works Unfortunately, we have a second 

derivative in this system. Thus we must evaluate 

both g and K on whole steps, instead of using 

half steps as we have in previous methods. Thus 

our difference equations are 

 

Solutions Again, we see that the three-variable 

system is stable for higher courant factors but 

that the two-variable system has a smaller 

relative error for α = :1: 

In Figure 5(a), the solution blows up before .6 

crossing times as opposed to the 50 crossing 

times it took in Figure 2(a). The important thing 

is, however, that Leapfrog is stable (at least to 

100 crossing times) for a small Courant factor 

(Fig- ure 5(b)). 
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Iterative Crank-Nicholson Method 
How It Works Again recall that for the Iterated 

Crank-Nicholson method, we took each term in 

the second term on the right hand side of the 

FTCS method and replaced it by the average of 

that value and the value of the function at the 

next 

 

 

Figure 5: Leapfrog method for Two-Variable 

Nonlinear Equation (a) α = :8; (b) 

α = :1 

time step. Thus our difference equations are 

 

Solutions Similar to the previous results, the 

three-variable system is better for 

a Courant factor of .8. However, this time the 

two-variable system is worse for a 

Courant factor of .1. Consider Figure 6(b), 

though. 

Notice the magnitude of error. The error is on the 

order of 10
-2, 

which is much larger than the 10
-6

 

errors we were seeing previously. Thus, Crank-

Nicholson is not such a great approach for the 

two-variable system. 

Summary 

In all of the methods, we saw that the three-

variable system was a better approximation that 

the two-variable system for a Courant factor of .8 

and therefore is more stable at higher Courant 

factors. However, the two-variable system was a 

better approximation at a Courant factor of .1 for 

the Lax-Wendroff and Leapfrog methods. 

This most likely has to do with the second-

derivative in the latter system. However, for all 

practical purposes, all of the methods above 

would work, provided we used a small Courant 

factor. 
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Figure 6: Crank-Nicholson method for Two-

Variable Nonlinear Equation (a) α = 

:8; (b) α = :1 
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