
 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 02 Issue 11

November 2015

Available online:http://internationaljournalofresearch.org/ P a g e | 996

Synergetic: Bloom Filters for Error Detection and Correction

P. Swathi
Assistant Professor Department of electronics and communication engineering, Malla Reddy Engineering College

for Women, Maisammaguda, Hyderabad

D.Rama Krishna
Assistant Professor Department of electronics and communication engineering, Malla Reddy Engineering College

for Women, Maisammaguda, Hyderabad

K.Sharanya
Assistant Professor Department of electronics and communication engineering, Malla Reddy Engineering College

for Women, Maisammaguda, Hyderabad

Abstract—

Bloom filters (BFs) provide a fast and efficient way to check whether a given element belongs to a set. The BFs are

used in numerous applications, for example, in communications and networking. There is also ongoing research to
extend and enhance BFs and to use them in new scenarios. Reliability is becoming a challenge for advanced

electronic circuits as the number of errors due to manufacturing variations, radiation, and reduced noise margins

increase as technology scales. In this brief, it is shown that BFs can be used to detect and correct errors in their
associated data set. This allows a synergetic reuse of existing BFs to also detect and correct errors. This is

illustrated through an example of a counting BF used for IP traffic classification. The results show that the proposed

scheme can effectively correct single errors in the associated set. The proposed scheme can be of interest in practical

designs to effectively mitigate errors with a reduced overhead in terms of circuit area and power.
Index Terms— Bloom filters (BFs); error correction; soft errors

INTRODUCTION

Bloom filters (BFs) provide a simple and
effective way to check whether an element belongs to a

set [1]. They are used in many networking applications

[2] as well in computer architectures [3]. The BFs are
also used in large databases (e.g., Google Bigtable uses

it to reduce the disk lookups [4]). The basic structure of

BFs has also been extended over the years. For
example, counting BFs (CBFs) were introduced to

allow removal of elements from the BF [5]. To

optimize the transmission over the network, another

extension known as compressed Bloom filters was
proposed [6]. Recently Bloom filter (Biff) codes that

are based on BFs have been proposed to perform error

correction in large data sets [7]. In most cases, BFs are
implemented using electronic circuits [8], [9]. The

contents of a BF are commonly stored in a high speed

memory and required processing is done in a processor

or in dedicated circuitry.

The set used to construct the BF is also

commonly stored in a lower speed memory [10]. The
reliability of electronic circuits is becoming a challenge

as technology scales. Errors caused by interferences,

radiation, and other effects become more common.

Therefore, mitigation techniques are used at different
levels to ensure that the circuits continue to operate

reliably [11]. For BF implementation, memories are a

critical element. For memories, permanent errors and
defects are commonly corrected using spare rows and

columns [12]. However, soft errors caused for example

by radiation can affect any memory cell changing its
value during circuit operation. Soft errors do not

produce damage to the memory device that continues to

operate correctly but has the wrong value in the

affected cell [13]. To deal with soft errors, the use of a
per word parity bit or more advanced error correction

codes (ECCs) has been common in memories for many

years [14].

The BFs have also been proposed to mitigate

errors in electronic circuits. For example, in [15], a BF
is used to identify the faulty words in a nano memory.

In [16], the use of a CBF is proposed to detect and

correct errors in content addressable memories

(CAMs). In this case, the CBF is used in parallel with a
CAM and the objective is to detect errors in the CAM

entries. This is done by checking the results of the

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 02 Issue 11

November 2015

Available online:http://internationaljournalofresearch.org/ P a g e | 997

CAM and the CBF to ensure that they are consistent.

Once an error is detected, a correction procedure is
initiated to restore the correct value in the affected

CAM entry using an external copy of its contents. In

both cases, the BFs are added explicitly and only to

detect and/or correct errors and are not present in the
original design. The same applies to Biff codes in

which the extended BFs are only used for error

correction. That is in those cases, the BF is not in the
original system and it is explicitly added to protect

against errors. This is different from the reuse of

existing BFs that are already present in the system to
also provide error correction which to the best of our

knowledge has not been studied. In this brief, a scheme

to exploit existing CBFs to additionally implement

error detection and correction in the elements of the set
associated with the CBF is presented.

The approach is based on the concept of
algorithmic-based fault tolerance (ABFT), which

proposes to reuse existing properties or elements of the

system to implement fault tolerance with a lower cost
[17]. In the line of ABFT, the proposed scheme enables

a synergetic reuse of existing CBFs for error detection

and correction. The scheme assumes that the elements

of the set are stored in a memory protected with a per
word parity bit and the CBF is used to implement the

correction of single bit errors. The effectiveness of the

scheme is illustrated using a traffic classification case
study. The basic ideas behind the proposed technique

can also be applied when the elements of the set are

stored in a memory protected with more advanced
ECCs. In addition, a simplified version of the proposed

approach can also be used for traditional BFs but in that

case, the percentage of errors that can be corrected is

much lower. The exploration of the scheme extension
to these cases is left for future work.

OVERVIEW OF BFS

A BF is constructed using a set of k hash

functions to access an array of m bits. The hash
functions h1, h2,..., hk map an input element x to one of

the m bits. The following two operations are defined in

a BF.

1) Insertion: To insert an element x in the BF, the

bits in the array that correspond to the positions

h1(x), h2(x), …, hk(x) are set to one.
2) Query: To query for an element x in the BF, the

bits in the array that correspond to the positions

h1(x), h2(x), …, hk (x) are read and if and only

if all of them are one, the element is considered

to be in the BF.

PROPOSED SCHEME

The proposed scheme is based on the

observation that a CBF, in addition to a structure that

allows fast membership check to an element set, is also

in a way a redundant representation of the element set.
Therefore, this redundancy could possibly be used for

error detection and correction. To explore this idea, a

common implementation of CBFs where the elements
of the set are stored in a slow memory and the CBF is

stored in a faster memory is considered. In particular, it

is assumed that the elements of the set are stored in
DRAM while the CBF is stored in a cache [10].

The reasoning behind this is that the CBF is

accessed frequently and needs a fast access time to
maximize performance, while the elements of the set

are only accessed when elements are read, added or

removed and therefore the access time is not an issue. It
should also be noted that when the entire element set is

stored in a slow memory, no incorrect deletions can

occur as they would be detected when removing the
element from the slow memory. Therefore, the false

negatives issue in CBFs discussed in [18] is not a

concern in our case. Typically, memories are protected

with a per word parity bit or with a single bit error
correction code [14]. This is based on the observation

that most errors affect a single bit or even if they affect

multiple bits, the errors can be spread among different
words by the use of interleaving [19].

In addition, soft errors are rare events so that
the time between errors is typically large [13]. The

arrival rate for terrestrial applications is in the order of

at least days or weeks and therefore, it is commonly

assumed that errors are isolated. That is, by the time a
soft error arrives any previous soft error has been

corrected or detected. This is an assumption that is

needed, for example, when single bit error correction
codes are used. In the following, one of these two most

common protection options is used. In particular, it is

assumed that both the DRAM and the cache are

protected with a per word parity bit that can detect
single errors. As when using single bit error correction

codes, it is also assumed that errors are isolated. The

goal for this implementation is to achieve the correction
of single bit errors using the CBF. That is, the CBF

would enable single bit error correction without

incurring in the cost of adding an ECC to the memories.

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 02 Issue 11

November 2015

Available online:http://internationaljournalofresearch.org/ P a g e | 998

The first step to achieve error correction is to

detect errors. This is done by checking the parity bit
when accessing either the DRAM or the cache. To

ensure earlier detection of errors, the use of scrubbing

to periodically read the memories could be considered

[20]. Once an error is detected, a correction procedure
is triggered. If the error occurs in the CBF, it can be

corrected by clearing the CBF and reconstructing it

using the element set. If the error occurs in the element
set, the procedure is more complex and can be divided

in two phases that are described in the following

sections. The idea is that the simpler and faster
procedure is used first and only when it is unable to

correct the error, the second more complex error

correction procedure is used subsequently.

A. Simple Procedure for the Correction of Errors in the

Element Set:-

To present the simple correction procedure, let

us assume that a single bit error affects element x and

that it is detected using the parity bit. Therefore, xe is
read from the memory. The correct value x has to be xe

if the error affected the parity bit. If the error affected

the ith data bit, the correct value will be xem(i) where

xem(i) is the value read (xe) with the ith bit inverted.
To determine which of those is in fact the correct value

x, the candidates [xe and all the xem(i)] can be tested

for membership to the CBF. If only one of the
candidates is found in the CBF, then no false positives

have occurred and the value found is the correct one.

Instead, if more than one candidate is found, the
procedure is unable to find the correct value due to the

occurrence of false positives. In this case, the advanced

procedure described in Section III-B must be used. This

simple and fast procedure requires only l + 1 queries to
the CBF, where l is the number of bits in each element

of the set. However, the correction rate that can be

achieved depends on the false positive rate of the CBF.

B. Advanced Procedure for the Correction of Errors in

the Element Set:-

When the simple procedure described in Section III-A

cannot correct an error, a more advanced technique can

be used. The correction process starts by making a copy
of the CBF in DRAM memory. Then, all the elements

in the set except for the erroneous one are removed

from the CBF. This will leave a CBF with only the
values that correspond to the original value of the

element x. Once that is done, the candidates [xe and all

the xem(i)] can be queried over the CBF that has only x

as an entry. As in the previous procedure, if only one of

the candidates matches the CBF, that is the correct
value. If more than one candidate matches the CBF then

the error cannot be corrected.

 The increased correction rate comes at the cost

of a more complex correction procedure that needs the

replication of the CBF, the removal of all the entries

except the erroneous one (n−1), and finally the query
for the l + 1 candidates. However, as soft errors are rare

events, and the procedure is only needed when the

simple procedure presented before cannot correct an
error, the scheme can be useful in real applications.

Finally, it must be noted that when the CBF experiences

overflows in the counters, this second technique cannot

be used. This should not be a big issue as the overflow
probability is typically very low when four bits per

counter are used [21]. In any case, since overflows are

detected once that occurs, this second procedure can be
disabled. The same scheme could be applied to a

memory protected with a single error correction double

error detection (SEC-DED) code to correct double
errors. In that case, the simple procedure would be of

little use in most cases as the number of candidates to

test is l + 1 2 _ and therefore, it is unlikely that none of

them gives a false positive. The advanced correction
procedure on the other hand will be able to correct the

errors with a probability close to one. The detailed

valuation of this scenario is left for future work.
EVALUATION

The proposed scheme has been evaluated using
a real example of a CBF used to speed-up traffic

classification. Pairs of IP addresses (source and

destination host) are stored in a multiple hash table

[10], and a set of CBFs allows to know in which table
the element is stored, providing a fast retrieve of the

value associated to the element. Since IP version four is

considered, the size of the elements is 64 bits. To test
the effectiveness of the scheme, the CBF is filled using

values from real data traces that are publicly available

[22]. Different CBF sizes and load factors were tested.
In particular, values of m = 16, 32 and 64K were

considered and for each of them load factors of 0.12,

0.25 and 0.5 were tested. The number of hash functions

k was also varied between 4 and 8.

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 02 Issue 11

November 2015

Available online:http://internationaljournalofresearch.org/ P a g e | 999

Fig. 1. Probability of error correction using the simple

procedure for different values of m and k and
comparison with (4) when load is 0.12.

Fig. 2. Probability of error correction using the
simple procedure for different values of m and k

and comparison with (4) when load is 0.25.

As explained before, the load factor here refers

to the probability that a position in the CBF is different
from zero that is 1− p0 given in (1). For each

configuration, once the CBF was filled to the desired

load level, a single bit error was introduced in one of

the elements and the error correction procedures
described in Section III were applied. This process was

repeated 10 000 times so that 10 000 random single bit

errors were tested in each case. First, the simple error
correction procedure and if it is unable to correct the

error, the advanced procedure is used. In all cases, the

single bit errors were corrected. This can be explained
as the probability that an error is not corrected for the

advanced procedure is in the worst case (m = 16K and k

= 4) approximately 2.1 × 10−14 [obtained using (6)].

This shows that in practical terms most errors will be
corrected. The effectiveness of the simple error

correction procedure greatly depends on the load of the

CBF and it is shown in Figs. 1–3 (note that errors not
corrected by this procedure are subsequently corrected

by the advanced procedure as described before). It can

be observed that for low loads the scheme can correct

most errors while at a load of 0.5 it is only effective
when the number of hashes is large. In all the cases, the

upper bound given by (4) is close to the actual results

obtained in simulation.

Fig. 3. Probability of error correction using the

simple procedure for different values of m and k

and comparison with (4) when load is 0.50.

These observations suggest a possible

enhancement of the correction procedure. Namely,
when the load is high a number of entries can be

removed and when a low load is achieved, the simple

procedure can be used to correct the errors. In this way,
the complete advanced procedure will be used only for

a small fraction of the errors. The study of this

refinement is left for future work. It can be observed

that the results do not depend on m. This can be
explained as for values of m much larger than one, as

those commonly used in practical applications, the CBF

is close to the asymptotic behavior in all cases [2].
Finally, the cost savings obtained by using the proposed

scheme can be estimated as the implementation of an

SEC code on a 64 bit element requires 7 bits. Therefore,
as with only a parity bit and the CBF SEC can be

achieved, the savings would be 6 bits per element set or

roughly 10% of the memory storage required for the

element set. A different way to look at the benefits is
that SEC can be implemented in the element set when

the system memory is protected only with a per word

parity bit. That is, reliability can be increased without
adding new hardware resources.

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 02 Issue 11

November 2015

Available online:http://internationaljournalofresearch.org/ P a g e | 1000

CONCLUSION

In this brief, a new application of BFs has been

proposed. The idea is to use the BFs in existing

applications to also detect and correct errors in their
associated element set. In particular, it is shown that

CBFs can be used to correct errors in the associated

element set. This enables a cost efficient solution to

mitigate soft errors in applications which use CBFs.
The configuration considered in this brief is that of a

memory protected with a per word parity bit for which

it is demonstrated that the CBF can be used to achieve
single bit error correction. This shows how existing

CBFs can be used to achieve error correction in

addition to perform their traditional membership

checking function. The general idea can also be used
when the memory is protected with more advanced

codes. For example, if an SEC-DED code is used, the

CBF could be used to correct double errors. In addition,
the simplest part of the error correction scheme can also

be applied to traditional BFs to achieve some degree of

error detection and correction. The exploration of these
alternative configurations is left for future work.

REFERENCES

[1] B. Bloom, “Space/time tradeoffs in hash coding

with allowable errors,” Commun. ACM, vol. 13, no. 7,

pp. 422–426, 1970.

[2] A. Broder and M. Mitzenmacher, “Network

applications of bloom filters: A survey,” in Proc. 40th
Annu. Allerton Conf., Oct. 2002, pp. 636–646.

[3] A. Moshovos, G. Memik, B. Falsafi, and A.

Choudhary, “Jetty: Filtering snoops for reduced energy
consumption in SMP servers,” in Proc. Annu. Int. Conf.

High-Perform. Comput. Archit., Feb. 2001, pp. 85–96.

[4] C. Fay et al., “Bigtable: A distributed storage

system for structured data,” ACM TOCS, vol. 26, no. 2,

pp. 1–4, 2008.

[5] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S.

Singh, and G. Varghese, “An improved construction for

counting bloom filters,” in Proc. 14th Annu. ESA,
2006, pp. 1–12.

[6] M. Mitzenmacher, “Compressed bloom filters,” in
Proc. 12th Annu. ACM Symp. PODC, 2001, pp. 144–

150.

[7] M. Mitzenmacher and G. Varghese, “Biff (Bloom

Filter) codes: Fast error correction for large data sets,”
in Proc. IEEE ISIT, Jun. 2012, pp. 1–32.

[8] S. Elham, A. Moshovos, and A. Veneris, “L-CBF:

A low-power, fast counting Bloom filter architecture,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.

16, no. 6, pp. 628–638, Jun. 2008.

[9] T. Kocak and I. Kaya, “Low-power bloom filter

architecture for deep packet inspection,” IEEE

Commun. Lett., vol. 10, no. 3, pp. 210–212, Mar. 2006.

[10] S. Dharmapurikar, H. Song, J. Turner, and J. W.

Lockwood, “Fast hash table lookup using extended

bloom filter: An aid to network processing,” in Proc.
ACM/SIGCOMM, 2005, pp. 181–192.

[11] N. Kanekawa, E. H. Ibe, T. Suga, and Y. Uematsu,
Dependability in Electronic Systems: Mitigation of

Hardware Failures, Soft Errors, and Electro-Magnetic

Disturbances. New York, NY, USA: Springer-Verlag,
2010.

[12] D. Bhavsar, “An algorithm for row-column self-

repair of RAMs and its implementation in the alpha
21264,” in Proc. Int. Test Conf., 1999, pp. 311–318.

[13] M. Nicolaidis, “Design for soft error mitigation,”
IEEE Trans. Device Mater. Rel., vol. 5, no. 3, pp. 405–

418, Sep. 2005.

[14] C. L. Chen and M. Y. Hsiao, “Error-correcting
codes for semiconductor memory applications: A state-

of-the-art review,” IBM J. Res. Develop., vol. 28, no. 2,

pp. 124–134, 1984.

[15] G. Wang, W. Gong, and R. Kastner, “On the use of

bloom filters for defect maps in nanocomputing,” in
Proc. IEEE/ACM ICCAD, Nov. 2006, pp. 743–746.

[16] S. Pontarelli and M. Ottavi, “Error detection and

correction in content addressable memories by using
bloom filters,” IEEE Trans. Comput., vol. 62, no. 6, pp.

1111–1126, Jun. 2013.

[17] A. Reddy and P. Banarjee, “Algorithm-based fault

detection for signal processing applications,” IEEE

Trans. Comput., vol. 39, no. 10, pp. 1304–1308, Oct.
1990.

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 02 Issue 11

November 2015

Available online:http://internationaljournalofresearch.org/ P a g e | 1001

[18] D. Guo, Y. Liu, X. Li, and P. Yang, “False

negative problem of counting bloom filter,” IEEE
Trans. Knowl. Data Eng., vol. 22, no. 5, pp. 651–664,

May 2010.

[19] P. Reviriego, J. A. Maestro, S. Baeg, S. J. Wen,
and R. Wong, “Protection of memories suffering MCUs

through the selection of the optimal interleaving

distance,” IEEE Trans. Nucl. Sci., vol. 57, no. 4, pp.
2124–2128, Aug. 2010.

[20] A. M. Saleh, J. J. Serrano, and J. H. Patel,
“Reliability of scrubbing recovery-techniques for

memory systems,” IEEE Trans. Rel., vol. 39, no. 1, pp.

114–122, Apr. 1990.

[21] L. Fan, P. Cao, J. Almeida, and A. Z. Broder,

“Summary cache: A scalable wide-area Web cache

sharing protocol,” in Proc. ACM SIGCOMM, Sep.
1998, pp. 254–265.

[22] (2012). CAIDA Anonymized Internet Traces
[Online]. Available:

http://www.caida.org/data/passive/passive_2012_datase

t.xml

