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Abstract—  

Bloom filters (BFs) provide a fast and efficient way to check whether a given element belongs to a set. The BFs are 

used in numerous applications, for example, in communications and networking. There is also ongoing research to 
extend and enhance BFs and to use them in new scenarios. Reliability is becoming a challenge for advanced 

electronic circuits as the number of errors due to manufacturing variations, radiation, and reduced noise margins 

increase as technology scales. In this brief, it is shown that BFs can be used to detect and correct errors in their 
associated data set. This allows a synergetic reuse of existing BFs to also detect and correct errors. This is 

illustrated through an example of a counting BF used for IP traffic classification. The results show that the proposed 

scheme can effectively correct single errors in the associated set. The proposed scheme can be of interest in practical 

designs to effectively mitigate errors with a reduced overhead in terms of circuit area and power.  
Index Terms— Bloom filters (BFs); error correction; soft errors 

 

INTRODUCTION 

Bloom filters (BFs) provide a simple and 
effective way to check whether an element belongs to a 

set [1]. They are used in many networking applications 

[2] as well in computer architectures [3]. The BFs are 
also used in large databases (e.g., Google Bigtable uses 

it to reduce the disk lookups [4]). The basic structure of 

BFs has also been extended over the years. For 
example, counting BFs (CBFs) were introduced to 

allow removal of elements from the BF [5]. To 

optimize the transmission over the network, another 

extension known as compressed Bloom filters was 
proposed [6]. Recently Bloom filter (Biff) codes that 

are based on BFs have been proposed to perform error 

correction in large data sets [7]. In most cases, BFs are 
implemented using electronic circuits [8], [9]. The 

contents of a BF are commonly stored in a high speed 

memory and required processing is done in a processor 

or in dedicated circuitry.  

The set used to construct the BF is also 

commonly stored in a lower speed memory [10]. The 
reliability of electronic circuits is becoming a challenge 

as technology scales. Errors caused by interferences, 

radiation, and other effects become more common. 

Therefore, mitigation techniques are used at different 
levels to ensure that the circuits continue to operate 

reliably [11]. For BF implementation, memories are a 

critical element. For memories, permanent errors and 
defects are commonly corrected using spare rows and 

columns [12]. However, soft errors caused for example 

by radiation can affect any memory cell changing its 
value during circuit operation. Soft errors do not 

produce damage to the memory device that continues to 

operate correctly but has the wrong value in the 

affected cell [13]. To deal with soft errors, the use of a 
per word parity bit or more advanced error correction 

codes (ECCs) has been common in memories for many 

years [14].  

The BFs have also been proposed to mitigate 

errors in electronic circuits. For example, in [15], a BF 
is used to identify the faulty words in a nano memory. 

In [16], the use of a CBF is proposed to detect and 

correct errors in content addressable memories 

(CAMs). In this case, the CBF is used in parallel with a 
CAM and the objective is to detect errors in the CAM 

entries. This is done by checking the results of the 
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CAM and the CBF to ensure that they are consistent. 

Once an error is detected, a correction procedure is 
initiated to restore the correct value in the affected 

CAM entry using an external copy of its contents. In 

both cases, the BFs are added explicitly and only to 

detect and/or correct errors and are not present in the 
original design. The same applies to Biff codes in 

which the extended BFs are only used for error 

correction. That is in those cases, the BF is not in the 
original system and it is explicitly added to protect 

against errors. This is different from the reuse of 

existing BFs that are already present in the system to 
also provide error correction which to the best of our 

knowledge has not been studied. In this brief, a scheme 

to exploit existing CBFs to additionally implement 

error detection and correction in the elements of the set 
associated with the CBF is presented.  

The approach is based on the concept of 
algorithmic-based fault tolerance (ABFT), which 

proposes to reuse existing properties or elements of the 

system to implement fault tolerance with a lower cost 
[17]. In the line of ABFT, the proposed scheme enables 

a synergetic reuse of existing CBFs for error detection 

and correction. The scheme assumes that the elements 

of the set are stored in a memory protected with a per 
word parity bit and the CBF is used to implement the 

correction of single bit errors. The effectiveness of the 

scheme is illustrated using a traffic classification case 
study. The basic ideas behind the proposed technique 

can also be applied when the elements of the set are 

stored in a memory protected with more advanced 
ECCs. In addition, a simplified version of the proposed 

approach can also be used for traditional BFs but in that 

case, the percentage of errors that can be corrected is 

much lower. The exploration of the scheme extension 
to these cases is left for future work. 

OVERVIEW OF BFS 

A BF is constructed using a set of k hash 

functions to access an array of m bits. The hash 
functions h1, h2,..., hk map an input element x to one of 

the m bits. The following two operations are defined in 

a BF.  

1) Insertion: To insert an element x in the BF, the 

bits in the array that correspond to the positions 

h1(x), h2(x), …, hk(x) are set to one. 
2) Query: To query for an element x in the BF, the 

bits in the array that correspond to the positions 

h1(x), h2(x), …, hk (x) are read and if and only 

if all of them are one, the element is considered 

to be in the BF. 

PROPOSED SCHEME 

The proposed scheme is based on the 

observation that a CBF, in addition to a structure that 

allows fast membership check to an element set, is also 

in a way a redundant representation of the element set. 
Therefore, this redundancy could possibly be used for 

error detection and correction. To explore this idea, a 

common implementation of CBFs where the elements 
of the set are stored in a slow memory and the CBF is 

stored in a faster memory is considered. In particular, it 

is assumed that the elements of the set are stored in 
DRAM while the CBF is stored in a cache [10].  

The reasoning behind this is that the CBF is 

accessed frequently and needs a fast access time to 
maximize performance, while the elements of the set 

are only accessed when elements are read, added or 

removed and therefore the access time is not an issue. It 
should also be noted that when the entire element set is 

stored in a slow memory, no incorrect deletions can 

occur as they would be detected when removing the 
element from the slow memory. Therefore, the false 

negatives issue in CBFs discussed in [18] is not a 

concern in our case. Typically, memories are protected 

with a per word parity bit or with a single bit error 
correction code [14]. This is based on the observation 

that most errors affect a single bit or even if they affect 

multiple bits, the errors can be spread among different 
words by the use of interleaving [19].  

In addition, soft errors are rare events so that 
the time between errors is typically large [13]. The 

arrival rate for terrestrial applications is in the order of 

at least days or weeks and therefore, it is commonly 

assumed that errors are isolated. That is, by the time a 
soft error arrives any previous soft error has been 

corrected or detected. This is an assumption that is 

needed, for example, when single bit error correction 
codes are used. In the following, one of these two most 

common protection options is used. In particular, it is 

assumed that both the DRAM and the cache are 

protected with a per word parity bit that can detect 
single errors. As when using single bit error correction 

codes, it is also assumed that errors are isolated. The 

goal for this implementation is to achieve the correction 
of single bit errors using the CBF. That is, the CBF 

would enable single bit error correction without 

incurring in the cost of adding an ECC to the memories.  



   International Journal of Research 
Available at https://edupediapublications.org/journals 

p-ISSN: 2348-6848 

e-ISSN: 2348-795X 

Volume 02 Issue 11 

November 2015 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 998 

The first step to achieve error correction is to 

detect errors. This is done by checking the parity bit 
when accessing either the DRAM or the cache. To 

ensure earlier detection of errors, the use of scrubbing 

to periodically read the memories could be considered 

[20]. Once an error is detected, a correction procedure 
is triggered. If the error occurs in the CBF, it can be 

corrected by clearing the CBF and reconstructing it 

using the element set. If the error occurs in the element 
set, the procedure is more complex and can be divided 

in two phases that are described in the following 

sections. The idea is that the simpler and faster 
procedure is used first and only when it is unable to 

correct the error, the second more complex error 

correction procedure is used subsequently.  

A. Simple Procedure for the Correction of Errors in the 

Element Set:-  

To present the simple correction procedure, let 

us assume that a single bit error affects element x and 

that it is detected using the parity bit. Therefore, xe is 
read from the memory. The correct value x has to be xe 

if the error affected the parity bit. If the error affected 

the ith data bit, the correct value will be xem(i) where 

xem(i) is the value read (xe) with the ith bit inverted. 
To determine which of those is in fact the correct value 

x, the candidates [xe and all the xem(i)] can be tested 

for membership to the CBF. If only one of the 
candidates is found in the CBF, then no false positives 

have occurred and the value found is the correct one. 

Instead, if more than one candidate is found, the 
procedure is unable to find the correct value due to the 

occurrence of false positives. In this case, the advanced 

procedure described in Section III-B must be used. This 

simple and fast procedure requires only l + 1 queries to 
the CBF, where l is the number of bits in each element 

of the set. However, the correction rate that can be 

achieved depends on the false positive rate of the CBF. 

B. Advanced Procedure for the Correction of Errors in 

the Element Set:- 

When the simple procedure described in Section III-A 

cannot correct an error, a more advanced technique can 

be used. The correction process starts by making a copy 
of the CBF in DRAM memory. Then, all the elements 

in the set except for the erroneous one are removed 

from the CBF. This will leave a CBF with only the 
values that correspond to the original value of the 

element x. Once that is done, the candidates [xe and all 

the xem(i)] can be queried over the CBF that has only x 

as an entry. As in the previous procedure, if only one of 

the candidates matches the CBF, that is the correct 
value. If more than one candidate matches the CBF then 

the error cannot be corrected. 

 The increased correction rate comes at the cost 

of a more complex correction procedure that needs the 

replication of the CBF, the removal of all the entries 

except the erroneous one (n−1), and finally the query 
for the l + 1 candidates. However, as soft errors are rare 

events, and the procedure is only needed when the 

simple procedure presented before cannot correct an 
error, the scheme can be useful in real applications. 

Finally, it must be noted that when the CBF experiences 

overflows in the counters, this second technique cannot 

be used. This should not be a big issue as the overflow 
probability is typically very low when four bits per 

counter are used [21]. In any case, since overflows are 

detected once that occurs, this second procedure can be 
disabled. The same scheme could be applied to a 

memory protected with a single error correction double 

error detection (SEC-DED) code to correct double 
errors. In that case, the simple procedure would be of 

little use in most cases as the number of candidates to 

test is l + 1 2 _ and therefore, it is unlikely that none of 

them gives a false positive. The advanced correction 
procedure on the other hand will be able to correct the 

errors with a probability close to one. The detailed 

valuation of this scenario is left for future work. 
EVALUATION 

The proposed scheme has been evaluated using 
a real example of a CBF used to speed-up traffic 

classification. Pairs of IP addresses (source and 

destination host) are stored in a multiple hash table 

[10], and a set of CBFs allows to know in which table 
the element is stored, providing a fast retrieve of the 

value associated to the element. Since IP version four is 

considered, the size of the elements is 64 bits. To test 
the effectiveness of the scheme, the CBF is filled using 

values from real data traces that are publicly available 

[22]. Different CBF sizes and load factors were tested. 
In particular, values of m = 16, 32 and 64K were 

considered and for each of them load factors of 0.12, 

0.25 and 0.5 were tested. The number of hash functions 

k was also varied between 4 and 8.  
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Fig. 1. Probability of error correction using the simple 

procedure for different values of m and k and 
comparison with (4) when load is 0.12. 

 

Fig. 2. Probability of error correction using the 
simple procedure for different values of m and k 

and comparison with (4) when load is 0.25. 

 

As explained before, the load factor here refers 

to the probability that a position in the CBF is different 
from zero that is 1− p0 given in (1). For each 

configuration, once the CBF was filled to the desired 

load level, a single bit error was introduced in one of 

the elements and the error correction procedures 
described in Section III were applied. This process was 

repeated 10 000 times so that 10 000 random single bit 

errors were tested in each case. First, the simple error 
correction procedure and if it is unable to correct the 

error, the advanced procedure is used. In all cases, the 

single bit errors were corrected. This can be explained 
as the probability that an error is not corrected for the 

advanced procedure is in the worst case (m = 16K and k 

= 4) approximately 2.1 × 10−14 [obtained using (6)]. 

This shows that in practical terms most errors will be 
corrected. The effectiveness of the simple error 

correction procedure greatly depends on the load of the 

CBF and it is shown in Figs. 1–3 (note that errors not 
corrected by this procedure are subsequently corrected 

by the advanced procedure as described before). It can 

be observed that for low loads the scheme can correct 

most errors while at a load of 0.5 it is only effective 
when the number of hashes is large. In all the cases, the 

upper bound given by (4) is close to the actual results 

obtained in simulation.  

 
 

Fig. 3. Probability of error correction using the  

simple procedure for different values of m and k  

and comparison with (4) when load is 0.50. 

 

These observations suggest a possible 

enhancement of the correction procedure. Namely, 
when the load is high a number of entries can be 

removed and when a low load is achieved, the simple 

procedure can be used to correct the errors. In this way, 
the complete advanced procedure will be used only for 

a small fraction of the errors. The study of this 

refinement is left for future work. It can be observed 

that the results do not depend on m. This can be 
explained as for values of m much larger than one, as 

those commonly used in practical applications, the CBF 

is close to the asymptotic behavior in all cases [2]. 
Finally, the cost savings obtained by using the proposed 

scheme can be estimated as the implementation of an 

SEC code on a 64 bit element requires 7 bits. Therefore, 
as with only a parity bit and the CBF SEC can be 

achieved, the savings would be 6 bits per element set or 

roughly 10% of the memory storage required for the 

element set. A different way to look at the benefits is 
that SEC can be implemented in the element set when 

the system memory is protected only with a per word 

parity bit. That is, reliability can be increased without 
adding new hardware resources. 
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CONCLUSION 

In this brief, a new application of BFs has been 

proposed. The idea is to use the BFs in existing 

applications to also detect and correct errors in their 
associated element set. In particular, it is shown that 

CBFs can be used to correct errors in the associated 

element set. This enables a cost efficient solution to 

mitigate soft errors in applications which use CBFs. 
The configuration considered in this brief is that of a 

memory protected with a per word parity bit for which 

it is demonstrated that the CBF can be used to achieve 
single bit error correction. This shows how existing 

CBFs can be used to achieve error correction in 

addition to perform their traditional membership 

checking function. The general idea can also be used 
when the memory is protected with more advanced 

codes. For example, if an SEC-DED code is used, the 

CBF could be used to correct double errors. In addition, 
the simplest part of the error correction scheme can also 

be applied to traditional BFs to achieve some degree of 

error detection and correction. The exploration of these 
alternative configurations is left for future work. 
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