

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 12, December 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 314

A Novel Approach for Minimizing Attacks Using Automatic
Test Packet Generation on Networks

Pulavarthi Srinivas1& R.Nagaraju 2

1
PG Scholar,Dept Of CSE, Nova's Institute Of Tecvhnology, Eluru ,Andhra Pradesh

2
Associate Professor,Dept Of CSE Nova's Institute Of Tecvhnology, Eluru,Andhra Pradesh

Abstract—

Recently networks are growing wide and more

complex. However administrators use tools like

ping and trace route to debug problems. Hence we

proposed an automatic and Methodical approach

for testing and debugging networks called

Automatic Test Packet Generation (ATPG). This

approach gets router configurations and generates

a device-independent model. ATPG generate a few

set of test packets to find every link in the network.

Test packets are forwarded frequently and it detect

failures to localize the fault. ATPG can detect both

functional and performance (throughput, latency)

problems. We found, less number of test packets is

enough to test all rules in networks. For example,

4000 packets can cover all rules in Stanford

backbone network, while 53 are much enough to

cover all links.

Keywords: Fault Localization; Test Packet

Selection; Network Debugging; Automatic Test

packet Generation (ATPG); Forwarding

Information Base (FIB)

I.INTRODUCTION

Whenever networking comes into picture,

questions that we come across are about “How to

secure your network? Is my network secure? What

do I need to do make network secure?” But

network security does not limit only by

implementing new firewall optimizing techniques

or to secure the information, rather it also includes

monitoring the packets, forwarding entries etc.

Now, this would arise the question of how this

would help to secure the network. The answer to

this is, the security could be easily breached by

tampering the rules and exploiting the errors.

Until now it is the network administrator’s

problem to tackle with such issues.

Troubleshooting a network is difficult for three

reasons. First, the forwarding state is distributed

across multiple routers and firewalls and is defined

by their forwarding tables, filter rules, and other

configuration parameters. Second, the forwarding

state is hard to observe because it typically requires

manually logging into every box in the network.

Third, there are many different programs,

protocols, and humans updating the forwarding

state simultaneously. (See Fig.1)

But creating a tool using ATPG algorithm would

automate the entire process.

Therefore our goal is “To build a system which

would automatically monitor functional and

performance faults in network. To detect and

diagnose errors by independently and exhaustively

testing all forwarding entries, firewall rules, and

any packet processing rules in the network. To

check the liveness and fault localization of the

network.”

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 12, December 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 315

Fig. 1. Static versus dynamic checking: A policy is

compiled to forwarding state, which is then

executed by the forwarding plane. Static checking

(e.g., confirms that A=B . Dynamic checking (e.g.,

ATPG in this paper) confirms that the topology is

meeting liveness properties (L) and that B=C.

II. RELATED WORK

The test packets which generate automatically by

configuration is not aware by earlier techniques.

The very often related works we are familiar is

offline tools which test invariants in networks. In

control plane, NICE [7] tries to comprehensively

cover code path symbolically in a controller

applications with support of simplified switch and

host models. In the data plane, Anteater [25]

models invariants as a Boolean satisfiability

problem which tests them against configurations

with a SAT solver. Header Space Analysis [16] use

geometric model for checking reachability,

detecting loops, and for verifying slicing. Recently,

SOFT [1] put forward to check uniformity between

different Open Flow agent implementations which

is responsible for bridging control and data planes

in SDN context. ATPG supplement these checkers

directly by verifying the data plane and exercising

a important set of dynamic or performance errors

which could not be captured. The major

contribution of ATPG is not fault localization, but

deciding a compact set of end-to-end

measurements which could exercise every rule and

every link. The mapping in between Min-Set-

Cover and network monitoring was been explored

previously in [3] and [5]. ATPG progress the

detection granularity to rule level by working

router configuration and data plane information.

ATPG not limited to liveness testing, but it can be

applicable for checking higher level properties like

performance. Our work was closely related to work

in programming languages and symbolic

debugging. We made a preliminary tries to use

KLEE [6] and find it to be 10 times slower than the

unoptimized header space framework. We

speculate this is basically because in our

framework we directly simulate the forward path

of a packet in addition of solving constraints using

an SMT solver. However, more work is needed to

understand the differences and potential

opportunities.

III.PROBLEM DEFINITION

In current system, the administrator manually

decides which ping packet to be sent. Sending

programs between every pair of edge ports is

neither extensive nor scalable. This system is

enough to find minimum set of end-to-end packets

that travel each link. However, doing this need a

way of abstracting across device specific

configuration files generating headers and links

they reach and finally calculating a minimum set of

test packets. It is not designed to identify failures

caused from failed links and routers, bugs caused

from faulty router hardware or software, and

performance problems. The common causes of

network failure are hardware failures and software

bugs, in which that problems manifest both as

reachability failures and throughput/latency

degradation. To overcome this we are proposing

new system.

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 12, December 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 316

IV. PROPOSED SYSTEM

In current system, the administrator manually

decides which ping packet to be sent. Sending

programs between every pair of edge ports is

neither extensive nor scalable. This system is

enough to find minimum set of end-to-end packets

that travel each link. However, doing this need a

way of abstracting across device specific

configuration files generating headers and links

they reach and finally calculating a minimum set of

test packets. It is not designed to identify failures

caused from failed links and routers, bugs caused

from faulty router hardware or software, and

performance problems. The common causes of

network failure are hardware failures and software

bugs, in which that problems manifest both as

reach ability failures and throughput/latency

degradation. To overcome this we are proposing

new system. Fig.2 shows the architecture of

proposed system. In this paper, ATPG framework

generates minimum set of packets automatically, to

debug the failures occurring in the network. This

tool could automatically generate packets for

checking performance assertions such as like

packet latency. ATPG finds and determines errors

by independently testing all forwarding entries,

any packet processing rules and firewall rules in

network.

Here, test packets are generated algorithmically

from device configuration files and from FIBs,

which requires minimum number of packets for

complete coverage. Test packets are fed into the

network in which that every rule is covered

directly from the data plane. Since ATPG treats

links like normal forwarding rules, its full coverage

provides testing of every link in the network. It can

also be specialized to form a minimal set of

packets that obviously test every link for network

liveness. At least in this basic form, we would feel

that ATPG or some similar technique is

fundamental to networks: Instead of reacting to

failures, many network operators such as Internet2

proactively check the health of their network using

pings between all pairs of sources. However, all-

pairs do not provide testing of all links and has

been found to be unsalable for large networks such

as Planet Lab

Fig.2. ATPG system block diagram.

The proposed system can be divided into following

modules:

 Failures and root causes of network operators

Data plane analysis

 Network troubleshooting

 ATPG system

 Network Monitor

A.Failures and Root Causes of Network

Operators

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 12, December 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 317

Network traffic is represented to a specific queue

in router, but these packets are drizzled because the

rate of token bucket low. It is difficult to

troubleshoot a network for three reasons. First, the

forwarding state is shared to multiple routers and

firewalls and is determined by the forwarding

tables, filter rules, and configuration parameters.

Second, the forwarding state is difficult to watch

because it requires manually logging into every

box in the network. Third, the forwarding state is

edited simultaneously by different programs,

protocols and humans.

B. Data Plane Analysis

Automatic Test Packet Generation framework

which automatically generates a minimum set of

packets to check the likeness of underlying

topology and congruence between data plane state

and configuration specifications this tool can

automatically generate packets to test performance

assertions like packet latency. ATPG find errors by

independently and exhaustively checking all

firewall rules, forwarding entries and packet

processing rules in network. The test packets are

generated algorithmically from the device

configuration files and FIBs, with less number of

packets needed for whole coverage. Test packets

are fed in the network so that every rule is covered

directly from the data plane. This tool can be

customized to check only for reach ability or for its

performance

C.Network Troubleshooting The cost of

network debugging is captured by two metrics.

One is the number of network-related tickets per

month and another is the average time taken to

resolve a ticket .There are 35% of networks which

generate more than 100 tickets per month. Of the

respondents, 40.4% estimate takes under 30

minutes to resolve a ticket. If asked what is the

ideal tool for network debugging it would be,

70.7% reports automatic test generation to check

performance and correctness. Some of them added

a desire for long running tests to find jitter or

intermittent issues, real-time link capacity

monitoring and monitoring tools for network state.

In short, while our survey is small, it helps the

hypothesis that network administrators face

complicated symptoms and causes.

D. ATPG System Depending on network

model, ATPG generates less number of test

packets so that every forwarding rule is exercised

and covered by at least one test packet when an

error is found, ATPG use fault localization

algorithm to ascertain the failing rules or links.

E. Network Monitor To send and receive test

packets, network monitor assumes special test

agents in the network. The network monitor gets

the database and builds test packets and instructs

each agent to send the proper packets. Recently,

test agents partition test packets by IP Proto field

and TCP/UDP port number, but other fields like IP

option can be used. If any tests fail, the monitor

chooses extra test packets from booked packets to

find the problem. The process gets repeated till the

fault has been identified. To communicate with test

agents, monitor uses JSON, and SQLite’s string

matching to lookup test packets efficiently

V. CONCLUSION

Network administrator use primitive tools such as

Ping and trace route. My survey results indicate

they are sager for more sophisticated tools. Other

field of engineering indicates that desires are not

unreasonable. In current System it uses a method

that is neither exhaustive nor scalable. Though it

reaches all pairs of edge nodes it could not detect

faults in liveness properties. ATPG goes much

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 12, December 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 318

further than liveness testing with same framework.

ATPG could test for reach ability policy (by

checking all rules including drop rules) and

performance measure (by associating performance

measures such as latency and loss of test packets).

Our implementation also enlarges testing with

simple fault localization scheme also build using

header space framework

VI. REFERENCES

[1] Hongyi Zeng, Member, IEEE, Peyman

Kazemian, Member, IEEE, George Varghese,

Member, IEEE, Fellow, ACM, and Nick

McKeown, Fellow, IEEE, ACM, ―Automatic

Test Packet Generation‖, IEEE/ACM Transactions

on Networking, Vol. 22, No. 2, April 2014.

[2] ―ATPG code repository,‖ [Online]. Available:

http:// eastzone.github. Com/atpg/. [3]

―Automatic Test Pattern Generation,‖ 2013

[Online].Available:http://en.wikipedia.org/wiki/Au

tomatic_test_patter n_ generation.

[4] P. Barford, N. Duffield, A. Ron, and J.

Sommers, ―Network performance anomaly

detection and localization,‖ in Proc. IEEE

INFOCOM, Apr, pp. 1377–1385.

[5] ―Beacon,‖ [Online]. Available:

http://www.beaconcontroller.net./.

[6] Y. Bejerano and R. Rastogi, ―Robust

monitoring of link delays and faults in IP

networks,‖ IEEE/ACM Trans. Netw., vol. 14, no.

5, pp. 1092–1103, Oct. 2006.

[7] C. Cadar, D. Dunbar, and D. Engler, ―Klee:

Unassisted and automatic generation of high-

coverage tests for complex systems programs,‖ in

Proc. OSDI, Berkeley, CA, USA, 2008, pp. 209–

224.

[8] M. Canini, D.Venzano, P. Peresini, D.Kostic,

and J. Rexford, ―A NICE way to test Open Flow

applications,‖ in Proc. NSDI, 2012, pp. 10–10.

[9] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C.

Diot, ―Netdiagnoser: Troubleshooting network

un-reach abilitiesusing end-to-end probes and

routing data,‖ in Proc. ACM Context, 2007, pp.

18:1–18:12.

[10] N. Duffield, ―Network tomography of binary

network performance characteristics,‖ IEEE Trans.

Inf. Theory, vol. 52, no. 12, pp. 5373–5388, Dec.

2006.

[11] N. Duffield, F. L. Presti, V. Paxson, and D.

Towsley, ―Inferring link loss using striped uni-

cast probes,‖ in Proc. IEEE INFOCOM, 2001, vol.

2, pp. 915–923.

[12] N. G. Duffield and M. Grossglauser,

―Trajectory sampling for direct traffic

observation,‖ IEEE/ACM Trans. Netw., vol. 9, no.

3, pp. 280–292, Jun. 2001.

http://www.beaconcontroller.net./

