

Operating Systems for Multitasking Sensor Networks: A Survey by Pavitha N. 150

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

Operating	Systems	for	Multitasking	

Sensor	Networks:	A	Survey	

Pavitha N1*

1 Department of Computer Engineering, Sinhgad Academy of Engineering, Pune,Maharashtra, India

Email: pavithanrai@gmail.com

Abstract:

Development of multitasking operating

systems for sensor networks and other low-

power electronic devices is motivated by the

networked application environment. These

operating system’s multitasking capability is

severely limited because traditional stack

management techniques perform poorly on

small-memory systems without virtual

memory support. This paper formalizes

different multitasking operating systems

like Mat’e, Contiki, MANTIS OS, t-kernel,

RETOS, LiteOS, TOSThreads, Sensmart. This

paper analyses all these operating systems

for their performance in multitasking

parameters. Under multitasking parameters

out of these operating systems Sensmart

performs best.

Keywords:

Multitasking, Sensor Network,

Operating System, Stack Management

INTRODUCTION

 The wireless sensor nodes are
spatially distributed over a region of
interest and observe physical changes
such as those in sound, temperature,

pressure, or seismic vibrations. If a
specific event occurs in a region of
distributed sensors, each sensor makes
local observations of the physical
phenomenon as the result of this event
taking place. An example of sensor
network applications is area monitoring
to detect forest fires. A network of
sensor nodes can be installed in a forest
to detect when a fire breaks out. The
nodes can be equipped with sensors to
measure temperature, humidity, and the
gases produced by fires in trees or
vegetation. Other examples include
military and security applications.
Military applications vary from
monitoring soldiers in the field, to
tracking vehicles or enemy movement.
Sensors attached to soldiers, vehicles
and equipment can gather information
about their condition and location to
help planning activities on the
battlefield. Seismic, acoustic and video
sensors can be deployed to monitor
critical terrain and approach routes;
reconnaissance of enemy terrain and
forces can be carried out.

 After sensors observe an event
taking place in a distributed region, they
convert the sensed information into a

Operating Systems for Multitasking Sensor Networks: A Survey by Pavitha N. 151

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

digital signal and transmit the digitized
signal to the Fusion Centre. Finally, the
Fusion Centre assembles the data
transmitted by all the sensors and
decodes the original information. The
decoded information at the FC provides
a global picture of events occurring in
the region of interest. Therefore, we
assume that the objective of the sensor
network is to determine accurately and
rapidly reconstruct transmitted
information and reconstruct the original
signal.

Background and Basics:

 The growing popularity of low-
power and pervasive wireless computing
devices naturally leads to an emphasis
on networked operations and a seamless
interaction with the ambient context.
This trend is seen on PDAs, active
RFIDs, various intelligent consumer
electronic devices, and wireless sensor
networks. Such networked operations
and contextual interaction make the
application software much more
complex than that running on traditional
embedded devices. Particularly, the
sensor network is a representative
technology where the relevant design
factors such as resource constraints and
application complexity are manifested to
a great extent. A typical sensor node
may only have a simple CPU and a few
kilobytes of data memory [1], [2], [3],
but the software running on it can take
tens of thousands lines of code to
implement, performing a wide range of
tasks related to sensing, topology
control, wireless routing, power
management, signal processing, and
system administration [4], [5], [6].

 The complexity of application
software and the fact that the software
runs on numerous unreliable devices call
for strong system software support [7],
[8]. One critical need is a pre-emptive
multitasking operating system. Without
that, handling important interrupts could
be delayed by long computational tasks,
communication operations could disrupt
the timing of the sensor channel
sampling, and unpredictable latencies
would make network level activity
unreliable and energy costly.
 Consequently, a number of recent
operating systems for sensor networks
have included multi-tasking and pre-
emptive scheduling features. However, a
careful examination of those systems
shows severe limitations in both
functionality and usability. One of the
key problems, as mentioned by a classic
research work on the topic of
multitasking, is stack management [9]
that is how can an operating system
automatically and efficiently manage
multiple stacks. Especially, the problem
is even harder on a small-memory
platform.

 In a multitasking system, the stacks
of concurrent tasks routinely grow and
shrink during their execution. The
dynamics of the stacks is of great
variation for event-driven systems,
which is the de facto standard
programming model for sensornet
systems [10], [11]. The ability to hold
multiple stacks in memory and
efficiently handle the stack dynamics is a
fundamental determinant of a
multitasking OS.

Operating Systems for Multitasking Sensor Networks: A Survey by Pavitha N. 152

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

Designing Adaptive Stack

Management:

 Designing adaptive stack
management on resource constrained
platforms is a new challenge; one
important question is whether we could
avoid this problem by upgrading
hardware to qualify traditional solutions.
Though the low-power computing
technology develops steadily, virtual
memory is still very unlikely to be
available to the sensor nodes using very
low power processors. Some recent
embedded processors claim to enable a
32-bit architecture with the cost and
power consumption of 8-bit systems.
The claim is, however, only partially
true because downscaling power is often
accompanied by removing architectural
features. Most low-power
microcontrollers (MCUs) do not support
hardware memory translation or memory
protection, and many low-power systems
do not support instruction privilege,
which is pre-requisite for traditional
multitasking designs. It is also unlikely
that very low power systems can afford
to scale up physical memory size as
quickly as the cost of RAM drops. In the
past two decades, the typical memory
capacity of computer systems has grown
dramatically, but many MCUs today still
use kilobytes of SRAM for energy
efficiency.

OPERATING SYSTEMS FOR

MULTITASKING SENSOR

NETWORKS

 Researchers have developed a
number of operating systems for sensor
networks and low-
power devices, such as TinyOS [3], SOS
[14], Contiki [15], MANTIS OS [16],
LiteOS [20],
SESAME/SESAME-P [18] [19] and the
t-kernel [21] in order to support more
reliable, efficient, and sophisticated
applications. Multitasking has become
an important feature in such systems.

 The table below lists the
implemented features of typical related
systems as a comparison. Although these
systems have respective advantages,
SenSmart performs better in
multitasking-related functionalities as
listed. SenSmart also uses binary
rewriting as an important technique to
implement preemptive scheduling and
memory isolation. Different from the t-
kernel, SenSmart conducts complete
binary translation on the base station.
This approach brings unique advantages
in reducing system complexity and code
inflation ratio.

Table 1: Comparison of typical Systems

 Mat'e Contiki MANTIS t-kernel RETOS LiteOS T OS
Threads

SenSmart

TinyOS
Compatible

No No No Yes No No Yes Yes

Preemptive
Multi-
tasking

No Yes Yes Partial Yes Yes Yes Yes

Concurrent
Applica-

NA No No No No No No Yes

Operating Systems for Multitasking Sensor Networks: A Survey by Pavitha N. 153

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

tions
Interrupt-
free
Preemption

NA No No Yes No No No Yes

Memory
Protection

Yes No No Partial Yes No No Yes

Logical
Memory
Address

NA No No No No No No Yes

Memory
Arrange-
ment

Automatic Automatic Automatic Automatic Automatic M anual Automatic Automatic

Stack
Relocation

No No No No No No No Yes

TinyOS [3]

 In TinyOS [3], tasks are executed in
serial. Hence, there is no concurrency
among them, and the stack management
is rather simple. Moreover, the memory
isolation is absent so that
the program code can write to any
physical memory areas.

TOSThread [23]

 TOSThread [23] introduces user
threads along with existing TinyOS
tasks. Each thread is allocated an
independent but _xed-size stack for local
variables and execution context.
Substantially, such multitasking models
are tailored from the traditional design
techniques, while they often work
ine_ciently in resource constrained
systems.

SOS [14], MANTIS OS [16], LiteOS
[20]

Attempt to adopt traditional OS
mechanisms as TOSThread does. Those
traditional solutions usually lead to harsh
restrictions on application tasks. For
example, it is very difficult to efficiently
allocate stack memory to tasks without
introducing extra burden (and

dependence) on application
programmers. For correctness and
simplicity, such systems usually allocate
stack memory based on the worst case
situation. Without virtual memory
paging, this pessimism, combined with
the aforementioned inflexible allocation,
aggravates the waste and drains a fair
portion of previous memory resources.
The fundamental reason is the weak
stack adaptivity, and consequently,
limited application flexibilities.

SESAME/SESAME-P [18] [19]

Researchers have noticed that the
traditional monolithic stack allocation
can reduce the overall efficiency. To
improve the flexibility,
SESAME/SESAME-P [18], [19]
propose novel solutions to convert the
call stack into the heap area, and perform
bookkeeping to manage the discrete
stack blocks. The runtime overhead is
mitigated by a flexible dynamic stack
allocation mechanism.

Contiki [15]

Lightweight thread models can avoid the
stack management problem by
dramatically simplifying the semantics
of concurrent tasks. For instance, the

Operating Systems for Multitasking Sensor Networks: A Survey by Pavitha N. 154

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

stackless protothreads in Contiki
minimizes memory usage [13], [15], but
they also incur severe functional
limitations, e.g., no retention of state
between context switches. Such
limitations are likely to make
programming harder.

t-kernel [21]

The t-kernel [21] implements preemptive
scheduling, OS protection and virtual
memory with binary rewriting on sensor
nodes. The tasks in the t-kernel share a
common stack space, and the memory
protection is asymmetric that is only the
kernel memory is protected. SenSmart
also uses binary rewriting as an
important technique to implement pre-
emptive scheduling and memory
isolation. Different from the t-kernel,
SenSmart conducts complete binary
translation on the base station.

CONCLUSION

 In this paper a brief study of
multitasking operating systems like
Mat’e, Contiki, MANTIS OS, t-kernel,
RETOS, LiteOS, TOSThreads,
Sensmart is carried out. This paper
analyses all these operating systems for
their performance related to multitasking
parameters. Under multitasking
parameters out of these operating
systems Sensmart performs best.

REFERENCES

[1] S. Lin et al., E_cient Indexing Data
Structures for Flash-Based Sensor

Devices,ACM Trans. Storage, vol. 2, no.
4, pp. 468-503, 2006.

[2] P. Dutta, M. Grimmer, A. Arora, S.
Bibyk, and D. Culler, Design of a
Wireless Sensor Network Platform for
Detecting Rare, Random, and
Ephemeral Events, Proc. Fourth Intl
Conf. Information Processing in Sensor
Networks, 2005.

[3] J. Hill, R. Szewczyk, A. Woo, S.
Hollar, D. Culler, and K. Pister, System
Architecture Directions for Network
Sensors, Proc. Ninth Intl Conf.
Architectural Support for Pro-
gramming Languages and Operating
Systems, 2000.

[4] M. Eltoweissy, D. Gracanin, S.
Olariu, and M. Younis, Agile Sensor
Network Systems, Ad Hoc and Sensor
Wireless Networks, vol. 4, no. 1, pp. 97-
124, 2007.

[5] T. He et al., VigilNet: An Integrated
Sensor Network System for Energy-
Efficient Surveil- lance,ACM Trans.
Sensor Networks, vol. 2, no. 1, pp. 1-38,
2006.

[6] R. Szewczyk, A. Mainwaring, J.
Polastre, and D. Culler, An Analysis of a
Large Scale Habitat Monitoring
Application,Proc. Second Intl Conf.
Embedded Networked Sensor Systems,
2004.

[7] K. Romer and J. Ma, PDA: Passive
Distributed Assertions for Sensor
Networks,Proc. Eight Intl Conf.
Information Processing in Sensor
Networks, pp. 337-348, 2009.

Operating Systems for Multitasking Sensor Networks: A Survey by Pavitha N. 155

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

[8] M. Khan et al., Diagnostic
Powertracing for Sensor Node Failure
Analysis,Proc. Ninth Intl Conf.
Information Processing in Sensor
Networks, pp. 117-128, 2010.

[9] A. Adya, J. Howell, M. Theimer, B.
Bolosky, and J. Douceur, Cooperative
Task Manage-
ment without Manual Stack
Management,Proc. USENIX Ann.
Technical Conf., 2002.

[10] D. Gay, P. Levis, R. Behren, M.
Welsh, E. Brewer, and D. Culler, The
nesC Language: A Holistic Approach to
Networked Embedded Systems,Proc.
ACM SIGPLAN Conf. Pro- gramming
Language Design and Implementation,
2003.

[11] O. Kasten and K. Romer, Beyond
Event Handlers: Programming Wireless
Sensors with Attributed State
Machines,Proc. Fourth Intl Conf.
Information Processing in Sensor
Networks, 2005.

[12] W. McCartney and N. Sridhar,
Abstractions for Safe Concurrent
Programming in Networked Embedded
Systems,Proc. Fourth Intl Conf.
Embedded Networked Sensor Systems,
pp. 167-180, 2006.

[13] A. Dunkels, O. Schmidt, T. Voigt,
and M. Ali, Protothreads: Simplifying
Event-Driven Programming of Memory-
Constrained Embedded Systems,Proc.
Fourth Intl Conf. Embedded Networked
Sensor Systems, pp. 29-42, 2006.
[14] C. Han, R. Kumar, R. Shea, E.
Kohler, and M. Srivastava, A Dynamic
Operating System for Sensor
Nodes,Proc. Third Intl Conf. Mobile

Systems, Applications, and Services, pp.
163-176, 2005.

[15] A. Dunkels, B. Gronvall, and T.
Voigt, ContikiA Lightweight and
Flexible Operating System for Tiny
Networked Sensors,Proc. 29th Ann.
IEEE Intl Conf. Local Computer
Networks, pp. 455-462, 2004.

[16] S. Bhatti et al., MANTIS OS: An
Embedded Multithreaded Operating
System for Wireless Micro Sensor
Platforms, ACM/Kluwer Mobile
Networks and Applications, vol. 10, no.
4, pp. 563-579, 2005.

[17] A. Eswaran, A. Rowe, and R.
Rajkumar, Nano-RK: An Energy- Aware
Resource-Centric
rtos for Sensor Networks,Proc. 26th
IEEE Intl Real-Time Systems Symp., pp.
256-265, 2005.

[18] S. Yi, H. Min, S. Lee, Y. Kim, and I.
Jeong, SESAME: Space E_cient Stack
Allocation Mechanism for Multithreaded
Sensor Operating Systems,Proc. 22nd
Symp. Applied Computing, pp. 1201-
1202, 2007.

[19] S. Yi, S. Lee, Y. Cho, and J. Hong,
SESAME-P: Memory Pool- Based
Dynamic Stack Management for Sensor
Operating Systems,Proc. Third Intl
Conf. Distributed Computing in Sensor
Systems, pp. 544-549, 2008.

[20] Q. Cao et al., The LiteOS
Operating System: Towards Unix-like
Abstractions for Wireless Sensor
Networks,Proc. Intl Conf. Information
Processing in Sensor Networks, pp.233-
244, 2008.

Operating Systems for Multitasking Sensor Networks: A Survey by Pavitha N. 156

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

[21] L. Gu and J. Stankovic, t-kernel:
Providing Reliable os Support to
Wireless Sensor Networks,Proc. Fourth
Intl Conf. Embedded Networked Sensor
Systems, 2006.

[22] Rui Chu, Lin Gu,Yunhao Liu,Mo
Li,Xicheng Lu "SenSmart: Adaptive
Stack Management for Multitasking
Sensor Networks" IEEE
TRANSACTIONS ON COMPUTERS,
VOL. 62, NO. 1, JANUARY 2013.

[23] K. Klues et al., TOSThreads:
Thread-Safe and Non-Invasive
Preemption in Tinyos,Proc.
Seventh Intl Conf. Embedded Networked
Sensor Systems, pp. 127-140, 2009.

[24] Guragain, Bijay. "Power Efficient
Routing Protocol for Mobile Ad Hoc
Networks." International Journal of
Research 1.4 (2014): 353-360.

