

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 3, Issue 01, January 2016

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 136

Proposal of a Two-Phase Validation Commit Protocol as a

Solution to Guarantee Trustworthiness of Transactions on

Cloud Servers

Maddirala Narasimha Rao
1
; G.Sreenivasa Reddy

2
; Y. Dasradh Ram Reddy

3
&

Prof.Dr.G.Manoj Someswar
4

1. M.Tech.(CSE) from Buchepalli Venkayamma Subbareddy Engineering College, Affiliated to

JNTUH, Telangana, India.

2. Associate Professor & HOD, Dept. of CSE, Buchepalli Venkayamma Subbareddy Engineering

College, Affiliated to JNTUH, Telangana, India.

3. Associate Professor, Dept. of CSE, Buchepalli Venkayamma Subbareddy Engineering College,

Affiliated to JNTUH, Telangana, India.

4. Principal & Professor, Dept. of CSE, Anwar-ul-uloom College of Engineering & Technology,

Vikarabad, RR District, Affiliated to JNTUH, Telangana, India.

ABSTRACT:

In distributed transactional database systems deployed over cloud servers, entities cooperate to form proofs of

authorizations that are justified by collections of certified credentials. These proofs and credentials may be

evaluated and collected over extended time periods under the risk of having the underlying authorization policies

or the user credentials being in inconsistent states. It therefore becomes possible for policy-based authorization

systems to make unsafe decisions that might threaten sensitive resources. In this research paper, we highlight the

criticality of the problem. We then define the notion of trusted transactions when dealing with proofs of

authorization. Accordingly, we propose several increasingly stringent levels of policy consistency constraints, and

present different enforcement approaches to guarantee the trustworthiness of transactions executing on cloud

servers. We propose a Two-Phase Validation Commit protocol as a solution, which is a modified version of the

basic Two-Phase Validation Commit protocols. We finally analyze the different approaches presented using both

analytical evaluation of the overheads and simulations to guide the decision makers to which approach to use.

KEYWORDS: Two-Phase Validation Commit; Byzantine failure; Transaction Manager(TM); Certificate

Authorities (CAs)

INTRODUCTION

In distributed transactional database systems deployed over

cloud servers, entities cooperate to form proofs of

authorizations that are justified by collections of certified

credentials. These proofs and credentials may be evaluated

and collected over extended time periods under the risk of

having the underlying authorization policies or the user

credentials being in inconsistent states. It therefore becomes

possible for policy-based authorization systems to make

unsafe decisions that might threaten sensitive resources. In

this paper, we highlight the criticality of the problem. We

then define the notion of trusted transactions when dealing

with proofs of authorization. Accordingly, we propose

several increasingly stringent levels of policy consistency

constraints, and present different enforcement approaches to

guarantee the trustworthiness of transactions executing on

cloud servers. We propose a Two-Phase Validation Commit

protocol as a solution, which is a modified version of the

basic Two-Phase Validation Commit protocols.[1] We

finally analyze the different approaches presented using

both analytical evaluation of the overheads and simulations

to guide the decision makers to which approach to use.

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 3, Issue 01, January 2016

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 137

To provide scalability and elasticity, cloud services often

make heavy use of replication to ensure consistent

performance and availability. As a result, many cloud

services rely on the notion of eventual consistency when

propagating data throughout the system. This consistency

model is a variant of weak consistency that allows data to be

inconsistent among some replicas during the update process,

but ensures that updates will eventually be propagated to all

replicas.

 We formalize the concept of trusted transactions.

 We define several different levels of policy

consistency constraints and corresponding

enforcement approaches that guarantee the

trustworthiness of transactions executing on cloud

servers.

 We propose a Two-Phase Validation Commit

(2PVC) protocol that ensures that a transaction is

safe by checking policy, credential, and data

consistency during transaction execution.

 We carry out an experimental evaluation of our

proposed approaches.[2]

LITERATURE SURVEY

In many distributed-memory parallel computers and high-

speed communication networks, the exact structure of the

underlying communication network may be ignored. These

systems assume that the network creates a complete

communication graph between the processors, in which

passing messages is associated with communication

latencies.[3] In this paper, we explore the impact of

communication latencies on the design of broadcasting

algorithms for fully-connected message-passing systems.

For this purpose, we introduce the postal model that

incorporates a communication latency parameter 1. This

parameter measures the inverse of the ratio between the time

it takes an originator of a message to send the message and

the time that passes until the recipient of the message

receives it.[4] We present an optimal algorithm for

broadcasting one message in systems with n processors and

communication latency , the running time of which is (log

n log(+1)). For broadcasting m 1 messages, we examine

several generalizations of the algorithm for broadcasting one

message and then analyze a family of broadcasting

algorithms based on degree-d trees. All the algorithms

described in this paper are practical event-driven algorithms

that preserve the order of messages.[5]

Cloud computing has been envisioned as the next-

generation architecture of IT enterprise. In contrast to

traditional solutions, where the IT services are under proper

physical, logical and personnel controls, cloud computing

moves the application software and databases to the large

data centers, where the management of the data and services

may not be fully trustworthy. This unique attribute,

however, poses many new security challenges which have

not been well understood.[6] In this article, we focus on

cloud data storage security, which has always been an

important aspect of quality of service. To ensure the

correctness of users' data in the cloud, we propose an

effective and flexible distributed scheme with two salient

features, opposing to its predecessors. By utilizing the homo

morphic token with distributed verification of erasure-coded

data, our scheme achieves the integration of storage

correctness insurance and data error localization, i.e., the

identification of misbehaving server (s).[7] Unlike most

prior works, the new scheme further supports secure and

efficient dynamic operations on data blocks, including: data

update, delete and append. Extensive security and

performance analysis shows that the proposed scheme is

highly efficient and resilient against Byzantine failure,

malicious data modification attack, and even server

colluding attacks.

Potential users of cloud services often fear that cloud

providers' governance is not yet mature enough to

consistently and reliably protect their data. As the trend

toward cloud-based services continues to grow, it has

become clear that one of the key barriers to rapid adoption

of enterprise cloud services is customer concern over data

security (confidentiality, integrity, and availability). This

paper introduces the concept of transparent security and

makes the case that the intelligent disclosure of security

design, practices, and procedures can help improve

customer confidence while protecting critical security

features and data, thereby improving overall governance.

Readers will learn how transparent security can help

prospective cloud computing customers make informed

decisions based on clear facts.[8]

Although virtualization and cloud computing can help

companies accomplish more by breaking the physical bonds

between an IT infrastructure and its users, heightened

security threats must be overcome in order to benefit fully

from this new computing paradigm. This is particularly true

for the SaaS provider. Some security concerns are worth

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 3, Issue 01, January 2016

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 138

more discussion. For example, in the cloud, you lose control

over assets in some respects, so your security model must be

reassessed. Enterprise security is only as good as the least

reliable partner, department, or vendor. Can you trust your

data to your service provider? This excerpt discusses some

issues you should consider before answering that question.

[9]

With the cloud model, you lose control over physical

security. In a public cloud, you are sharing computing

resources with other companies. In a shared pool outside the

enterprise, you don't have any knowledge or control of

where the resources run. Exposing your data in an

environment shared with other companies could give the

government "reasonable cause" to seize your assets because

another company has violated the law. Simply because you

share the environment in the cloud, may put your data at

risk of seizure. Storage services provided by one cloud

vendor may be incompatible with another vendor's services

should you decide to move from one to the other. Vendors

are known for creating what the hosting world calls "sticky

services;" services that an end user may have difficulty

transporting from one cloud vendor to another (e.g.,

Amazon's "Simple Storage Service" [S3] is incompatible

with IBM's Blue Cloud, or Google, or Dell).[10]

A growing number of online service providers offer to store

customers ’ photos, email, file system backups, and other

digital assets. Currently, customers cannot make informed

decisions about the risk of losing data stored with any

particular service provider, reducing their incentive to rely

on these services. We argue that third party auditing is

important in creating an online service oriented economy,

because it allows customers to evaluate risks, and it

increases the efficiency of insurance based risk mitigation.

We describe approaches and system hooks that support both

internal and external auditing of online storage services,

describe motivations for service providers and auditors to

adopt these approaches, and list challenges that need to be

resolved for such auditing to become a reality.

A growing number of online services, such as Google,

Yahoo!, and Amazon, are starting to charge users for their

storage. Customers often use these services to store valuable

data such as email, family photos and videos, and disk

backups. Today, a customer must entirely trust such external

services to maintain the integrity of hosted data and return it

intact. Unfortunately, no service is infallible.[11] To make

storage services accountable for data loss, we present

protocols that allow a third-party auditor to periodically

verify the data stored by a service and assist in returning the

data intact to the customer. Most importantly, our protocols

are privacy-preserving, in that they never reveal the data

contents to the auditor. Our solution removes the burden of

verification from the customer, alleviates both the

customer's and storage services' fear of data leakage, and

provides a method for independent arbitration of data

retention contracts.

SYSTEM STUDY

FEASIBILITY STUDY

 The feasibility of the project is analyzed in

this phase and business proposal is put forth with a very

general plan for the project and some cost estimates. During

system analysis the feasibility study of the proposed system

is to be carried out. This is to ensure that the proposed

system is not a burden to the company. For feasibility

analysis, some understanding of the major requirements for

the system is essential.[12]

Three key considerations involved in the feasibility analysis

are

 ECONOMICAL FEASIBILITY

 TECHNICAL FEASIBILITY

 SOCIAL FEASIBILITY

ECONOMICAL FEASIBILITY

 This study is carried out to check the economic

impact that the system will have on the organization. The

amount of fund that the company can pour into the research

and development of the system is limited. The expenditures

must be justified. Thus the developed system as well within

the budget and this was achieved because most of the

technologies used are freely available. Only the customized

products had to be purchased.[13]

TECHNICAL FEASIBILITY

 This study is carried out to check the

technical feasibility, that is, the technical requirements of

the system. Any system developed must not have a high

demand on the available technical resources.[14] This will

lead to high demands on the available technical resources.

This will lead to high demands being placed on the client.

The developed system must have a modest requirement, as

only minimal or null changes are required for implementing

this system.

SOCIAL FEASIBILITY

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 3, Issue 01, January 2016

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 139

 The aspect of study is to check the level of

acceptance of the system by the user. This includes the

process of training the user to use the system efficiently.

The user must not feel threatened by the system, instead

must accept it as a necessity. The level of acceptance by the

users solely depends on the methods that are employed to

educate the user about the system and to make him familiar

with it. His level of confidence must be raised so that he is

also able to make some constructive criticism, which is

welcomed, as he is the final user of the system.[15]

SYSTEM DESIGN

SYSTEM ARCHITECTURE:

Figure 1: System Architecture

SYSTEM DESIGN

Data Flow Diagram / Use Case Diagram / Flow Diagram

The DFD is also called as bubble chart. It is a simple graphical

formalism that can be used to represent a system in terms of the

input data to the system, various processing carried out on these

data, and the output data is generated by the system.

Figure 2: Data Flow Diagram

ACTIVITY DIAGRAM

An activity diagram is characterized by states that denote

various operations. Transition from one state to the other is

triggered by completion of the operation. The purpose of an

activity is symbolized by round box, comprising the name

of the operation. An operation symbol indicates the

execution of that operation. This activity diagram depicts

the internal state of an object.

Figure 3: Activity Diagram

CloudServer

database
validation
showres
invalid
sho
pass
wrtefile

dbconnection()
validation()
showfiles()
download()
invalid()

showfake()
wrtefile()

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 3, Issue 01, January 2016

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 140

UML SEQUENCE DIAGRAM

The sequence diagrams are an easy and intuitive way of

describing the system’s behavior, which focuses on the

interaction between the system and the environment. This

notational diagram shows the interaction arranged in a time

sequence. The sequence diagram has two dimensions: the

vertical dimension represents the time, the horizontal

dimension represents different objects. The vertical line also

called the object’s lifeline represents the object’s existence

during the interaction.

Figure 4: Sequence Diagram

CLASS DIAGRAM

Figure 5: Class Diagrams

USE CASE DIAGRAM

 A use-case diagram is a graph of actors, a

set of use cases enclosed by a system boundary,

participation associations between the actors and the use-

cases, and generalization among the use cases.

 In general, the use-case defines the

outside (actors) and inside(use-case) of the system’s typical

behavior. A use-case is shown as an ellipse containing the

name of the use-case and is initiated by actors.

 An Actor is anything that interacts with a

use-case. This is symbolized by a stick figure with the name

of the actor below the figure.

Figure 6: Use case Diagram

INPUT DESIGN

The input design is the link between the information system

and the user. It comprises the developing specification and

procedures for data preparation and those steps are

necessary to put transaction data in to a usable form for

processing can be achieved by inspecting the computer to

read data from a written or printed document or it can occur

by having people keying the data directly into the system.

The design of input focuses on controlling the amount of

input required, controlling the errors, avoiding delay,

avoiding extra steps and keeping the process simple. The

input is designed in such a way so that it provides security

and ease of use with retaining the privacy. Input Design

considered the following things:

 What data should be given as input?

 How the data should be arranged or coded?

 The dialog to guide the operating personnel in

providing input.

 Methods for preparing input validations and

steps to follow when error occur.

OBJECTIVES

1.Input Design is the process of converting a user-oriented

description of the input into a computer-based system. This

design is important to avoid errors in the data input process

and show the correct direction to the management for

getting correct information from the computerized system.

2. It is achieved by creating user-friendly screens for the

data entry to handle large volume of data. The goal of

designing input is to make data entry easier and to be free

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 3, Issue 01, January 2016

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 141

from errors. The data entry screen is designed in such a way

that all the data manipulates can be performed. It also

provides record viewing facilities.

3.When the data is entered it will check for its validity. Data

can be entered with the help of screens. Appropriate

messages are provided as when needed so that the user will

not be in maize of instant. Thus the objective of input design

is to create an input layout that is easy to follow

OUTPUT DESIGN

A quality output is one, which meets the requirements of the

end user and presents the information clearly. In any system

results of processing are communicated to the users and to

other system through outputs. In output design it is

determined how the information is to be displaced for

immediate need and also the hard copy output. It is the most

important and direct source information to the user.

Efficient and intelligent output design improves the

system’s relationship to help user decision-making.

1. Designing computer output should proceed in an

organized, well thought out manner; the right output must

be developed while ensuring that each output element is

designed so that people will find the system can use easily

and effectively. When analysis design computer output, they

should Identify the specific output that is needed to meet the

requirements.

2.Select methods for presenting information.

3.Create document, report, or other formats that contain

information produced by the system.

The output form of an information system should

accomplish one or more of the following objectives.

 Convey information about past activities, current

status or projections of the

 Future.

 Signal important events, opportunities, problems,

or warnings.

 Trigger an action.

 Confirm an action.

SYSTEM ANALYSIS

EXISTING SYSTEM:

To provide scalability and elasticity, cloud services

oftenmake heavy use of replication to ensure consistent

performance and availability. As a result, many cloud

services rely on the notion of eventual consistency when

propagating data throughout the system. This consistency

model is a variant of weak consistency that allows data to be

inconsistent among some replicas during the update process,

but ensures that updates will eventually be propagated to all

replicas.

DISADVANTAGES OF EXISTING SYSTEM:

 Consistency problems can arise as

transactional database systems are

deployed in cloud environments and use

policy-based authorization systems to

protect sensitive resources.

 The system may suffer from policy

inconsistencies during policy updates.

 It is possible for external factors to cause

user credential inconsistencies over the

lifetime of a transaction.

PROPOSED SYSTEM:

 We formalize the concept of trusted transactions.

 We define several different levels of policy

consistency constraints and corresponding

enforcement approaches that guarantee the

trustworthiness of transactions executing on cloud

servers.

 We propose a Two-Phase Validation Commit

(2PVC) protocol that ensures that a transaction is

safe by checking policy, credential, and data

consistency during transaction execution.

 We carry out an experimental evaluation of our

proposed approaches.

ADVANTAGES OF PROPOSED SYSTEM:

 Identifies transactions that are both trusted and

conform to the ACID properties of distributed

database systems.

 Guarantee the trustworthiness of transactions

executing on cloud servers.

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 3, Issue 01, January 2016

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 142

 A transaction is safe by checking policy, credential,

and data consistency during transaction execution.

 Most suitable in various situations.

SYSTEM TESTING

 The purpose of testing is to discover errors. Testing

is the process of trying to discover every conceivable fault

or weakness in a work product. It provides a way to check

the functionality of components, sub assemblies, assemblies

and/or a finished product It is the process of exercising

software with the intent of ensuring that the

Software system meets its requirements and user

expectations and does not fail in an unacceptable manner.

There are various types of test. Each test type addresses a

specific testing requirement.

TYPES OF TESTS

Unit testing

 Unit testing involves the design of test cases that

validate that the internal program logic is functioning

properly, and that program inputs produce valid outputs. All

decision branches and internal code flow should be

validated. It is the testing of individual software units of the

application .it is done after the completion of an individual

unit before integration. This is a structural testing, that relies

on knowledge of its construction and is invasive. Unit tests

perform basic tests at component level and test a specific

business process, application, and/or system configuration.

Unit tests ensure that each unique path of a business process

performs accurately to the documented specifications and

contains clearly defined inputs and expected results.

Integration testing

 Integration tests are designed to test integrated

software components to determine if they actually run as

one program. Testing is event driven and is more concerned

with the basic outcome of screens or fields. Integration tests

demonstrate that although the components were individually

satisfaction, as shown by successfully unit testing, the

combination of components is correct and consistent.

Integration testing is specifically aimed at exposing the

problems that arise from the combination of components.

Functional test

 Functional tests provide systematic demonstrations that

functions tested are available as specified by the business

and technical requirements, system documentation, and user

manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must

be accepted.

Invalid Input : identified classes of invalid input

must be rejected.

Functions : identified functions must be

exercised.

Output : identified classes of application

outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must

be invoked.

 Organization and preparation of functional tests is

focused on requirements, key functions, or special test

cases. In addition, systematic coverage pertaining to identify

Business process flows; data fields, predefined processes,

and successive processes must be considered for testing.

Before functional testing is complete, additional tests are

identified and the effective value of current tests is

determined.

System Test

 System testing ensures that the entire integrated software

system meets requirements. It tests a configuration to ensure

known and predictable results. An example of system

testing is the configuration oriented system integration test.

System testing is based on process descriptions and flows,

emphasizing pre-driven process links and integration points.

White Box Testing

 White Box Testing is a testing in which in which the

software tester has knowledge of the inner workings,

structure and language of the software, or at least its

purpose. It is purpose. It is used to test areas that cannot be

reached from a black box level.

Black Box Testing

 Black Box Testing is testing the software without any

knowledge of the inner workings, structure or language of

the module being tested. Black box tests, as most other

kinds of tests, must be written from a definitive source

document, such as specification or requirements document,

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 3, Issue 01, January 2016

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 143

such as specification or requirements document. It is a

testing in which the software under test is treated, as a black

box .you cannot ―see‖ into it. The test provides inputs and

responds to outputs without considering how the software

works.

 Unit Testing:

 Unit testing is usually conducted as part of a

combined code and unit test phase of the software lifecycle,

although it is not uncommon for coding and unit testing to

be conducted as two distinct phases.

Test strategy and approach

 Field testing will be performed manually and

functional tests will be written in detail.

Test objectives

 All field entries must work properly.

 Pages must be activated from the identified link.

 The entry screen, messages and responses must not

be delayed.

Features to be tested

 Verify that the entries are of the correct format

 No duplicate entries should be allowed

 All links should take the user to the correct page.

 Integration Testing

 Software integration testing is the incremental

integration testing of two or more integrated software

components on a single platform to produce failures caused

by interface defects.

 The task of the integration test is to check that

components or software applications, e.g. components in a

software system or – one step up – software applications at

the company level – interact without error.

Test Results: All the test cases mentioned above passed

successfully. No defects encountered.

 Acceptance Testing

 User Acceptance Testing is a critical phase of any

project and requires significant participation by the end user.

It also ensures that the system meets the functional

requirements.

Test Results: All the test cases mentioned above passed

successfully. No defects encountered.

IMPLEMENTATION

MODULES:

1. Server Module.

2. Cloud User Module.

3. Transaction Manager.

4. Certificate Authorities.

MODULES DESCRIPTION:

Server Model

In this Module, We design a cloud infrastructure consisting

of a set of servers, where each server is responsible for

hosting a subset of all data items belonging to a specific

application domain.

Cloud User Module

 In this Module, Users interact with the system by

submitting queries or update requests encapsulated

in ACID transactions.

 Since transactions are executed over time, the state

information of the credentials and the policies

enforced by different servers are subject to changes

at any time instance, therefore it becomes

important to introduce precise definitions for the

different consistency levels that could be achieved

within a transaction’s lifetime. These consistency

models strengthen the trusted transaction definition

by defining the environment in which policy

versions are consistent relative to the rest of the

system. Before we do that, we define a

transaction’s view in terms of the different proofs

of authorization evaluated during the lifetime of a

particular transaction.

Transaction Manager

 A transaction is submitted to a Transaction

Manager(TM) that coordinates its execution.

Multiple TMs could be invoked as the system

workload increases for load balancing, but each

transaction is handled by only one TM.

 A common characteristic of most of our proposed

approaches to achieve trusted transactions is the

need for policy consistency validation at the end of

a transaction. That is, in order for a trusted

transaction to commit, its TM has to enforce either

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 3, Issue 01, January 2016

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 144

view or global consistency among the servers

participating in the transaction.

Certificate Authorities

 We use the set of all credentials, which are issued

by the Certificate Authorities (CAs) within the

system. We assume that each CA offers an online

method that allows any server to check the current

status of credentials that it has issued.

 In this module, we provide a Safe transaction. A

safe transaction is a transaction that is both trusted

(i.e., satisfies the correctness properties of proofs

of authorization) and database correct (i.e., satisfies

the data integrity constraints).

 In this module, also develop Two Phase Validation

system. As the name implies, 2PV operates in two

phases: collection and validation. During

collection, the TM first sends a Prepare-to-Validate

message to each participant server. In response to

this message, each participant 1) evaluates the

proofs for each query of the transaction using the

latest policies it has available and 2) sends a reply

back to the TM containing the truth value

(TRUE/FALSE) of those proofs along with the

version number and policy identifier for each

policy used.

RESULTS & CONCLUSION

Despite the popularity of cloud services and their wide

adoption by enterprises and governments, cloud providers

still lack services that guarantee both data and access control

policy consistency across multiple data centers. In this

paper, we identified several consistency problems that can

arise during cloud-hosted transaction processing using weak

consistency models, particularly if policy-based

authorization systems are used to enforce access controls.

To this end, we developed a variety of lightweight proof

enforcement and consistency models—i.e., Deferred,

Punctual, Incremental, and Continuous proofs, with view or

global consistency—that can enforce increasingly strong

protections with minimal runtime overheads. We used

simulated workloads to experimentally evaluate

implementations of our proposed consistency models

relative to three core metrics: transaction processing

performance, accuracy (i.e., global versus view consistency

and recency of policies used), and precision (level of

agreement among transaction participants). We found that

high performance comes at a cost: Deferred and Punctual

proofs had minimal overheads, but failed to detect certain

types of consistency problems. On the other hand, high-

accuracy models (i.e., Incremental and Continuous) required

higher code complexity to implement correctly, and had

only moderate performance when compared to the lower

accuracy schemes. To better explore the differences

between these approaches, we also carried out a tradeoff

analysis of our schemes to illustrate how application-centric

requirements influence the applicability of the eight protocol

variants explored in this paper.

REFERENCES

[1] C. Wang, Q. Wang, K. Ren, and W. Lou, ―Ensuring

Data Storage Security in Cloud Computing,‖ Proc. 17th Int’l

Workshop Quality of Service (IWQoS ’09), pp. 1-9, July

2009.

[2] Amazon.com, ―Amazon Web Services (AWS),‖

http://aws. amazon.com, 2009.

[3] Sun Microsystems, Inc., ―Building Customer Trust in

Cloud Computing with Transparent Security,‖

https://www.sun.com/ offers/details/sun_transparency.xml,

Nov. 2009.

[4] K. Ren, C. Wang, and Q. Wang, ―Security Challenges

for the Public Cloud,‖ IEEE Internet Computing, vol. 16,

no. 1, pp. 69-73, 2012.

[5] M. Arrington, ―Gmail Disaster: Reports of Mass Email

Deletions,‖ http://www.techcrunch.com/2006/12/28/gmail-

disasterreportsof- mass-email-deletions, Dec. 2006.

[6] J. Kincaid, ―MediaMax/TheLinkup Closes Its Doors,‖

http://

www.techcrunch.com/2008/07/10/mediamaxthelinkup-

closesits- doors, July 2008.

[7] Amazon.com, ―Amazon S3 Availability Event: July 20,

2008,‖ http://status.aws.amazon.com/s3-20080720.html,

July 2008.

[8] S. Wilson, ―Appengine Outage,‖ http://www.cio-

weblog.com/ 50226711/appengine_outage.php, June 2008.

[9] B. Krebs, ―Payment Processor Breach May Be Larges

Ever,‖

http://aws/
https://www.sun.com/
http://www.techcrunch.com/2006/12/28/gmail-disasterreportsof-
http://www.techcrunch.com/2006/12/28/gmail-disasterreportsof-
http://www.techcrunch.com/2008/07/10/mediamaxthelinkup-closesits-
http://www.techcrunch.com/2008/07/10/mediamaxthelinkup-closesits-
http://www.cio-weblog.com/
http://www.cio-weblog.com/

c
International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 3, Issue 01, January 2016

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 145

http://voices.washingtonpost.com/securityfix/2009/01/

payment_processor_breach_may_b.html, Jan. 2009.

[10] A. Juels and B.S. Kaliski Jr., ―PORs: Proofs of

Retrievability for Large Files,‖ Proc. 14th ACM Conf.

Computer and Comm. Security (CCS ’07), pp. 584-597,

Oct. 2007.

[11] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, ―Provable Data

Possession at Untrusted Stores,‖ Proc. 14th ACM Conf.

Computer and Comm. Security (CCS ’07), pp. 598-609,

Oct. 2007.

[12] M.A. Shah, M. Baker, J.C. Mogul, and R.

Swaminathan, ―Auditing to Keep Online Storage Services

Honest,‖ Proc. 11th USENIX Workshop Hot Topics in

Operating Systems (HotOS ’07), pp. 1-6, 2007.

[13] M.A. Shah, R. Swaminathan, and M. Baker, ―Privacy-

Preserving Audit and Extraction of Digital Contents,‖

Cryptology ePrint Archive, Report 2008/186,

http://eprint.iacr.org, 2008.

[14] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik,

―Scalable and Efficient Provable Data Possession,‖ Proc.

Fourth Int’l Conf. Security and Privacy in Comm. Netowrks

(SecureComm ’08), pp. 1-10, 2008.

[15] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,

―Enabling Public Verifiability and Data Dynamics for

Storage Security in Cloud Computing,‖ Proc. 14th European

Conf. Research in Computer Security (ESORICS ’09), pp.

355-370, 2009.

http://voices.washingtonpost.com/securityfix/2009/01/

