

International Journal of Research
ISSN: 2348-6848 Vol-3, Special Issue-1

National Conference on Advanced Computing Technologies
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research

Academy, Hyderabad, Telangana, India.

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad,
Telangana, India.

Papers presented in Conference can be accessed from www.edupediapublications.org/journals

P a g e | 71

Design & Development of an Integrated Robot with

Multiple Cognitive Functions
Prof. Dr. G. Manoj Someswar 1 et al.

1. Director General, Global Research Academy, Hyderabad, Telangana, India.

E-Mail: dg.gracad@gmail.com

Abstract
We present integration mechanisms for combining heterogeneous components in a situated information

processing system, illustrated by a cognitive robot able to collaborate with a human and display some

understanding of its surroundings. These mechanisms include an architectural schema that encourages

parallel and incremental information processing, and a method for binding information from distinct

representations that when faced with rapid change in the world can maintain a coherent, though

distributed, view of it. Provisional results are demonstrated in a robot combining vision, manipulation,

language, planning and reasoning capabilities interacting with a human and manipulable objects.

Keywords: architectural schema; binding information; behavioural competences; Cross-Subarchitecture

Binding; cross-modal processing; architectural instantiations

Introduction

We aim to understand how to build ‗cognitive‘
robots, partly in order to eventually test theories about
how humans work. Such robots should understand
their environment and collaborate with humans in
varied situations, employing many competences that
are recombined as needed. Resulting behaviour must
be extensible, purposive and flexible, i.e. achieving
goals despite changing constraints. It must be robust in
the face of imperfect sensors and effectors, able to
modulate behaviour dynamically, and to learn without
re-programming, among other things. To meet this
formidable combination of challenges we must answer
many difficult questions about how systems can be
synthesized from interacting, changeable, components.
This paper reports on progress towards meeting such
requirements, within a range of architectures for which
we have implemented tools.

From analysis of detailed scenarios we derive
requirements that lead to design principles for
architectures that can be expressed in terms of
architectural schemata. Schemata define a (large)
design space containing many specific de-signs: the

architectural instantiations. A schema provides a set
of constraints on this space. The next section de-
scribes a scenario, and the requirements and design
principles that arise from it, which are then expressed
in a schema, the CoSy Architecture Schema (CAS),
and an associated software toolkit (CAST,

the CAS Toolkit) that al-lows rapid prototyping of
CAS instantiations. Some of the issues that arise are
described in terms of a pair of related systems that

perform tasks requiring human-robot collaboration:
cross-modal learning of object qualities, and
linguistically initiated manipulation. The systems
integrate: vision, language understanding and
generation, spatial reasoning, learning,
planning and manipulation – using tens of individual
task-specific modules running concurrently in real
time. Problems addressed concern incremental
processing, flow of information, linking of
representations across components, cross-modal
processing and processing control.

mailto:dg.gracad@gmail.com

International Journal of Research
ISSN: 2348-6848 Vol-3, Special Issue-1

National Conference on Advanced Computing Technologies
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research

Academy, Hyderabad, Telangana, India.

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad,
Telangana, India.

Papers presented in Conference can be accessed from www.edupediapublications.org/journals

P a g e | 72

Background and Approach

We start from film script-like scenario
descriptions of a collaborative table-top manipulation
scenario in which the robot asks and answers questions
about the scene, performs requested actions and learns
names and qualities of objects. Behavioural

competences include recognizing, locating and
manipulating objects; planning action sequences;
interpreting and generating natural language; and
understanding various (multi-modal) properties such
as size, spatial relations and colour. These behaviours
must be performed in real-time in a contextually-
appropriate manner. The robot should behave sensibly
when interrupted, when its actions fail, when it lacks
sufficient information and when it must coordinate
different actions (e.g. speaking and moving).

Requirements arising from this task apply to
many similar robot scenarios, including the ability to
cope with external change (objects move, utterances
occur during ac-tion); and the need to integrate
information from multiple sources (speech, vision,
touch) where related information from sources arrives
asynchronously. For this, the architecture must support
many components running concurrently.[1] Besides
these run time requirements there are also design time
requirements. Architectures should make cognitive
systems (relatively) easy to design, using current

technologies. The best available components will often
use specialized representations to facilitate and speed
up processing. This makes integration harder as they
may be incompatible with other representations. So the
architecture needs to allow easy methods for linking
modules using different forms of representation,
without excessive run-time overhead.

Figure 1: The CAS Subarchitecture Design

Schema.

The Architecture Schema

Analysis of scenarios led to three design
requirements: sup-port for concurrent modular
processing, structured manage-ment of knowledge,

and dynamic control of processing. These are met by
the CoSy Architecture Schema (Hawes, Wyatt, &
Sloman 2006). The schema allows a collection of
loosely coupled subarchitectures (SAs). As shown in

Figure 1, each contains a number of processing
components which share information via a working
memory (WM), and a control component called a task

manager. Some processing components within an SA
are unmanaged and some managed. Unmanaged
components perform relatively simple processing on
data, and thus run constantly, pushing their results

onto the working memory. Managed processes, by
contrast, monitor the changing working memory
contents, and suggest possible processing tasks using
the data in the working memory. As these tasks are

typically expensive, and computational power is
limited, tasks are selected on the basis of current needs
of the whole system. The task man-ager is essentially a
set of rules for making such allocations. Each SA

working memory is readable by any component in any
other SA, but is writable only by processes within its
own SA, and by a limited number of other privileged

SAs. Components within privileged SAs can post
instructions to any other SA, allowing top-down goal
creation.

International Journal of Research
ISSN: 2348-6848 Vol-3, Special Issue-1

National Conference on Advanced Computing Technologies
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research

Academy, Hyderabad, Telangana, India.

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad,
Telangana, India.

Papers presented in Conference can be accessed from www.edupediapublications.org/journals

P a g e | 73

If there are several goals in an SA they are
mediated by its task manager. This mixes top-down
and data driven processing and allows goals to be
handled that require coordination within one SA or
across multiple SAs. At one extreme the number of
privileged SAs can be limited to one (centralized
coordination), and at the other all SAs can be
privileged (completely decentralized coordination). In
our scenario the preference seems to be for a small
number of specialized, privileged coordination SAs.

An overriding principle in CAS is that

processing components work concurrently to build up

shared representations. SAs work concurrently on
different sub-tasks, and components of an SA work on

parts of a sub-task. Instantiations of CAS function as

distributed blackboard systems as used, for example,

in Hearsay-II (Erman et al. 1988).[2]
We have designed and built instantiations of

CAS that have a small number of coordinating SAs,
and a large number of components that concurrently
refine common representations. Control of individual
motor systems is not distributed in our implemented
systems although this is perfectly possible using our
approach. To support our work, the architecture
schema is realized in a software toolkit (CAST)
(Hawes, Zillich, & Wyatt 2007). [3] CAST allows
components written in different languages to be
combined into CAS instantiations. Different
instantiations can be created without recompilation or
changes to components, allowing function-ally
different systems to be generated quickly, making it
possible to evaluate the influence of the architecture
schema on various instantiations without altering the

components of the architecture.

Cross-Subarchitecture Binding

In order to combine information from different

subarchitectures we need to provide a means for
accessing information from their working memories.
When subarchitectures are interpreting data from
different sensors across an integrated system, they will

generate various representations that reflect the
surrounding environment in different ways. For
example, spatial, visual, planning and communication

SAs may each have their own representations of an

object. Allowing each to influence others (e.g. in
resolving uncertainty) and allowing information from
different SAs to be combined (e.g. information about

things that are seen and touched) requires the different
representations to be bound together somehow. For
example, if a visual SA notices a green object of
unknown type that is within reach, then a ―grab the

green book‖ command processed by a language SA
may be informative since a likely category for the
object can be inferred (―book‖). Alternatively,

information from a visual SA‘s working memory
might be used by the linguistic SA to determine the
referent of the phrase ―the green book‖.[4]

We have been experimenting with a CAS
instantiation that uses a binding SA which contains a
working memory that mirrors the contents of all SAs
that contain information about objects. The binding
SA features a component called a binder that
maintains the contents of binding WM by joining
information from different SAs. The binder receives
candidates for binding from other SAs. These
candidates must be filtered and abstracted with respect
to their source domains to contain information that
could be useful to other SAs (such as colour and type
in the previous example). The filtering and abstraction
is task-dependent and therefore each SA requires a
corresponding binding monitor. This is a process
which is triggered by updates to the WM and which
translates these into binding candidates before writing
them to the binding WM where they will be bound
together by the binder to form instance bindings
(representations that should roughly correspond to the
objects in this case). Monitors should ideally perform
intra-modular binding (Kruijff, Kelleher, & Hawes
2006) in order for the binder to be relieved of domain-
specific reasoning.

To enable other SAs to communicate with the

binding SA, both to generate binding candidates and to
use the information represented by instance bindings, a

shared language is needed. In our instantiations this
language is oriented around features and relations.[5]

The features describe properties of objects that can be
provided by SAs, e.g. colour, shape, position, etc. The

relations describe states that can exist between two or
more objects, e.g. spatial relations. Some features can

be compared with (or be in common with) features of

International Journal of Research
ISSN: 2348-6848 Vol-3, Special Issue-1

National Conference on Advanced Computing Technologies
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research

Academy, Hyderabad, Telangana, India.

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad,
Telangana, India.

Papers presented in Conference can be accessed from www.edupediapublications.org/journals

P a g e | 74

other modalities in which case a common ground for
evaluating the binding is established. New features and

comparison functions between features can be added if
new SAs are added that support, or require, new

features. Binding candidates and instance bindings are
represented in the binding WM as sets of these

features. The feature set can contain zero, one or more
instantiations of values for each feature. This means

that the object description conveyed by the binding
candidates and instance bindings are open-ended in

terms of how much they specify about their referent:
either the feature is not represented at all, or it is

instantiated with one or more values (e.g. an object
may have more than one colour). To maintain instance

bindings, the binder com-pares the features of newly
generated candidates to those of the existing bindings

(using a scoring function). If a clear match emerges
from this process then the new candidate is bound into

the matching instance binding. If no matching instance
binding is found, a new one is created. If more than

one instance binding matches equally well with a new
candidate, this creates a disambiguation problem.

Investigating this is part of our ongoing work.
Once an instance binding has been created, any

component in the architecture can use this to access all
of the candidates bound into it. Moreover, these
binding candidates may in turn refer back to more
detailed representations in their source SAs. The
binding SA WM thereby serves as a provider for
proxies between all SAs in the system. This proxy
service, based on a shared feature language, greatly
simplifies the problem of exchanging information
between SAs that use heterogeneous representations.

Instantiations and Empirical Work

Our integration mechanisms have been tested
by incrementally implementing two systems using
CAST: a cross modal learning instantiation (CLI), and

a linguistically-driven manipulator instantiation (LMI).
The CLI (Figure 2, dark lines) combines SAs for
cross-modal language interpretation and generation
(Kruijff, Kelleher, & Hawes 2006) and visual property
learning (Skocajˇ et al. 2007) to produce a system that
can learn and describe object properties in dialogue
with a tutor. The LMI (Figure 2, light and dark lines)
extends the CLI with SAs for planning, spatial

reasoning and manipulation (Brenner et al. 2007) to
produce a system that executes manipulation
commands that refer to objects using the previously
learnt visual properties. In these instantiations
information exchange between the subarchitectures is
mediated by the binding mechanism discussed
previously.

Figure 2: The instantiation designs

International Journal of Research
ISSN: 2348-6848 Vol-3, Special Issue-1

National Conference on Advanced Computing Technologies
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research

Academy, Hyderabad, Telangana, India.

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad,
Telangana, India.

Papers presented in Conference can be accessed from www.edupediapublications.org/journals

P a g e | 75

Figure 3: How processing occurs across SAs in the
example. The lower diagram contains a detailed
view of the circled area from the upper one. Grey
areas represent processing. Black lines on the
lower diagram represent data exchanged via
WMs

A Red object placed on table.
B Tutor (T): ―This is a red thing.‖
C Red object replaced with blue
object. D Robot (R): ―Is that red?‖
E T: ―No, this is a blue thing.‖
F Blue object replaced with red
object. G Blue object placed to right
of red object. H Blue object placed to
left of red object.
I T: ―Put the blue things to the left of the red
thing.‖ J R moves right hand blue object to left
of red object.

 Figure 4: Events from the instantiation run

In the CLI the subarchitectures are as follows: the

communication SA (CSA) containing components for

speech recognition, dialogue interpretation and production,
and speech synthesis; the vision SA (VSA) containing

components for change detection, segmentation, and
visual property learning (three components); the binding

SA (BSA) containing components for generating visual
and linguistic binding candidates, and the binder; the

spatial SA (SSA) containing components for monitoring
instance bindings and representing the current scene; and

the control subarchitecture containing components for

motive generation and management. [6] In the LMI the

SSA is extended with components for adding spatial
relationships to the current scene, and with these

additional subarchitectures: the planning sub-architecture
containing components for planning, problem generation,

and execution monitoring; and the manipulation
subarchitecture containing a component for translating

planned actions into behaviour via visual servoing.

The architecture schema and binding mechanisms
can be illustrated with an extended example from the
combined CLI and LMI system. In this example the tutor
teaches the colours of objects one by one, before giving a
manipulation command (see Figure 3). The implemented
system is capable of discriminating many more colours
and other visual properties, and giving verbal descriptions
of the scene, but because of space we consider only this
example.

The account is organized by the integration mechanisms

employed. These mechanisms are the collaborative
refinement of common representations, cross-modal

binding based on known mappings between ontologies,
top down and bottom up goal raising, learning mappings

between ontologies, lazy binding and mediation between
qualitative and quantitative representations. None of these

is enforced by the schema, but they arise naturally from the
decision to employ a variety of representations in separate

subarchitectures. All are general, none rely on properties of
the example. To aid the reader we annotate the text with
markers for the events A to J described in Figure 4. How
subarchitecture activity varies with these events can be seen
in Figure 3. Although the instantiation is usually distributed
across a number of machines, this data was generated by
running it on a single machine. This decision was taken to
ease the process of collecting data. With a distributed setup
processes complete quicker, but the pattern of information
processing remains the same.

Collaborative Refinement of Representations

A sub architecture couples the results of
processing via the types of objects can that can reside in
the working memory. For example, in the visual WM
(VWM) there are two main types of data object,
corresponding to regions-of-interest (ROIs) and proto-
objects (POs). Each is structured and typed. Visual
components refine knowledge about either by overwriting
their fields.

Components can refine different fields of the
same data-object in parallel. If the data-objects are well
chosen they provide a degree of binding of the results of

International Journal of Research
ISSN: 2348-6848 Vol-3, Special Issue-1

National Conference on Advanced Computing Technologies
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research

Academy, Hyderabad, Telangana, India.

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad,
Telangana, India.

Papers presented in Conference can be accessed from www.edupediapublications.org/journals

P a g e | 76

processing. When, for example, an object is placed in
front of the robot (events A, C, F, G, H) the visual change
detection component is triggered, causing a scene changed
fact to be added to the VWM. The appearance of this fact
causes the segmentor component to run on the changed
scene, which results in a new ROI being generated along
with a related PO. Once these data structures are in
working memory other components start to process them
in parallel (as seen in Figure 4). In the visual SA the
property learning components extract features from the
ROI and these are added into the ROI data structure. Their
presence in turn triggers the recognizer, which adds any
recognized property data — such as the colour and shape.
When objects are added in quick succession (events
F,G,H) each triggers a similar sequence. New objects are
therefore processed con-currently with old ones. The only
current restriction is that each component processes one
object at a time.

Cross Modal Binding

Previously we described the cross-subarchitecture
binding mechanism we use in the instantiations. This

mechanism does not bind directly between pairs of sub
architectures, but via a shared feature-based language. The
important point here is that it relies on mappings between
the ontologies for different sub architectures, e.g. between
the binding features used for the visual entity red and the
name red. This shared language has a mapping to each
different SA representation. Typically, this mapping
would be defined by the system designer, an approach

taken in our system for most of the mappings. We would
like, however, for the system to be able to acquire such
mappings, and this is what the learning part of the example
interaction demonstrates. Later on, when references are
made to objects (e.g. in event I), the binder works using
the mappings learnt previously between the ontologies (in
events A to E) to carry out the binding.

Learning Mappings Between Ontologies

In the first learning case (events A and B) the
tutor puts down a red object. As no colours have been

learnt yet no visual property information is added to the

ROI. When the tutor says ―this is a red thing‖ the speech
recognition component adds the speech string into the

CSA where it is processed by the parser and the dialogue

interpretation component. The result is a structure in the

communication WM describing the teaching instruction.
This triggers the coordination SA to generate and act on a

motive to learn the visual properties of the thing referred

to by ―this‖. Since there is no mapping between ontologies
to guide binding, the robot assumes that the object the

human is teaching it about is the most recent one to

appear. The motive manager in the coordination SA uses

this binding to get a reference to the associated PO and
ROI. It now pushes a goal down to the VSA by posting a

visual learning instruction together with information about

the properties of the object. This is an example of top
down goal creation. A description of an object for learning

may contain several different types of properties (―a small

round red thing‖). When the learning goal is written to the

VWM the visual property learning component is triggered
and up-dates its internal representations. The learning

algorithm we use is able to learn quite general correlations

between elements in two ontologies (Skocajˇ et al. 2007).
The colour information is translated from the linguistic

representation (as a structured logical form) into the visual

representation (a colour index) using the binding feature

language.[7]
When the red object is used for learning (event C)

the visual system now guesses that the object is blue, due
to generalization from the previous case. It doesn‘t regard
the match as reliable, so a query is raised by writing a
structure containing references to the PO and the colour
blue into the VWM. In a reverse of the previous
interaction this causes a clarification dialogue in which
the robot says ―is this blue?‖, to which the tutor replies
―no, this is red‖. This demonstrates how the mix of top
down and bottom up control gives the robot the ability to

take initiative in the dialogue.

Lazy Binding and Mediation

The last stages of the example concern the
planning and execution of a manipulation. This

demonstrates our approach to binding through planning,
and the need to mediate between qualitative and
quantitative representations of space. After the first blue

object is put down (event G), a second blue object is
placed to the left of the red object (event H). Following
this the human commands the robot to ―put the blue things

to the left of the red thing‖ (event I). The CSA interprets
the utterance as a command and, consequently, the
coordination SA sends it to the planning SA. The

command is translated to a planning goal formula
(Brenner et al. 2007). One particularly important aspect of
this approach is that referential constraints used in the
command can be kept unbound in the goal formula and

will be resolved by the planner in a context-dependent
manner. This is particularly important for resolving
referential expressions involving plurals and binding

constraints, e.g. ―the blue things near the green thing‖, that
may not be bound completely be-fore starting the

International Journal of Research
ISSN: 2348-6848 Vol-3, Special Issue-1

National Conference on Advanced Computing Technologies
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research

Academy, Hyderabad, Telangana, India.

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad,
Telangana, India.

Papers presented in Conference can be accessed from www.edupediapublications.org/journals

P a g e | 77

execution of a plan. If, for example, during plan execution
a new blue object is perceived, the monitoring component

of the planning SA will trigger re-planning in which the
planner will resolve the same goal formula differently, this
time moving the newly detected object too. We refer to

this process as lazy binding.
To convert the world state into an initial state for

planning the problem generation component in the
planning SA pulls a spatial description of the current scene
from the spatial SA WM. Similar information about visual
features is pulled from the visual SA (via the binding SA)
and included in the initial state. These facts about objects
and their relations are then used by the planner to generate
a plan that satisfies the goal formula, resolving the
referential constraints on-the-fly. In our example, the
planner correctly detects which objects are to be moved

and which target positions satisfy the description ―to the
left of the red thing‖.[8]

This interaction demonstrates how the binder
mediates the exchange of information between

components. In this case, it provides the planning SA with
the necessary qualitative representation of objects and

their relations, but allows it to ignore the underlying
quantitative representations used by the SAs the

information comes from. This is also illustrated by the
information flow when a plan is executed. In the

implemented system when the plan is successfully created
the coordination SA passes it on to the manipulation sub

architecture. Each object in the plan is represented as a
reference to an instance binding, which can be used to

access the binding candidate from the visual SA which in
turn can be used to access detailed information about the

object‘s pose in the world. The robot must then pick a

particular location in the world that satisfies the qualitative
goal position ―left of‖. This is achieved by inverting the

mapping from a quantitative to qualitative spatial
representation. We refer to this as the process of mediating

between qualitative and quantitative representations of
space. It‘s this quantitative information that is used by the

manipulation SA when plans are executed, but it‘s
precisely this kind of detailed, volatile information that the

planning system must be isolated from when planning
about object positions.

Results and Conclusion

We can compare the presented schema to related
work on architectures for modeling human cognition and
to architectures for robotic systems. It is also beneficial to
consider what features are commonly required by robotic
integrated systems such as the ones we ultimately wish to

produce.
One of the crucial differences between the CoSy

Architecture Schema and architectures for modeling
human cognition such as ACT-R (Anderson et al. 2004),
[9] Soar (Laird, Newell, & Rosenbloom 1987)[10] and
ICARUS (Langley & Choi 2006)[11] is that these commit
to unified representations for all information, whereas
CAS permits the specialized representations typically
required by robotic systems. This is related to the fact that
processing components in cognitive modeling
architectures are typically logical rule systems, whereas
CAS components can be arbitrary processing modules.
Architectures for modeling human cognition also typically
include mechanisms for learning (e.g. chunking in Soar
and spreading activation in ACT-R). Such mechanisms are
not present in CAS at the schema level, but could be de-
signed into an instantiation.

A key feature of CAS is that it allows
components to be active in parallel. An architecture that
ran the components from the lower half of Figure 4 in
serial would require ap-proximately four seconds longer to
process the data. This is simply a result of parallelism, but
an architecture must support parallelism in terms of
control and the concurrent access to information.
Concurrently active components are common in existing
robotic systems (e.g. (Mavridis & Roy 2006)), but support
for them is missing from the cognitive modeling
architectures mentioned previously.[11] Parallelism is
usually present at a low level in robotic architectures
designed to operate reactively on their world (e.g. the
Subsumption architecture (Brooks 1986)). [12] On top of
this many robotic tier-based architectures build scheduling
apparatus to generate goal directed behaviour (Gat 1997).
Such scheduling systems are not explicitly required by our
schema, but the task manager plays a similar role by pro-
viding control over processing components. Cognitive
modeling architectures typically do not support parallel
components, but rather feature serial rule execution
(although Minsky‘s work is an exception (Minsky 1987)).

Although we are aware that our work overlaps

and contrasts in various interesting ways with many other

robotic and integrated system projects, some with
primarily engineering goals, and some aiming towards

modeling human and animal capabilities, space constraints
have forced us to leave detailed comparisons to be

addressed in future papers. Although our work can be
superficially compared to that of Mavridis & Roy (2006),

[13] McGuire et. al (2002) [14] and Bauckhage et. al
(2001), [15] the crucial difference is that whereas these

systems have been created to perform in a limited task do-
main, our instantiations have been designed and built to

International Journal of Research
ISSN: 2348-6848 Vol-3, Special Issue-1

National Conference on Advanced Computing Technologies
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research

Academy, Hyderabad, Telangana, India.

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad,
Telangana, India.

Papers presented in Conference can be accessed from www.edupediapublications.org/journals

P a g e | 78

sup-port what we call ―scaling out‖ (as opposed to

―scaling up‖): new components have access to data
produced by existing components via working memories,

the binding mechanism is able to accommodate new
information and representations into its feature set, and

additional functionality provided by new components
allows new tasks and problems to be dealt with, using the

same architectural framework.
In summary we have presented an architectural

schema and a number of novel integration mechanisms,
and shown how they can support flexible interactions
between a human and robot in a tabletop domain with
objects. We have shown how the integrated system is able
to scale itself out (the ontology learning works for tens of
object properties) and argued that it is the innovative
integration mechanisms and the schema as a whole that
have enabled this flexibility.

References

[1] Anderson, J. R.; Bothell, D.; Byrne, M. D.; Douglass,
S.; Lebiere, C.; and Qin, Y. 2004. An integrated theory of
the mind. Psychological Review 111(4):1036–1060.

[2] Bauckhage, C.; Fink, G. A.; Fritsch, J.; Kummert, F.;
Lomker,¨ F.; Sagerer, G.; and Wachsmuth, S. 2001. An
Integrated System for Cooperative Man-Machine Interac-
tion. In IEEE Int. Symp. on Comp. Int. in Robotics and
Automation, 328–333.

[3] Brenner, M.; Hawes, N.; Kelleher, J.; and Wyatt, J.
2007. Mediating between qualitative and quantitative
represen-tations for task-orientated human-robot
interaction. In
Proc. IJCAI ’07.

[4] Brooks, R. A. 1986. A robust layered control system
for a mobile robot. IEEE J. of Robot. and Automation
2:14–23.

[5] Erman, L.; Hayes-Roth, F.; Lesser, V.; and Reddy, D.
1988. The HEARSAY-II Speech Understanding System:
Inte-grating Knowledge to Resolve Uncertainty.
Blackboard Systems 31–86.

[6]Gat, E. 1997. On three-layer architectures. In
Kortenkamp, D.; Bonnasso, R. P.; and Murphy, R., eds.,
Artificial Intel-ligence and Mobile Robots.

[7] Hawes, N.; Wyatt, J.; and Sloman, A. 2006. An archi-
tecture schema for embodied cognitive systems. Technical
Report CSR-06-12, Uni. of Birmingham, School of Com-
puter Science.

[8] Hawes, N.; Zillich, M.; and Wyatt, J. 2007. BALT &
CAST: Middleware for cognitive robotics. Technical Re-
port CSR-07-1, Uni. of Birmingham, School of Computer
Science.

[9] Kruijff, G.-J.; Kelleher, J.; and Hawes, N. 2006. Infor-
mation fusion for visual reference resolution in dynamic
situated dialogue. In Andre, E.; Dybkjaer, L.; Minker, W.;
Neumann, H.; and Weber, M., eds., Proc. PIT ’06, 117 –
128.

[10] Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
Soar: An architecture for general intelligence. Artificial
Intelli-gence 33(3):1–64.

[11] Langley, P., and Choi, D. 2006. A unified cognitive
archi-tecture for physical agents. In Proc. AAAI ’06.

[12] Mavridis, N., and Roy, D. 2006. Grounded situation
models for robots: Where words and percepts meet. In
Proc. IROS ’06.

[13] Mcguire, P.; Fritsch, J.; Steil, J. J.; Rothling, F.; Fink,
G. A.; Wachsmuth, S.; Sagerer, G.; and Ritter, H. 2002.
Multi-modal human-machine communication for instruct-
ing robot grasping tasks. In Proc. IROS ’02.

[14] Minsky, M. L. 1987. The Society of Mind. London:
William Heinemann Ltd.

[15] Skocaj,ˇ D.; Berginc, G.; Ridge, B.; Stimec,ˇ A.;
Jogan, M.; Vanek, O.; Leonardis, A.; Hutter, M.; and
Hawes, N. 2007. A system for continuous learning of
visual concepts. In
Proc. ICVS ’07.

