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Abstract 
We present integration mechanisms for combining heterogeneous components in a situated information 

processing system, illustrated by a cognitive robot able to collaborate with a human and display some 

understanding of its surroundings. These mechanisms include an architectural schema that encourages 

parallel and incremental information processing, and a method for binding information from distinct 

representations that when faced with rapid change in the world can maintain a coherent, though 

distributed, view of it. Provisional results are demonstrated in a robot combining vision, manipulation, 

language, planning and reasoning capabilities interacting with a human and manipulable objects. 

Keywords: architectural schema; binding information; behavioural competences; Cross-Subarchitecture 
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Introduction 
 

We aim to understand how to build ‗cognitive‘ 
robots, partly in order to eventually test theories about 
how humans work. Such robots should understand 
their environment and collaborate with humans in 
varied situations, employing many competences that 
are recombined as needed. Resulting behaviour must 
be extensible, purposive and flexible, i.e. achieving 
goals despite changing constraints. It must be robust in 
the face of imperfect sensors and effectors, able to 
modulate behaviour dynamically, and to learn without 
re-programming, among other things. To meet this 
formidable combination of challenges we must answer 
many difficult questions about how systems can be 
synthesized from interacting, changeable, components. 
This paper reports on progress towards meeting such 
requirements, within a range of architectures for which 
we have implemented tools.  

From analysis of detailed scenarios we derive 
requirements that lead to design principles for 
architectures that can be expressed in terms of 
architectural schemata. Schemata define a (large) 
design space containing many specific de-signs: the 

architectural instantiations. A schema provides a set 
of constraints on this space. The next section de-
scribes a scenario, and the requirements and design 
principles that arise from it, which are then expressed 
in a schema, the CoSy Architecture Schema (CAS), 
and an associated software toolkit (CAST,  
 
the CAS Toolkit) that al-lows rapid prototyping of 
CAS instantiations. Some of the issues that arise are 
described in terms of a pair of related systems that 

perform tasks requiring human-robot  collaboration: 
cross-modal learning of object qualities, and 
linguistically initiated manipulation. The systems 
integrate: vision, language understanding and 
generation, spatial reasoning, learning,  
planning and manipulation – using tens of individual 
task-specific modules running concurrently in real 
time. Problems addressed concern incremental 
processing, flow of information, linking of 
representations across components, cross-modal 
processing and processing control. 
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Background and Approach 
 

We start from film script-like scenario 
descriptions of a collaborative table-top manipulation 
scenario in which the robot asks and answers questions 
about the scene, performs requested actions  and learns 
names and qualities of objects. Behavioural 

competences include recognizing, locating and 
manipulating objects; planning action sequences; 
interpreting and generating natural language; and 
understanding various (multi-modal) properties such 
as size, spatial relations and colour. These behaviours 
must be performed in real-time in a contextually-
appropriate manner. The robot should behave sensibly 
when interrupted, when its actions fail, when it lacks 
sufficient information and when it must coordinate 
different actions (e.g. speaking and moving). 
 

Requirements arising from this task apply to 
many similar robot scenarios, including the ability to 
cope with external change (objects move, utterances 
occur during ac-tion); and the need to integrate 
information from multiple sources (speech, vision, 
touch) where related information from sources arrives 
asynchronously. For this, the architecture must support 
many components running concurrently.[1] Besides 
these run time requirements there are also design time 
requirements. Architectures should make cognitive 
systems (relatively) easy to design, using current 

technologies. The best available components will often 
use specialized representations to facilitate and speed 
up processing. This makes integration harder as they 
may be incompatible with other representations. So the 
architecture needs to allow easy methods for linking 
modules using different forms of representation, 
without excessive run-time overhead. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 1: The CAS Subarchitecture Design 

Schema. 
 
 
The Architecture Schema 
 

Analysis of scenarios led to three design 
requirements: sup-port for concurrent modular 
processing, structured manage-ment of knowledge, 

and dynamic control of processing. These are met by 
the CoSy Architecture Schema (Hawes, Wyatt, & 
Sloman 2006). The schema allows a collection of 
loosely coupled subarchitectures (SAs). As shown in 

Figure 1, each contains a number of processing 
components which share information via a working 
memory (WM), and a control component called a task 

manager. Some processing components within an SA 
are unmanaged and some managed. Unmanaged 
components perform relatively simple processing on 
data, and thus run constantly, pushing their results 

onto the working memory. Managed processes, by 
contrast, monitor the changing working memory 
contents, and suggest possible processing tasks using 
the data in the working memory. As these tasks are 

typically expensive, and computational power is 
limited, tasks are selected on the basis of current needs 
of the whole system. The task man-ager is essentially a 
set of rules for making such allocations. Each SA 

working memory is readable by any component in any 
other SA, but is writable only by processes within its 
own SA, and by a limited number of other privileged 

SAs. Components within privileged SAs can post 
instructions to any other SA, allowing top-down goal 
creation. 
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If there are several goals in an SA they are 
mediated by its task manager. This mixes top-down 
and data driven processing and allows goals to be 
handled that require coordination within one SA or 
across multiple SAs. At one extreme the number of 
privileged SAs can be limited to one (centralized 
coordination), and at the other all SAs can be 
privileged (completely decentralized coordination). In 
our scenario the preference seems to be for a small 
number of specialized, privileged coordination SAs.  

An overriding principle in CAS is that 

processing components work concurrently to build up 

shared representations. SAs work concurrently on 
different sub-tasks, and components of an SA work on 

parts of a sub-task. Instantiations of CAS function as 

distributed blackboard systems as used, for example, 

in Hearsay-II (Erman et al. 1988).[2]  
We have designed and built instantiations of 

CAS that have a small number of coordinating SAs, 
and a large number of components that concurrently 
refine common representations. Control of individual 
motor systems is not distributed in our implemented 
systems although this is perfectly possible using our 
approach. To support our work, the architecture 
schema is realized in a software toolkit (CAST) 
(Hawes, Zillich, & Wyatt 2007). [3] CAST allows 
components written in different languages to be 
combined into CAS instantiations. Different 
instantiations can be created without recompilation or 
changes to components, allowing function-ally 
different systems to be generated quickly, making it 
possible to evaluate the influence of the architecture 
schema on various instantiations without altering the 

components of the architecture. 
 

Cross-Subarchitecture Binding 
 

In order to combine information from different 

subarchitectures we need to provide a means for 
accessing information from their working memories. 
When subarchitectures are interpreting data from 
different sensors across an integrated system, they will 

generate various representations that reflect the 
surrounding environment in different ways. For 
example, spatial, visual, planning and communication 

SAs may each have their own representations of an 

object. Allowing each to influence others (e.g. in 
resolving uncertainty) and allowing information from 
different SAs to be combined (e.g. information about 

things that are seen and touched) requires the different 
representations to be bound together somehow. For 
example, if a visual SA notices a green object of 
unknown type that is within reach, then a ―grab the 

green book‖ command processed by a language SA 
may be informative since a likely category for the 
object can be inferred (―book‖). Alternatively, 

information from a visual SA‘s working memory 
might be used by the linguistic SA to determine the 
referent of the phrase ―the green book‖.[4] 

We have been experimenting with a CAS 
instantiation that uses a binding SA which contains a 
working memory that mirrors the contents of all SAs 
that contain information about objects. The binding 
SA features a component called a binder that 
maintains the contents of binding WM by joining 
information from different SAs. The binder receives 
candidates for binding from other SAs. These 
candidates must be filtered and abstracted with respect 
to their source domains to contain information that 
could be useful to other SAs (such as colour and type 
in the previous example). The filtering and abstraction 
is task-dependent and therefore each SA requires a 
corresponding binding monitor. This is a process 
which is triggered by updates to the WM and which 
translates these into binding candidates before writing 
them to the binding WM where they will be bound 
together by the binder to form instance bindings 
(representations that should roughly correspond to the 
objects in this case). Monitors should ideally perform 
intra-modular binding (Kruijff, Kelleher, & Hawes 
2006) in order for the binder to be relieved of domain-
specific reasoning. 

To enable other SAs to communicate with the 

binding SA, both to generate binding candidates and to 
use the information represented by instance bindings, a 

shared language is needed. In our instantiations this 
language is oriented around features and relations.[5] 

The features describe properties of objects that can be 
provided by SAs, e.g. colour, shape, position, etc. The 

relations describe states that can exist between two or 
more objects, e.g. spatial relations. Some features can 

be compared with (or be in common with) features of 
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other modalities in which case a common ground for 
evaluating the binding is established. New features and 

comparison functions between features can be added if 
new SAs are added that support, or require, new 

features. Binding candidates and instance bindings are 
represented in the binding WM as sets of these 

features. The feature set can contain zero, one or more 
instantiations of values for each feature. This means 

that the object description conveyed by the binding 
candidates and instance bindings are open-ended in 

terms of how much they specify about their referent: 
either the feature is not represented at all, or it is 

instantiated with one or more values (e.g. an object 
may have more than one colour). To maintain instance 

bindings, the binder com-pares the features of newly 
generated candidates to those of the existing bindings 

(using a scoring function). If a clear match emerges 
from this process then the new candidate is bound into 

the matching instance binding. If no matching instance 
binding is found, a new one is created. If more than 

one instance binding matches equally well with a new 
candidate, this creates a disambiguation problem. 

Investigating this is part of our ongoing work. 
Once an instance binding has been created, any 

component in the architecture can use this to access all 
of the candidates bound into it. Moreover, these 
binding candidates may in turn refer back to more 
detailed representations in their source SAs. The 
binding SA WM thereby serves as a provider for 
proxies between all SAs in the system. This proxy 
service, based on a shared feature language, greatly 
simplifies the problem of exchanging information 
between SAs that use heterogeneous representations. 

Instantiations and Empirical Work 
 

Our integration mechanisms have been tested 
by incrementally implementing two systems using 
CAST: a cross modal learning instantiation (CLI), and 

a linguistically-driven manipulator instantiation (LMI). 
The CLI (Figure 2, dark lines) combines SAs for 
cross-modal language interpretation and generation 
(Kruijff, Kelleher, & Hawes 2006) and visual property 
learning (Skocajˇ et al. 2007) to produce a system that 
can learn and describe object properties in dialogue 
with a tutor. The LMI (Figure 2, light and dark lines) 
extends the CLI with SAs for planning, spatial 

reasoning and manipulation (Brenner et al. 2007) to 
produce a system that executes manipulation 
commands that refer to objects using the previously 
learnt visual properties. In these instantiations 
information exchange between the subarchitectures is 
mediated by the binding mechanism discussed 
previously. 

 

Figure 2: The instantiation designs 
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Figure 3: How processing occurs across SAs in the 
example. The lower diagram contains a detailed 
view of the circled area from the upper one. Grey 
areas represent processing. Black lines on the 
lower diagram represent data exchanged via 
WMs 
  

 
A Red object placed on table. 
B Tutor (T): ―This is a red thing.‖  
C Red object replaced with blue 
object. D Robot (R): ―Is that red?‖ 
E T: ―No, this is a blue thing.‖  
F Blue object replaced with red 
object. G Blue object placed to right 
of red object. H Blue object placed to 
left of red object.  
I T: ―Put the blue things to the left of the red 
thing.‖ J R moves right hand blue object to left 
of red object. 

 

 

    Figure 4: Events from the instantiation run 

 
In the CLI the subarchitectures are as follows: the 

communication SA (CSA) containing components for 

speech recognition, dialogue interpretation and production, 
and speech synthesis; the vision SA (VSA) containing 

components for change detection, segmentation, and 
visual property learning (three components); the binding 

SA (BSA) containing components for generating visual 
and linguistic binding candidates, and the binder; the 

spatial SA (SSA) containing components for monitoring 
instance bindings and representing the current scene; and 

the control subarchitecture containing components for 

motive generation and management. [6] In the LMI the 

SSA is extended with components for adding spatial 
relationships to the current scene, and with these 

additional subarchitectures: the planning sub-architecture 
containing components for planning, problem generation, 

and execution monitoring; and the manipulation  
subarchitecture containing a component for translating 

planned actions into behaviour via visual servoing. 
 

The architecture schema and binding mechanisms 
can be illustrated with an extended example from the 
combined CLI and LMI system. In this example the tutor 
teaches the colours of objects one by one, before giving a 
manipulation command (see Figure 3). The implemented 
system is capable of discriminating many more colours 
and other visual properties, and giving verbal descriptions 
of the scene, but because of space we consider only this 
example. 
 
The account is organized by the integration mechanisms 

employed. These mechanisms are the collaborative 
refinement of common representations, cross-modal 

binding based on known mappings between ontologies, 
top down and bottom up goal raising, learning mappings 

between ontologies, lazy binding and mediation between 
qualitative and quantitative representations. None of these 

is enforced by the schema, but they arise naturally from the 
decision to employ a variety of representations in separate 

subarchitectures. All are general, none rely on properties of 
the example. To aid the reader we annotate the text with 
markers for the events A to J described in Figure 4. How 
subarchitecture activity varies with these events can be seen 
in Figure 3. Although the instantiation is usually distributed 
across a number of machines, this data was generated by 
running it on a single machine. This decision was taken to 
ease the process of collecting data. With a distributed setup 
processes complete quicker, but the pattern of information 
processing remains the same. 
 
Collaborative Refinement of Representations 
 

A sub architecture couples the results of 
processing via the types of objects can that can reside in 
the working memory. For example, in the visual WM 
(VWM) there are two main types of data object, 
corresponding to regions-of-interest (ROIs) and proto-
objects (POs). Each is structured and typed. Visual 
components refine knowledge about either by overwriting 
their fields.  
 

Components can refine different fields of the 
same data-object in parallel. If the data-objects are well 
chosen they provide a degree of binding of the results of 
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processing. When, for example, an object is placed in 
front of the robot (events A, C, F, G, H) the visual change 
detection component is triggered, causing a scene changed 
fact to be added to the VWM. The appearance of this fact 
causes the segmentor component to run on the changed 
scene, which results in a new ROI being generated along 
with a related PO. Once these data structures are in 
working memory other components start to process them 
in parallel (as seen in Figure 4). In the visual SA the 
property learning components extract features from the 
ROI and these are added into the ROI data structure. Their 
presence in turn triggers the recognizer, which adds any 
recognized property data — such as the colour and shape. 
When objects are added in quick succession (events 
F,G,H) each triggers a similar sequence. New objects are 
therefore processed con-currently with old ones. The only 
current restriction is that each component processes one 
object at a time. 
 
Cross Modal Binding 
 

Previously we described the cross-subarchitecture 
binding mechanism we use in the instantiations. This 

mechanism does not bind directly between pairs of sub 
architectures, but via a shared feature-based language. The 
important point here is that it relies on mappings between 
the ontologies for different sub architectures, e.g. between 
the binding features used for the visual entity red and the 
name red. This shared language has a mapping to each 
different SA representation. Typically, this mapping 
would be defined by the system designer, an approach 

taken in our system for most of the mappings. We would 
like, however, for the system to be able to acquire such 
mappings, and this is what the learning part of the example 
interaction demonstrates. Later on, when references are 
made to objects (e.g. in event I), the binder works using 
the mappings learnt previously between the ontologies (in 
events A to E) to carry out the binding. 
 

Learning Mappings Between Ontologies 
 

In the first learning case (events A and B) the 
tutor puts down a red object. As no colours have been 

learnt yet no visual property information is added to the 

ROI. When the tutor says ―this is a red thing‖ the speech 
recognition component adds the speech string into the 

CSA where it is processed by the parser and the dialogue 

interpretation component. The result is a structure in the 

communication WM describing the teaching instruction. 
This triggers the coordination SA to generate and act on a 

motive to learn the visual properties of the thing referred 

to by ―this‖. Since there is no mapping between ontologies 
to guide binding, the robot assumes that the object the 

human is teaching it about is the most recent one to 

appear. The motive manager in the coordination SA uses 

this binding to get a reference to the associated PO and 
ROI. It now pushes a goal down to the VSA by posting a 

visual learning instruction together with information about 

the properties of the object. This is an example of top 
down goal creation. A description of an object for learning 

may contain several different types of properties (―a small 

round red thing‖). When the learning goal is written to the 

VWM the visual property learning component is triggered 
and up-dates its internal representations. The learning 

algorithm we use is able to learn quite general correlations 

between elements in two ontologies (Skocajˇ et al. 2007). 
The colour information is translated from the linguistic 

representation (as a structured logical form) into the visual 

representation (a colour  index) using the binding feature 

language.[7]  
When the red object is used for learning (event C) 

the visual system now guesses that the object is blue, due 
to generalization from the previous case. It doesn‘t regard 
the match as reliable, so a query is raised by writing a 
structure containing references to the PO and the colour 
blue into the VWM. In a reverse of the previous 
interaction this causes a clarification dialogue in which 
the robot says ―is this blue?‖, to which the tutor replies 
―no, this is red‖. This demonstrates how the mix of top 
down and bottom up control gives the robot the ability to 

take initiative in the dialogue. 
 

Lazy Binding and Mediation 
 

The last stages of the example concern the 
planning and execution of a manipulation. This 

demonstrates our approach to binding through planning, 
and the need to mediate between qualitative and 
quantitative representations of space. After the first blue 

object is put down (event G), a second blue object is 
placed to the left of the red object (event H). Following 
this the human commands the robot to ―put the blue things 

to the left of the red thing‖ (event I). The CSA interprets 
the utterance as a command and, consequently, the 
coordination SA sends it to the planning SA. The 

command is translated to a planning goal formula 
(Brenner et al. 2007). One particularly important aspect of 
this approach is that referential constraints used in the 
command can be kept unbound in the goal formula and 

will be resolved by the planner in a context-dependent 
manner. This is particularly important for resolving 
referential expressions involving plurals and binding 

constraints, e.g. ―the blue things near the green thing‖, that 
may not be bound completely be-fore starting the 
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execution of a plan. If, for example, during plan execution 
a new blue object is perceived, the monitoring component 

of the planning SA will trigger re-planning in which the 
planner will resolve the same goal formula differently, this 
time moving the newly detected object too. We refer to 

this process as lazy binding.  
To convert the world state into an initial state for 

planning the problem generation component in the 
planning SA pulls a spatial description of the current scene 
from the spatial SA WM. Similar information about visual 
features is pulled from the visual SA (via the binding SA) 
and included in the initial state. These facts about objects 
and their relations are then used by the planner to generate 
a plan that satisfies the goal formula, resolving the 
referential constraints on-the-fly. In our example, the 
planner correctly detects which objects are to be moved 

and which target positions satisfy the description ―to the 
left of the red thing‖.[8]  

This interaction demonstrates how the binder 
mediates the exchange of information between 

components. In this case, it provides the planning SA with 
the necessary qualitative representation of objects and 

their relations, but allows it to ignore the underlying 
quantitative representations used by the SAs the 

information comes from. This is also illustrated by the 
information flow when a plan is executed. In the 

implemented system when the plan is successfully created 
the coordination SA passes it on to the manipulation sub 

architecture. Each object in the plan is represented as a 
reference to an instance binding, which can be used to 

access the binding candidate from the visual SA which in 
turn can be used to access detailed information about the 

object‘s pose in the world. The robot must then pick a 

particular location in the world that satisfies the qualitative 
goal position ―left of‖. This is achieved by inverting the 

mapping from a quantitative to qualitative spatial 
representation. We refer to this as the process of mediating 

between qualitative and quantitative representations of 
space. It‘s this quantitative information that is used by the 

manipulation SA when plans are executed, but it‘s 
precisely this kind of detailed, volatile information that the 

planning system must be isolated from when planning 
about object positions. 
 

Results and Conclusion 
 

We can compare the presented schema to related 
work on architectures for modeling human cognition and 
to architectures for robotic systems. It is also beneficial to 
consider what features are commonly required by robotic 
integrated systems such as the ones we ultimately wish to 

produce.  
One of the crucial differences between the CoSy 

Architecture Schema and architectures for modeling 
human cognition such as ACT-R (Anderson et al. 2004), 
[9] Soar (Laird, Newell, & Rosenbloom 1987)[10] and 
ICARUS (Langley & Choi 2006)[11] is that these commit 
to unified representations for all information, whereas 
CAS permits the specialized representations typically 
required by robotic systems. This is related to the fact that 
processing components in cognitive modeling 
architectures are typically logical rule systems, whereas 
CAS components can be arbitrary processing modules. 
Architectures for modeling human cognition also typically 
include mechanisms for learning (e.g. chunking in Soar 
and spreading activation in ACT-R). Such mechanisms are 
not present in CAS at the schema level, but could be de-
signed into an instantiation.  

A key feature of CAS is that it allows 
components to be active in parallel. An architecture that 
ran the components from the lower half of Figure 4 in 
serial would require ap-proximately four seconds longer to 
process the data. This is simply a result of parallelism, but 
an architecture must support parallelism in terms of 
control and the concurrent access to information. 
Concurrently active components are common in existing 
robotic systems (e.g. (Mavridis & Roy 2006)), but support 
for them is missing from the cognitive modeling 
architectures mentioned previously.[11] Parallelism is 
usually present at a low level in robotic architectures 
designed to operate reactively on their world (e.g. the 
Subsumption architecture (Brooks 1986)). [12] On top of 
this many robotic tier-based architectures build scheduling 
apparatus to generate goal directed behaviour (Gat 1997). 
Such scheduling systems are not explicitly required by our 
schema, but the task manager plays a similar role by pro-
viding control over processing components. Cognitive 
modeling architectures typically do not support parallel 
components, but rather feature serial rule execution 
(although Minsky‘s work is an exception (Minsky 1987)).  

Although we are aware that our work overlaps 

and contrasts in various interesting ways with many other 

robotic and integrated system projects, some with 
primarily engineering goals, and some aiming towards 

modeling human and animal capabilities, space constraints 
have forced us to leave detailed comparisons to be 

addressed in future papers. Although our work can be 
superficially compared to that of Mavridis & Roy (2006), 

[13] McGuire et. al (2002) [14] and Bauckhage et. al 
(2001), [15] the crucial difference is that whereas these 

systems have been created to perform in a limited task do-
main, our instantiations have been designed and built to 
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sup-port what we call ―scaling out‖ (as opposed to 

―scaling up‖): new components have access to data 
produced by existing components via working memories, 

the binding mechanism is able to accommodate new 
information and representations into its feature set, and 

additional functionality provided by new components 
allows new tasks and problems to be dealt with, using the 

same architectural framework.  
In summary we have presented an architectural 

schema and a number of novel integration mechanisms, 
and shown how they can support flexible interactions 
between a human and robot in a tabletop domain with 
objects. We have shown how the integrated system is able 
to scale itself out (the ontology learning works for tens of 
object properties) and argued that it is the innovative 
integration mechanisms and the schema as a whole that 
have enabled this flexibility. 
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