
 

International Journal of Research 
ISSN: 2348-6848 Vol-3, Special Issue-1 

National Conference on Advanced Computing Technologies 
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research 

Academy, Hyderabad, Telangana, India. 
 

 

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad, 
Telangana, India. 

Papers presented in Conference can be accessed from www.edupediapublications.org/journals 

P a g e  | 384 

Design & Development of an improvised PACK System using 

TRE Technique for Cloud Computing Users 

Paruchuri Jeevan Krishna1; M.Deena Babu2& Prof.Dr.G.Manoj Someswar3 

1
M.Tech.(CSE) from Narasimha Reddy Engineering College, Affiliated to JNTUH, Hyderabad, Telangana, 

India 
2
M.Tech.(CSE), Assistant Professor, Department of CSE, Narasimha Reddy Engineering College, 

Affiliated to JNTUH, Hyderabad, Telangana, India 
3
B.Tech., M.S.(USA), M.C.A., Ph.D., Principal & Professor, Department Of CSE, Anwar-ul-uloom 

College of Engineering & Technology, Affiliated to JNTUH, Vikarabad, Telangana, India 

ABSTRACT 

In this research paper, we present PACK (Predictive ACKs), a novel end-to-end traffic redundancy 

elimination (TRE) system, designed for cloud computing customers. Cloud-based TRE needs to apply a 

judicious use of cloud resources so that the bandwidth cost reduction combined with the additional cost of 

TRE computation and storage would be optimized. PACK’s main advantage is its capability of offloading 

the cloud-server TRE effort to end clients, thus minimizing the processing costs induced by the TRE 

algorithm. Unlike previous solutions, PACK does not require the server to continuously maintain clients’ 

status. This makes PACK very suitable for pervasive computation environments that combine client 

mobility and server migration to maintain cloud elasticity. PACK is based on a novel TRE technique, 

which allows the client to use newly received chunks to identify previously received chunk chains, which in 

turn can be used as reliable predictors to future transmitted chunks. We present a fully functional PACK 

implementation, transparent to all TCP-based applications and network devices. Finally, we analyze 

PACK benefits for cloud users by using  traffic traces from various sources. 

Keywords: Predictive ACKs(PACK); Traffic Redundancy Elimination(TRE); Broad Network Access; 

Aggregate Key Transfer; PACK chuncking; Resource Pooling 

 

INTRODUCTION 

             Cloud computing is the use of computing 

resources (hardware and software) that are delivered 

as a service over a network (typically the Internet). 

The name comes from the common use of a cloud- 

shaped symbol as an abstraction for the complex 

infrastructure it contains in system diagrams. Cloud 

computing entrusts remote services with a user's data, 

software and computation. Cloud computing consists 

of hardware and software resources made available on 

the Internet as managed third-party services. These 

services typically provide access to advanced software 

applications and high-end networks of server 

computers. 

 

Figure 1: Structure of cloud computing 

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Internet


 

International Journal of Research 
ISSN: 2348-6848 Vol-3, Special Issue-1 

National Conference on Advanced Computing Technologies 
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research 

Academy, Hyderabad, Telangana, India. 
 

 

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad, 
Telangana, India. 

Papers presented in Conference can be accessed from www.edupediapublications.org/journals 

P a g e  | 385 

The goal of cloud computing is to apply 

traditional supercomputing, or high-performance 

computing power, normally used by military and research 

facilities, to perform tens of trillions of computations per 

second, in consumer-oriented applications such as financial 

portfolios, to deliver personalized information, to provide 

data storage or to power large, immersive computer 

games.[1] 

The cloud computing uses networks of large 

groups of servers typically running low-cost consumer PC 

technology with specialized connections to spread data-

processing chores across them. This 

shared IT infrastructure contains large pools of systems that 

are linked together. Often, virtualization techniques are 

used to maximize the power of cloud computing. 

 

Characteristics and Services Models: 

                    The salient characteristics of cloud 

computing based on the definitions provided by the 

National Institute of Standards and Terminology (NIST) are 

outlined below: 

 On-demand self-service: A consumer can 

unilaterally provision computing capabilities, such 

as server time and network storage, as needed 

automatically without requiring human interaction 

with each service’s provider.[2]  

 Broad network access: Capabilities are available 

over the network and accessed through standard 

mechanisms that promote use by heterogeneous 

thin or thick client platforms (e.g., mobile phones, 

laptops, and PDAs).  

 Resource pooling: The provider’s computing 

resources are pooled to serve multiple consumers 

using a multi-tenant model, with different physical 

and virtual resources dynamically assigned and 

reassigned according to consumer demand. There 

is a sense of location-independence in that the 

customer generally has no control or knowledge 

over the exact location of the provided resources 

but may be able to specify location at a higher 

level of abstraction (e.g., country, state, or data 

center). Examples of resources include storage, 

processing, memory, network bandwidth, and 

virtual machines.[3]  

 Rapid elasticity: Capabilities can be rapidly and 

elastically provisioned, in some cases 

automatically, to quickly scale out and rapidly 

released to quickly scale in. To the consumer, the 

capabilities available for provisioning often appear 

to be unlimited and can be purchased in any 

quantity at any time.  

 Measured service: Cloud systems automatically 

control and optimize resource use by leveraging a 

metering capability at some level of abstraction 

appropriate to the type of service (e.g., storage, 

processing, bandwidth, and active user accounts). 

Resource usage can be managed, controlled, and 

reported providing transparency for both the 

provider and consumer of the utilized service.  

 

Figure 2: Characteristics of cloud computing 

 Services Models: 

             Cloud Computing comprises three different service 

models, namely Infrastructure-as-a-Service (IaaS), 

Platform-as-a-Service (PaaS), and Software-as-a-Service 

(SaaS). The three service models or layer are completed by 

an end user layer that encapsulates the end user perspective 

on cloud services.[4] The model is shown in figure below. 

If a cloud user accesses services on the infrastructure layer, 

for instance, she can run her own applications on the 

resources of a cloud infrastructure and remain responsible 

for the support, maintenance, and security of these 

applications herself. If she accesses a service on the 

application layer, these tasks are normally taken care of by 

the cloud service provider. 

http://www.webopedia.com/TERM/S/supercomputer.html
http://www.webopedia.com/TERM/H/High_Performance_Computing.html
http://www.webopedia.com/TERM/H/High_Performance_Computing.html
http://www.webopedia.com/TERM/N/network.html
http://www.webopedia.com/TERM/S/server.html
http://www.webopedia.com/TERM/I/IT.html
http://www.webopedia.com/TERM/V/virtualization.html


 

International Journal of Research 
ISSN: 2348-6848 Vol-3, Special Issue-1 

National Conference on Advanced Computing Technologies 
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research 

Academy, Hyderabad, Telangana, India. 
 

 

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad, 
Telangana, India. 

Papers presented in Conference can be accessed from www.edupediapublications.org/journals 

P a g e  | 386 

 

Figure 3: Structure of service models 

Benefits of cloud computing: 

1. Achieve economies of scale – increase volume 

output or productivity with fewer people. Your 

cost per unit, project or product plummets.  

2. Reduce spending on technology infrastructure. 

Maintain easy access to your information with 

minimal upfront spending. Pay as you go (weekly, 

quarterly or yearly), based on demand.[5]  

3. Globalize your workforce on the cheap. People 

worldwide can access the cloud, provided they 

have an Internet connection.  

4. Streamline processes. Get more work done in less 

time with less people.  

5. Reduce capital costs. There’s no need to spend 

big money on hardware, software or licensing fees.  

6. Improve accessibility. You have access anytime, 

anywhere, making your life so much easier!  

7. Monitor projects more effectively. Stay within 

budget and ahead of completion cycle times.  

8. Less personnel training is needed. It takes fewer 

people to do more work on a cloud, with a 

minimal learning curve on hardware and software 

issues. 

9. Minimize licensing new software. Stretch and 

grow without the need to buy expensive software 

licenses or programs. [6] 

10. Improve flexibility. You can change direction 

without serious “people” or “financial” issues at 

stake.  

Advantages: 

1. Price: Pay for only the resources used. 

2. Security: Cloud instances are isolated in the 

network from other instances for improved 

security. 

3. Performance: Instances can be added instantly for 

improved performance. Clients have access to the 

total resources of the Cloud’s core hardware. 

4. Scalability: Auto-deploy cloud instances when 

needed. 

5. Uptime: Uses multiple servers for maximum 

redundancies. In case of server failure, instances 

can be automatically created on another server. 

6. Control: Able to login from any location. Server 

snapshot and a software library lets you deploy 

custom instances. 

7. Traffic: Deals with spike in traffic with quick 

deployment of additional instances to handle the 

load. 

SYSTEM ANALYSIS 

EXISTING SYSTEM 

 

Traffic redundancy stems from common end-

users’ activities, such as repeatedly accessing, 

downloading, uploading (i.e., backup), distributing, and 

modifying the same or similar information items 

(documents, data, Web, and video). TRE is used to 

eliminate the transmission of redundant content and, 

therefore, to significantly reduce the network cost. In most 

common TRE solutions, both the sender and the receiver 

examine and compare signatures of data chunks, parsed 

according to the data content, prior to their transmission.[7] 

When redundant chunks are detected, the sender replaces 

the transmission of each redundant chunk with its strong 

signature. Commercial TRE solutions are popular at 

enterprise networks, and involve the deployment of two or 

more proprietary-protocol, state synchronized middle-boxes 

at both the intranet entry points of data centers. 

DISADVANTAGES OF EXISTING SYSTEM 

 Cloud providers cannot benefit from a technology 

whose goal is to reduce customer bandwidth bills, 

and thus are not likely to invest in one. 



 

International Journal of Research 
ISSN: 2348-6848 Vol-3, Special Issue-1 

National Conference on Advanced Computing Technologies 
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research 

Academy, Hyderabad, Telangana, India. 
 

 

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad, 
Telangana, India. 

Papers presented in Conference can be accessed from www.edupediapublications.org/journals 

P a g e  | 387 

 The rise of “on-demand” work spaces, meeting 

rooms, and work-from-home solutions detaches 

the workers from their offices. In such a dynamic 

work environment, fixed-point solutions that 

require a client-side and a server-side middle-box 

pair become ineffective. 

 Cloud load balancing and power optimizations 

may lead to a server-side process and data 

migration environment, in which TRE solutions 

that require full synchronization between the 

server and the client are hard to accomplish or may 

lose efficiency due to lost synchronization 

 Current end-to-end solutions also suffer from the 

requirement to maintain end-to-end 

synchronization that may result in degraded TRE 

efficiency. 

PROPOSED SYSTEM 

In this research paper, we present a novel receiver-

based end-to-end TRE solution that relies on the power of 

predictions to eliminate redundant traffic between the cloud 

and its end-users. In this solution, each receiver observes 

the incoming stream and tries to match its chunks with a 

previously received chunk chain or a chunk chain of a local 

file. Using the long-term chunks’ metadata information 

kept locally, the receiver sends to the server predictions that 

include chunks’ signatures and easy-to-verify hints of the 

sender’s future data. On the receiver side, we propose a 

new computationally lightweight chunking (fingerprinting) 

scheme termed PACK chunking. PACK chunking is a new 

alternative for Rabin fingerprinting traditionally used by 

RE applications.  

 

ADVANTAGES OF PROPOSED SYSTEM 

 Our approach can reach data processing speeds 

over3 Gb/s, at least 20% faster than Rabin 

fingerprinting. 

 

 The receiver-based TRE solution addresses 

mobility problems common to quasi-mobile 

desktop/ laptops computational environments. 

 

 One of them is cloud elasticity due to which the 

servers are dynamically relocated around the 

federated cloud, thus causing clients to interact 

with multiple changing servers. 

 

 We implemented, tested, and performed realistic 

experiments with PACK within a cloud 

environment. Our experiments demonstrate a 

cloud cost reduction achieved at a reasonable 

client effort while gaining additional bandwidth 

savings at the client side. 

 

 Our implementation utilizes the TCP Options 

field, supporting all TCP-based applications such 

as Web, video streaming, P2P, e-mail, etc. 

 

 We demonstrate that our solution achieves 30% 

redundancy elimination without significantly 

affecting the computational effort of the sender, 

resulting in a 20% reduction of the overall cost to 

the cloud customer. 

 

INPUT DESIGN 

The input design is the link between the information 

system and the user. It comprises the developing 

specification and procedures for data preparation and those 

steps are necessary to put transaction data in to a usable 

form for processing can be achieved by inspecting the 

computer to read data from a written or printed document 

or it can occur by having people keying the data directly 

into the system. The design of input focuses on controlling 

the amount of input required, controlling the errors, 

avoiding delay, avoiding extra steps and keeping the 

process simple. The input is designed in such a way so that 

it provides security and ease of use with retaining the 

privacy. Input Design considered the following things: 

 What data should be given as input? 

  How the data should be arranged or coded? 

  The dialog to guide the operating personnel in 

providing input. 

 Methods for preparing input validations and 

steps to follow when error occur. 

 

OBJECTIVES 

1.Input Design is the process of converting a user-oriented 

description of the input into a computer-based system. This 



 

International Journal of Research 
ISSN: 2348-6848 Vol-3, Special Issue-1 

National Conference on Advanced Computing Technologies 
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research 

Academy, Hyderabad, Telangana, India. 
 

 

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad, 
Telangana, India. 

Papers presented in Conference can be accessed from www.edupediapublications.org/journals 

P a g e  | 388 

design is important to avoid errors in the data input process 

and show the correct direction to the management for 

getting correct information from the computerized system. 

2. It is achieved by creating user-friendly screens for the 

data entry to handle large volume of data. The goal of 

designing input is to make data entry easier and to be free 

from errors. The data entry screen is designed in such a way 

that all the data manipulates can be performed. It also 

provides record viewing facilities. 

3.When the data is entered it will check for its validity. 

Data can be entered with the help of screens. Appropriate 

messages are provided as when needed so that the user will 

not be in maize of instant. Thus the objective of input 

design is to create an input layout that is easy to follow 

OUTPUT DESIGN 

A quality output is one, which meets the 

requirements of the end user and presents the information 

clearly. In any system results of processing are 

communicated to the users and to other system through 

outputs. In output design it is determined how the 

information is to be displaced for immediate need and also 

the hard copy output. It is the most important and direct 

source information to the user. Efficient and intelligent 

output design improves the system’s relationship to help 

user decision-making. 

1. Designing computer output should proceed in an 

organized, well thought out manner; the right output must 

be developed while ensuring that each output element is 

designed so that people will find the system can use easily 

and effectively. When analysis design computer output, 

they should Identify the specific output that is needed to 

meet the requirements. 

2.Select methods for presenting information. 

3.Create document, report, or other formats that contain 

information produced by the system. 

The output form of an information system should 

accomplish one or more of the following objectives. 

 Convey information about past activities, current 

status or projections of the 

 Future. 

 Signal important events, opportunities, problems, 

or warnings. 

 Trigger an action. 

 Confirm an action. 

 

SYSTEM DESIGN 

SYSTEM ARCHITECTURE 

 
 

Figure 4: From Stream to Chain 

 

 
 

Figure 5: Client Server Architecture 

DATA FLOW DIAGRAM 

1. The DFD is also called as bubble chart. It is a 

simple graphical formalism that can be used to 

represent a system in terms of input data to the 

system, various processing carried out on this data, 

and the output data is generated by this system. 

2. The data flow diagram (DFD) is one of the most 

important modeling tools. It is used to model the 

system components. These components are the 

system process, the data used by the process, an 

external entity that interacts with the system and 

the information flows in the system. 

3. DFD shows how the information moves through 

the system and how it is modified by a series of 



 

International Journal of Research 
ISSN: 2348-6848 Vol-3, Special Issue-1 

National Conference on Advanced Computing Technologies 
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research 

Academy, Hyderabad, Telangana, India. 
 

 

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad, 
Telangana, India. 

Papers presented in Conference can be accessed from www.edupediapublications.org/journals 

P a g e  | 389 

transformations. It is a graphical technique that 

depicts information flow and the transformations 

that are applied as data moves from input to 

output. 

4. DFD is also known as bubble chart. A DFD may 

be used to represent a system at any level of 

abstraction. DFD may be partitioned into levels 

that represent increasing information flow and 

functional detail. 

 

 
Figure 6: Data Flow Diagram 

 

UML DIAGRAMS 

UML stands for Unified Modeling Language. 

UML is a standardized general-purpose modeling language 

in the field of object-oriented software engineering. The 

standard is managed, and was created by, the Object 

Management Group.[8]  

The goal is for UML to become a common 

language for creating models of object oriented computer 

software. In its current form UML is comprised of two 

major components: a Meta-model and a notation. In the 

future, some form of method or process may also be added 

to; or associated with, UML. 

 The Unified Modeling Language is a standard 

language for specifying, Visualization, Constructing and 

documenting the artifacts of software system, as well as for 

business modeling and other non-software systems.[9]  

The UML represents a collection of best 

engineering practices that have proven successful in the 

modeling of large and complex systems. 

 The UML is a very important part of developing 

objects oriented software and the software development 

process. The UML uses mostly graphical notations to 

express the design of software projects. 

 

GOALS: 

 The Primary goals in the design of the UML are as 

follows: 

1. Provide users a ready-to-use, expressive visual 

modeling Language so that they can develop and 

exchange meaningful models. 

2. Provide extendibility and specialization 

mechanisms to extend the core concepts. 

3. Be independent of particular programming 

languages and development process. 

4. Provide a formal basis for understanding the 

modeling language. 

5. Encourage the growth of OO tools market. 

6. Support higher level development concepts such 

as collaborations, frameworks, patterns and 

components. 

7. Integrate best practices. 

 

USE CASE DIAGRAM 

A use case diagram in the Unified Modeling 

Language (UML) is a type of behavioral diagram defined 

by and created from a Use-case analysis. Its purpose is to 

present a graphical overview of the functionality provided 

by a system in terms of actors, their goals (represented as 

use cases), and any dependencies between those use 

cases.[10] The main purpose of a use case diagram is to 

show what system functions are performed for which actor. 

Roles of the actors in the system can be depicted. 

 

 

           Figure 7: Use Case Diagram 

CLASS  DIAGRAM 

                         In software engineering, a class diagram in 

the Unified Modeling Language (UML) is a type of static 

structure diagram that describes the structure of a system by 

showing the system's classes, their attributes, operations (or 

User  

Key generates and 

encrypts content 

Upload to cloud 

Download encrypt 

content 

Decrypt content 

Using Aggregate 

key 

Upload Download 

Aggregate Key 



 

International Journal of Research 
ISSN: 2348-6848 Vol-3, Special Issue-1 

National Conference on Advanced Computing Technologies 
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research 

Academy, Hyderabad, Telangana, India. 
 

 

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad, 
Telangana, India. 

Papers presented in Conference can be accessed from www.edupediapublications.org/journals 

P a g e  | 390 

methods), and the relationships among the classes. It 

explains which class contains information.[11] 

 

Figure 8: Class Diagram 

SEQUENCE  DIAGRAM 

A sequence diagram in Unified Modeling 

Language (UML) is a kind of interaction diagram that 

shows how processes operate with one another and in what 

order. It is a construct of a Message Sequence Chart.[12] 

Sequence diagrams are sometimes called event diagrams, 

event scenarios, and timing diagrams. 

 

Figure 9: Sequence Diagram 

ACTIVITY  DIAGRAM 

Activity diagrams are graphical representations of 

workflows of stepwise activities and actions with support 

for choice, iteration and concurrency.[13] In the Unified 

Modeling Language, activity diagrams can be used to 

describe the business and operational step-by-step 

workflows of components in a system. An activity diagram 

shows the overall flow of control. 

 

Figure 10: Activity Diagram 

 

Figure 11:  Collaborative Diagram 

SYSTEM TESTING 

            The purpose of testing is to discover errors. Testing 

is the process of trying to discover every conceivable fault 

or weakness in a work product. It provides a way to check 

the functionality of components, sub assemblies, assemblies 

and/or a finished product.[14] It is the process of exercising 

software with the intent of ensuring that the Software 

system meets its requirements and user expectations and 

does not fail in an unacceptable manner. There are various 

types of test. Each test type addresses a specific testing 

requirement. 



 

International Journal of Research 
ISSN: 2348-6848 Vol-3, Special Issue-1 

National Conference on Advanced Computing Technologies 
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research 

Academy, Hyderabad, Telangana, India. 
 

 

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad, 
Telangana, India. 

Papers presented in Conference can be accessed from www.edupediapublications.org/journals 

P a g e  | 391 

TYPES OF TESTS 

Unit testing 

          Unit testing involves the design of test cases that 

validate that the internal program logic is functioning 

properly, and that program inputs produce valid outputs. 

All decision branches and internal code flow should be 

validated. It is the testing of individual software units of the 

application .it is done after the completion of an individual 

unit before integration. This is a structural testing, that 

relies on knowledge of its construction and is invasive. Unit 

tests perform basic tests at component level and test a 

specific business process, application, and/or system 

configuration. Unit tests ensure that each unique path of a 

business process performs accurately to the documented 

specifications and contains clearly defined inputs and 

expected results. 

Integration testing 

             Integration tests are designed to test integrated 

software components to determine if they actually run as 

one program.  Testing is event driven and is more 

concerned with the basic outcome of screens or fields. 

Integration tests demonstrate that although the components 

were individually satisfaction, as shown by successfully 

unit testing, the combination of components is correct and 

consistent. Integration testing is specifically aimed at   

exposing the problems that arise from the combination of 

components. 

Functional test 

        Functional tests provide systematic demonstrations 

that functions tested are available as specified by the 

business and technical requirements, system 

documentation, and user manuals. 

Functional testing is centered on the following items: 

Valid Input               :  identified classes of valid input must 

be accepted. 

Invalid Input             : identified classes of invalid input 

must be rejected. 

Functions                  : identified functions must be 

exercised. 

Output               : identified classes of application 

outputs must be exercised. 

Systems/Procedures: interfacing systems or procedures 

must be invoked. 

     Organization and preparation of functional tests is 

focused on requirements, key functions, or special test 

cases. In addition, systematic coverage pertaining to 

identify Business process flows; data fields, predefined 

processes, and successive processes must be considered for 

testing. Before functional testing is complete, additional 

tests are identified and the effective value of current tests is 

determined.[15] 

System Test 

     System testing ensures that the entire integrated software 

system meets requirements. It tests a configuration to 

ensure known and predictable results. An example of 

system testing is the configuration oriented system 

integration test. System testing is based on process 

descriptions and flows, emphasizing pre-driven process 

links and integration points. 

White Box Testing 

        White Box Testing is a testing in which in which the 

software tester has knowledge of the inner workings, 

structure and language of the software, or at least its 

purpose. It is purpose. It is used to test areas that cannot be 

reached from a black box level. 

Black Box Testing 

        Black Box Testing is testing the software without any 

knowledge of the inner workings, structure or language of 

the module being tested. Black box tests, as most other 

kinds of tests, must be written from a definitive source 

document, such as specification or requirements document, 

such as specification or requirements document. It is a 

testing in which the software under test is treated, as a black 

box .you cannot “see” into it. The test provides inputs and 

responds to outputs without considering how the software 

work. 

 Unit Testing: 

 Unit testing is usually conducted as part of a 

combined code and unit test phase of the software lifecycle, 

although it is not uncommon for coding and unit testing to 

be conducted as two distinct phases. 



 

International Journal of Research 
ISSN: 2348-6848 Vol-3, Special Issue-1 

National Conference on Advanced Computing Technologies 
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research 

Academy, Hyderabad, Telangana, India. 
 

 

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad, 
Telangana, India. 

Papers presented in Conference can be accessed from www.edupediapublications.org/journals 

P a g e  | 392 

Test strategy and approach 

 Field testing will be performed manually and 

functional tests will be written in detail. 

Test objectives 

 All field entries must work properly. 

 Pages must be activated from the identified link. 

 The entry screen, messages and responses must 

not be delayed. 

 

Features to be tested 

 Verify that the entries are of the correct format 

 No duplicate entries should be allowed 

 All links should take the user to the correct page. 

Integration Testing 

 Software integration testing is the incremental 

integration testing of two or more integrated software 

components on a single platform to produce failures caused 

by interface defects. 

 The task of the integration test is to check that 

components or software applications, e.g. components in a 

software system or – one step up – software applications at 

the company level – interact without error. 

Test Results: All the test cases mentioned above passed 

successfully. No defects encountered. 

Acceptance Testing 

 User Acceptance Testing is a critical phase of any 

project and requires significant participation by the end 

user. It also ensures that the system meets the functional 

requirements. 

Test Results: All the test cases mentioned above passed 

successfully. No defects encountered. 

IMPLEMENTATION 

MODULES: 

1. Data Owner(Alice) 

2. Network Storage 

3. Aggregate Key Transfer 

4. User(Bob) 

 

 

MODULES DESCRIPTION: 

Data Owner (Alice): 

In this module we executed by the data owner to setup an 

account on an untrusted server. On input a security level 

parameter 1λ and the number of ciphertext classes n (i.e., 

class index should be an integer bounded by 1 and n), it 

outputs the public system parameter param, which is 

omitted from the input of the other algorithms for brevity. 

Network Storage (Drop box): 

With our solution, Alice can simply send Bob a single 

aggregate key via a secure e-mail. Bob can download the 

encrypted photos from Alice’s Dropbox space and then use 

this aggregate key to decrypt these encrypted photos. In this 

Network Storage is untrusted third party server or dropbox.  

Aggregate Key Transfer: 

A key-aggregate encryption scheme consists of five 

polynomial-time algorithms as follows. The data owner 

establishes the public system parameter via Setup and 

generates a public/master-secret key pair via KeyGen. 

Messages can be encrypted via Encrypt by anyone who also 

decides what ciphertext class is asso-ciated with the 

plaintext message to be encrypted. The data owner can use 

the master-secret to generate an aggregate decryption key 

for a set of ciphertext classes via Extract. The generated 

keys can be passed to delegates securely (via secure e-mails 

or secure devices) finally; any user with an aggregate key 

can decrypt any ciphertext provided that the ciphertext’s 

class is contained in the aggregate key via Decrypt 

User (Bob): 

The generated keys can be passed to delegates securely (via 

secure e-mails or secure devices) finally; any user with an 

aggregate key can decrypt any ciphertext provided that the 

ciphertext’s class is contained in the aggregate key via 

Decrypt.  

 

RESULTS & CONCLUSION 

Conclusion for PACK, is that it is a receiver-based, cloud-

friendly, end - to-end TRE that is based on novel 

speculative principles that reduce latency and cloud 

operational cost. The results have shown that PACK does 

not require the server to continuously maintain clients’ 

status, thus enabling cloud elasticity and user mobility 

while preserving long-term redundancy. Moreover, PACK 

is capable of eliminating redundancy based on content 

arriving to the client from multiple servers without applying 

a three-way handshake. 



 

International Journal of Research 
ISSN: 2348-6848 Vol-3, Special Issue-1 

National Conference on Advanced Computing Technologies 
Held on 21

st
 July 2015 at Hyderabad city organized by Global Research 

Academy, Hyderabad, Telangana, India. 
 

 

Conference Chair: Prof.Dr.G.ManojSomeswar, Director General, Global Research Academy, Hyderabad, 
Telangana, India. 

Papers presented in Conference can be accessed from www.edupediapublications.org/journals 

P a g e  | 393 

REFERENCES 

[1] S.S.M. Chow, Y.J. He, L.C.K. Hui, and S.-M. Yiu, 

“SPICE – Simple Privacy-Preserving Identity-Management 

for Cloud Environment,” Proc. 10th Int’l Conf. Applied 

Cryptography and Network Security (ACNS), vol. 7341, 

pp. 526-543, 2012.  

 

[2] L. Hardesty, Secure Computers Aren’t so Secure. MIT 

press, http://www.physorg.com/news176107396.html, 

2009. 

 

[3] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou, 

“Privacy-Preserving Public Auditing for Secure Cloud 

Storage,” IEEE Trans. Computers, vol. 62, no. 2, pp. 362-

375, Feb. 2013. 

 

[4] B. Wang, S.S.M. Chow, M. Li, and H. Li, “Storing 

Shared Data on the Cloud via Security-Mediator,” Proc. 

IEEE 33rd Int’l Conf. Distributed Computing Systems 

(ICDCS), 2013. 

[5] S.S.M. Chow, C.-K. Chu, X. Huang, J. Zhou, and R.H. 

Deng, “Dynamic Secure Cloud Storage with Provenance,” 

Cryptography and Security, pp. 442-464, Springer, 2012. 

 

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, 

“Aggregate and Verifiably Encrypted Signatures from 

Bilinear Maps,” Proc. 22nd Int’l Conf. Theory and 

Applications of Cryptographic Techniques (EUROCRYPT 

’03), pp. 416-432, 2003. 

 

[7] M.J. Atallah, M. Blanton, N. Fazio, and K.B. Frikken, 

“Dynamic and Efficient Key Management for Access 

Hierarchies,” ACM Trans. Information and System 

Security, vol. 12, no. 3, pp. 18:1-18:43, 2009. 

 

[8] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, 

“Patient Controlled Encryption: Ensuring Privacy of 

Electronic Medical Records,” Proc. ACM Workshop Cloud 

Computing Security (CCSW ’09), pp. 103-114, 2009. 

 

[9] F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity 

Single-Key Decryption without Random Oracles,” Proc. 

Information Security and Cryptology (Inscrypt ’07), vol. 

4990, pp. 384-398, 2007. 

 

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters, 

“Attribute-Based Encryption for Fine-Grained Access 

Control of Encrypted Data,” Proc. 13th ACM Conf. 

Computer and Comm. Security (CCS ’06), pp. 89-98, 2006. 

 

[11] S.G. Akl and P.D. Taylor, “Cryptographic Solution to 

a Problem of Access Control in a Hierarchy,” ACM Trans. 

Computer Systems, vol. 1, no. 3, pp. 239-248, 1983. 

 

[12] G.C. Chick and S.E. Tavares, “Flexible Access 

Control with Master Keys,” Proc. Advances in Cryptology 

(CRYPTO ’89), vol. 435, pp. 316-322, 1989. 

 

[13] W.-G. Tzeng, “A Time-Bound Cryptographic Key 

Assignment Scheme for Access Control in a Hierarchy,” 

IEEE Trans. Knowledge and Data Eng., vol. 14, no. 1, pp. 

182-188, Jan./Feb. 2002. 

 

[14] G. Ateniese, A.D. Santis, A.L. Ferrara, and B. 

Masucci, “Provably-Secure Time-Bound Hierarchical Key 

Assignment Schemes,” J. Cryptology, vol. 25, no. 2, pp. 

243-270, 2012. 

 

[15] R.S. Sandhu, “Cryptographic Implementation of a Tree 

Hierarchy for Access Control,” Information Processing 

Letters, vol. 27, no. 2, pp. 95-98, 1988. 

. 

 

 

 

 

 

 

 

 

 

 


