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1. Introduction 

Stability of fixed points of contraction mappings 

has been studied by Bonsall et.al. [2] and Nadler 

et.al. [11]. These authors consider a sequence 

(Tn) of maps defined on a metric space (X,d) into 

itself and study the convergence of the sequence 

of fixed points for uniform or pointwise 

convergence of (Tn), under contraction 

assumptions of the maps. 

 

Theorem.1.1.  

Let (X, d) be a complete metric space and let T : 

X → X be a self-mapping satisfying the 

inequality 

(1.1) 𝜓(d(Tx, Ty)) ≤ 𝜓(d(x, y)) – 𝜑(d(x, y))                                                                    

where φ, 𝜓 : [0, ∞) → [0, ∞) are both continuous 

and monotonic nondecreasing functions with 

𝜓(t) = 0 = 𝜑(t) if and only if t = 0. 

Then T has a unique fixed point. 

 

This theorem can be restated using sequence of 

function  as: 

Definition.1.2. 

A mapping T : X → X, where (X, d) is a metric 

space, is said to be sequencially weakly 

contraction  if 

(1.2)  d(Tx, Ty) ≤ d(x, y) - fn(d(x,y)) 

         (fn:I (interval or subset of R)  → R ) 

where x,y∈ X and fn(t) is a sequence of function 

which converges uniformly to t, and monotonic 

function such that fn(t) = 0 if and only if t = 0. 

If one takes fn(t) = kt where 0 < k < 1 and t = 1, 

then (1.2) reduces Banach Contraction Principle, 

which states that “Let (X, d) be a complete 

metric space. If T satisfies 

(1.3)   d(Tx, Ty) ≤ k d(x, y)                                                                                                                      
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for each x, y in X, where 0 < k < 1, then T has a 

unique fixed point in X.” 

Theorem 1.3.  

Let (X, d) be a complete metric space and let : X 

→ X be a self-mapping satisfying the inequality 

(1.4)     ψ(d(Tx, Ty)) ≤ ψ(d(x, y)) – fn(d(x, y))       

(fn:I (interval or subset of R) →  R )  where fn(t) 

is a monotonically non decreasing sequence of 

function  which converges uniformly to  𝜓(𝑡) , 

then T has a unique fixed point. Where 

𝜓 ∶  0,∞ →  0,∞  is continuous and  

monotonically non-decreasing and continuous 

function. Then T has a unique fixed point. 

Proof: For any x0 ∈ X, we construct a sequence 

{xn} by, 

                   xn =  Txn-1 , n = 1,2,3,4……. 

substituting x = xn-1 and y = xn in (1.4), we 

obtain 

(1.5) 𝜓(d(xn, xn+1)) ≤ 𝜓(d(xn-1, xn))  

                                    – fn(d (xn-1, xn ))       

Which implies, 

(1.6) d(xn, xn+1) ≤ d(xn-1, xn)  

(using monotonic property of  𝜓  -function)                

it follows that the sequence {d(xn, xn+1)} is 

monotonically decreasing  and consequently 

there exist r ≥ 0 such that 

(1.7)    d(xn, xn+1)  → r    as   n →  ∞         

letting   n → ∞    in (1.5), we obtain, 

 1.8     𝜓(r)  ≤ 𝜓(r) - 𝜓(r)                                    

 since,  lim
𝑛→∞

 fn(r) = 𝜓(r)   

Which is a contradiction unless r = 0, since 𝜓(r) 

≥ 0 Hence  

(1.9)   d(xn, xn+1)  → 0    as   n →  ∞       

we next prove that {xn} is a Cauchy sequence.  

If possible let {xn} is not  Cauchy sequence then 

there exist ε > 0 for which we can find 

subsequence {xm(k)} and {xn(k)} of {xn} with n(k) 

> m(k) > k such that 

(1.10)  d(xm(k),xn(k))  ≥  ε              

further corresponding to m(k), we can choose 

n(k) in such a way that it is a smallest integer 

with n(k) > m(k) and satisfying (1.10)   then 

(1.11)  d(xm(k),xn(k)-1)  <  ε                

then we have, 

(1.12) ε  ≤ d(xm(k),xn(k))   

               ≤d(xm(k),xn(k)-1)  + d(xn(k)-1,xn(k))   

               < ε + d(xn(k)-1,xn(k))        

letting  k → ∞  and  using (1.9), we have 

(1.13)   lim
   𝑘→∞

 d(xm(k),xn(k))  < ε         

again, 

 (1.14) d(xn(k)-1,xm(k)-1)  ≤  d(xn(k)-1,xn(k)) +  

                                          d(xn(k),xm(k))+  

                                          (xm(k),xm(k)-1)       

letting  k → ∞ in the above inequalities and 

using (1.9), (1.13) we get 

 1.15  lim
       𝑘→∞

 d(xn(k)-1,xm(k)-1) = ε            

setting x = xm(k)-1 and y = xn(k)-1 in (1.4)  and 

using (1.10) we obtain, 

 (1.16)  𝜓 𝜀 ≤ 𝜓(d(xm(k) , xn(k)))  

                      ≤ 𝜓(d(xm(k)-1, xn(k)-1)) -   

                           fn(d(xm(k)-1, xn(k)-1))               

letting k → ∞  in the above inequalities and  

using (1.13) and (1.15), we obtain 

(1.17)   𝜓(𝜀) ≤  𝜓(𝜀) - fn(𝜀)    

Which is a contradiction if   𝜀 > 0. 

Since fn(𝑡)  converges uniformly to 𝜓(𝜀). 
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This shows that {xn} is a Cauchy sequence and 

hence is convergent in the complete metric space 

X. 

(1.18)   Let xn → z (say) as n →  ∞       

Substituting x = xn-1 and y = z in (1.4), we obtain 

(1.19) 𝜓(d(xn,Tz))≤ 𝜓(d(xn-1,z)) - fn(d(xn-1,z)              

letting n →  ∞, using (1.18)  and continuity of 𝜓  

and continuity of fn at infinity we have 

𝜓 (d(z,Tz)) ≤  𝜓(0) - lim
𝑛→∞

 {fn(0)} 

                  ≤  𝜓(0) - 𝜓(0)  

                   = 0 

(1.20)  Which implies,  𝜓(d (z, Tz)) = 0             

                                         i.e d(z,Tz) = 0  

(1.21)   or z = Tz             

 

To prove uniqueness of fixed point, let z1and z2 

are two fixed points of T 

Putting x = z1 and y = z2 in (1.4), 

 

𝜓(d(Tz1, Tz2)) ≤ 𝜓(d(z1, z2)) – fn(d(z1, z2))     

or 

𝜓(d(z1, z2))  ≤  𝜓(d(z1, z2)) -  fn(d(z1, z2))      

                         [ using (1.21)] 

or   𝜓(d(z1, z2)) ≤ 0 

Since fn(𝑡)  converges uniformly to 𝜓(𝜀). 

or   

equivalently d(z1, z2) = 0, i.e., z1 = z2.  

This proves the uniqueness of fixed point. 

In 2006, Beg et. al. [1] generalized Theorem 

(1.1) in the following form: 

Theorem 1.4.  

Let (X, d) be a metric space and let f be a weakly 

contractive mapping with respect to g, that is, 

(1.22)𝜓(d(fx, fy)) ≤ 𝜓(d(gx, gy))  

                                – 𝜑(d(gx,gy)) 

for all x, y ∈ X. 

Where 𝜑, 𝜓 : [0, ∞) → [0, ∞) are two mappings 

with 𝜑 (0) = 𝜓 (0) = 0,  𝜓  is continuous 

nondecreasing and 𝜑 is lower semi-continuous.  

If fX ⊂ gX and gX is a complete subspace of X, 

then f and g have coincidence point in X. 

In 2012, Moradi et. al. [10] proved the following 

Theorems: 

Theorem 1.5.  

Let T be self mapping on a complete metric 

space (X, d) satisfying the following: 

(1.23)  𝜓(d(Tx, Ty)) ≤ 𝜓(d(x, y))  

                                     – φn (d(x, y)),  

for all x, y∈  X ((𝜓 − 𝜑 ) weakly contractive), 

where φn(t)  is a sequence of function which 

converges to 𝜓 𝑡 . Also suppose that either 

(i) 𝜓 is continuous and  lim
𝑛→∞

   𝑡𝑛  = 0, if   

      lim
𝑛→∞

   𝜑( 𝑡𝑛 )  = 0.  

or 

(ii)  𝜓 is monotonic non-decreasing and 

       lim
         𝑛→∞

   𝑡𝑛  = 0, if {tn} is bounded and 

      lim
          𝑛→∞

   𝜑( 𝑡𝑛 )  = 0. 

Then T has a unique fixed point. 

 Now, we prove our results on metric space for 

pair of sequencially weak compatible mappings. 

 

2. Main result: 

 

Theorem 2.1. 

Let f and g be self mappings on a metric space 

(X, d) satisfying the followings: 

(2.1)  gX ⊂ fX, 
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(2.2)  gX or fX is complete, 

(2.3)  𝜓(d(gx, gy)) ≤ 𝜓(d(fx, fy))  

– fn(d(fx,fy)),  

 (fn : I (interval or subset of R) → R ) for all x, 

y ∈ X  

where 𝜓  : [0, ∞) → [0, ∞) is mappings with 

 𝜓(0) = 0, fn(t) > 0 also, fn(t) is a uniformally 

convergent sequence which converges to    𝜓 (t) 

and  𝜓(t) > 0 for all t > 0.  

Suppose also that either 

(a) 𝜓  is continuous and  lim
𝑛→∞

   𝑡𝑛  = 0, if  

lim
𝑛→∞

  𝑓𝑛 ( 𝑡𝑛) =  0.   

or 

(b) 𝜓 is monotonic non-decreasing and 

lim
𝑛→∞

   𝑡𝑛  = 0, if {tn} is bounded and 

lim
𝑛→∞

  𝑓𝑛 ( 𝑡𝑛) =  0.   

Then f and g have a unique point of coincidence 

in X. Moreover, if f and g are weakly 

compatible, then f and g have a unique common 

fixed point. 

Proof. Let x0 ∈ X. From (2.1), one can construct 

sequences {xn} and {yn} in X by  

yn = fxn+1 = gxn, n = 0, 1, 2, . . .  . 

Moreover, we assume that if yn =  yn+1 for some 

n ∈ ℕ, then there is nothing to prove. Now, we 

assume that yn ≠ yn+1 for all n ∈ ℕ. 

Substituting x = xn+1  and y = xn   in (2.3), we 

have  

(2.4)  𝜓(d(yn+1, yn)) =  𝜓(d(gxn+1,gxn))  

            ≤  𝜓(d(fxn+1, fxn)) – fn(d(fxn+1,fxn)) 

           =  𝜓(d(yn, yn-1)) – fn(d(yn,yn-1)) 

for all n ∈ ℕ and hence the sequence {𝜓(d(yn+1, 

yn))} is monotonic decreasing and bounded 

below. Thus, there exists r ≥ 0 such that 

lim
𝑛→∞

𝜓(d(yn+1, yn)) = r. 

From (2.4), we deduce that 

(2.5)   0  ≤  fn(d(yn,yn-1))  

              ≤  𝜓(d(yn, yn-1))  -  𝜓(d(yn+1, yn)).                                              

Letting n → ∞ in the above inequality,  

we get lim
𝑛→∞

𝑓n( (d(yn, yn-1)) = 0.  

If (a) holds, then by hypothesis  

                               lim
𝑛→∞

d(yn, yn-1) = 0.  

If (b) holds, then from (2.5), we have 

d(yn+1, yn) < d(yn, yn-1), for all n∈ ℕ.  

Hence {d(yn+1, yn)} is monotonically decreasing 

and bounded below.  

By hypothesis, lim
𝑛→∞

 d(yn, yn-1) = 0.  

Therefore, in every case, we conclude that 

(2.6)  lim
𝑛→∞

d(yn, yn-1) = 0.                              

Now, we claim that {yn} is a Cauchy sequence. 

Indeed, if it is false, then there exists 𝜀> 0 and 

the subsequences {ym(k)} and {yn(k)} of {yn} such 

that n(k) is minimal in the sense that n(k) > m(k) 

> k and         d(ym(k), yn(k)) ≥ 𝜀 and by using the 

triangular inequality, we obtain 

𝜀 ≤  d(ym(k), yn(k))  

   ≤ d(ym(k), ym(k)-1) + d(ym(k)-1, yn(k)-1)  

                              + d(yn(k)-1, yn(k))  

   ≤ d(ym(k), ym(k)-1) + d(ym(k)-1, ym(k))  

                              + d(ym(k), yn(k)-1)   

                              + d(yn(k)-1, yn(k)) 

 

 < 2d(ym(k), ym(k)-1) + 𝜀 + d(yn(k)-1, yn(k)).  

 

2.7   𝜀 < 2d(ym(k), ym(k)-1) + 𝜀  

               + d(yn(k)-1, yn(k)).                                                                                   
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Letting k → ∞ in the above inequality and using 

(2.6), we get 

(2.8) lim
𝑘→∞

 (d(ym(k),yn(k))= lim
𝑘→∞

 (d(ym(k)-1,yn(k)-1)  

                                     = 𝜀. 

For all k ∈ ℕ, from (2.3), we have 

(2.9)  𝜓(d(ym(k), yn(k))) ≤ 𝜓(d(ym(k)-1, yn(k)-1))  

                                      – fn(d(ym(k)-1,yn(k)-1)) 

If (a) holds, then 

lim
𝑘→∞

𝜓(d(ym(k)-1,yn(k)-1))= lim
𝑘→∞

 𝜓(d(ym(k), yn(k)))  

                                    =  𝜓(𝜀), 

Now, from (2.9), we conclude that 

       lim
        𝑘→∞

  fn(d(ym(k)-1, yn(k)-1) = 0. 

By hypothesis  lim
𝑘→∞

d(ym(k)-1, yn(k)-1) = 0, a 

contradiction. (Using (2.8)) 

If (b) holds, then from (2.9), we have 

     𝜀 < d(ym(k), yn(k)) < d(ym(k)-1, yn(k)-1),  

and so 

 d(ym(k), yn(k)) → 𝜀+
 and  

d(ym(k)-1, yn(k)-1) → 𝜀+ 
as k → ∞.  

Hence lim
𝑘→∞

𝜓(d(ym(k)-1, yn(k)-1))  

           =    lim
𝑘→∞

𝜓(d(ym(k), yn(k))) =  𝜓(𝜀+
),  

where 𝜓(𝜀+
) is the right limit of 𝜓 at 𝜀. 

Therefore, from (2.9),  

we get lim
𝑘→∞

fn(d(ym(k)-1, yn(k)-1)) = 0.  

By hypothesis lim
𝑘→∞

d(ym(k)-1, yn(k)-1) = 0, a 

contradiction.  

Thus {yn} is a Cauchy sequence.  

Since fX is complete, so there exists a point z ∈ 

fX such that lim
𝑛→∞

 yn = lim
𝑛→∞

 fxn+1 = z. 

Now, we show that z is the common fixed point 

of f and g. Since z ∈ fX, so there exists a point  

p ∈ X such that fp = z. 

If (a) holds, then from (2.3), for all n∈ ℕ, we 

have 

𝜓(d(fp,gp))= lim
𝑛→∞

(d(gp,gxn))   

                     ≤ lim
𝑛→∞

𝜓(d(fp, fxn))  

                   –  lim
 𝑘→∞

fn (d(fp,fxn))  

                    ≤  lim
   𝑛→∞

𝜓(d(fp, fxn)).         

  (2.10)  𝜓(d(fp, gp))  ≤  lim
   𝑛→∞

𝜓(d(fp, fxn)).                                     

Using condition (a) and  lim
   𝑛→∞

yn = z, we get 

𝜓(d(fp, gp))  ≤  𝜓(d(z, z)) = 𝜓(0) = 0 and so 

d(gp, fp) = 0 (note that fn and 𝜓 are non-negative 

with fn(0)= 𝜓(0) = 0), which implies that gp = 

fp = z. 

If (b) holds, then from (2.7), we have 

𝜓(d(fp, gp)) = lim
𝑛→∞

𝜓(d(gp,gxn))  

                       ≤ lim
𝑛→∞

𝜓(d(fp, fxn))   

                    -  lim
𝑘→∞

fn(d(fp,fxn)) 

(2.11)  𝜓(d(fp, gp)) =0   

        (since fn converges uniformly to 𝜓) 

d(fp,gp)=0,which implies that fp=gp=z(say). 

Now, we show that z = fp = gp is a common 

fixed point of f and g. Since fp = gp and f, g are 

weakly compatible maps, we have fz = fgp = gfp 

= gz. 

We claim that fz = gz = z. 

Let, if possible, gz ≠ z. 

If (a) holds, then from (2.3), we have 
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𝜓(d(gz, z)) = 𝜓(d(gz, gp))  

                     ≤ 𝜓(d(fz, fp)) – fn(d(fz,fp)) 

                    = 𝜓(d(gz, z)) – fn(d(gz,z)) 

                    <𝜓(d(gz, z)), a contradiction.    

If (b) holds, then we have 

d(gz, z) < d(gz, z), a contradiction. 

Hence gz = z = fz, so z is the common fixed 

point of f and g. 

For the uniqueness, let u be another common 

fixed point of f and g, so that fu = gu = u. 

We claim that z = u. 

Let, if possible, z ≠ u. 

If (a) holds and  n→ ∞  then from (2.3), we have 

𝜓(d(z, u)) = 𝜓(d(gz, gu))   

                   ≤ 𝜓(d(fz, fu)) – fn(d(fz,fu)) 

                 = 𝜓(d(z, u)) –fn(d(z,u))  

                 < 𝜓(d(z, u)), a contradiction. 

If (b) holds, then we have 

                 d(z, u) < d(z, u), a contradiction.  

Thus,(d(z, u)=0 i.e we get z = u.  

Hence z is the unique common fixed point of f 

and g. 

Example 2.2. Let X = [0, 1] be endowed with 

the Euclidean metric d(x, y) =  𝑥 − 𝑦  for all x, y 

in X and let gx = (1/5)x and fx =(3/5)x for each 

x ∈ X. Then 

d(gx, gy) =  1/5  𝑥 − 𝑦   and  

d(fx, fy) =  3/5 𝑥 − 𝑦 . 

Let 𝜓(t) = 5t and    

fn(t) = 25nt/(5n+t). Then  

𝜓(d(gx, gy)) = 𝜓(1/5 𝑥 − 𝑦 ) =  𝑥 − 𝑦   

𝜓(d(fx, fy)) = 𝜓(
3

5
( 𝑥 − 𝑦  

                    = 5(3/5 𝑥 − 𝑦 )  

                    = 3 𝑥 − 𝑦  

fn((d(fx, fy)) = 15n 𝑥 − 𝑦  /(5n+ 𝑥 − 𝑦 ).  also 

fn(x) is a sequence of function which uniformly 

converges to 𝜓(𝑥). 

Now 

𝜓(d(fx, fy))-fn((d(fx, fy)) 

   = 3 𝑥 − 𝑦 -15n 𝑥 − 𝑦  /(5n+ 𝑥 − 𝑦 ) 

   = 3 𝑥 − 𝑦 [1-5n /(5n+ 𝑥 − 𝑦 )]  

And [1-5n /(5n+ 𝑥 − 𝑦 )] ≥0 if n approaches to 

infinity. 

So 𝜓(d(gx, gy)) < 𝜓(d(fx, fy))-fn((d(fx, fy)). 

From here, we conclude that f, g satisfy the 

relation (2.3).  

Also gX = [0, 
1

5
] ⊆  [0, 

3

5
] = fX, f and g are 

weakly compatible and 0 is the unique common 

fixed point of f and g. 
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