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ABSTRACT 

 
A new analysis of the momentum interpolation 
method is presented in this paper. A modified method 
using quadratic interpolating polynomials for the 
calculation of the cell-face velocities is projected. 
The performance of the proposed method is examined 
and its application to lid-driven cavity problem is 
tested. The numerical results are compared with 
standard reported benchmark solutions for a 
different flow conditions. The numerical results show 
clearly the advantage of the new approach over the 
original momentum interpolation method, in terms of 
numerical accuracy, rate of convergence, and 
computational efficiency.  
Keywords: staggered Grids, Collocated Grids, Finite 
Volume Method, SIMPLE method, lid driven cavity. 
 
 

1. INTRODUCTION 
 
In recent years, finite volume methods have become 
very popular for solving the incompressible Navier–
Stokes equations. When scalar and vector variables 
(e.g. velocities and pressure) are used, special 
treatment is required in the solution algorithm and the 
grid system used. It is because of pressure does not 
have its own governing equation. The marker-and-
cell (MAC) type staggered grid arrangement [1] of 
velocities and scalar variables, first proposed by 
Harlow and Welch [2], has been widely used with 
great success [3–6]. The main disadvantages of such 
an arrangement are the geometrical complexity (due 
to the different sets of grids used for different 
variables), the discretization complexity of the 
boundary conditions, and the difficulty of 
implementation to non-orthogonal curvilinear grids 
[7] and multigrid solution methods. 

 
 
 
The pressure gradient terms, appearing in the 
momentum equations, are still represented by central 
difference approximation. Subsequent work by Peric 
[7] refined the original method further. Majumdar 
[10] and Miller and Schmidt [11] have removed the 
problem of underrelaxation parameter dependency of 
the results, observed in Rhie and Chow’s formula. 
Previous authors have reported performance 
comparisons between the staggered and non-
staggered grid arrangements [11–16]. 

In this paper, a new interpretation of the 
Momentum Interpolation Method (MIM) is provided. 
Based on this interpretation, it is shown that 
enhancements of the original method can be derived 
by using higher-order interpolating functions for the 
evaluation of the cell-face pseudo-velocities. 
Subsequently, a new formula based on quadratic 
interpolating polynomials is proposed. The same 
quadratic formula is also used for the representation 
of the pressure gradient terms. This results in a 
method of a greater formal accuracy that, at the same 
time, retains the basic characteristics of the 
momentum interpolation.  
 

2. MATHEMATICAL FORMULATION 
 

2.1 The Governing Equations 
Consider a two-dimensional laminar viscous 
incompressible fluid flow and heat transfer in a 
Cartesian coordinate with non-constant properties. 
We have continuity equation 

  
     (1) 
u-momentum equation 
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     (2) 
v-momentum equation 

     (3) 
energy equation 

     (4) 
Equations (2) - (4) can be expressed in a general 
form: 

     (5) 
where u and v are the velocity in horizontal  and 
vertical direction , Φ is any dependent variable (u, v, 
and T),and t,  ρ, Г, and s Φ are time, density, diffusion 
coefficient, and source term, respectively. Note that 
for the continuity equation, Φ = 1, = 0, and s Φ= 
0.Integration of Equation (5) over the control 
volume-surrounding node P yields an algebraic 
equation representing the balance of fluxes. The 
resulting algebraic equations for the u velocity 
component at node P have the form 

 
     (6) 
where ak, is the convection and diffusion effects, 
depend on the discretization method used and the 
index k representsthe four neighboring nodes of P. 
The bP stands for the constant part of the discretized 
source term, which does not include the pressure 
gradient and AP

xis a cross-sectional area at node P. 
The last term in the above equation represents the x-
direction pressure driving force acting on the control 
volume. A similar equation can be obtained for the v p 
velocity component.  
 
The discretized form of the continuity equation is 
given by 
 

 
     (7) 
 
Special care should be taken to the evaluation of cell-
face velocities appearing in the continuity equation 
(7), and the cell-face pressure values appearing in the 
momentum equations (6), to avoid the velocity–
pressure decoupling problem [1,8] and the 
subsequent non-physical oscillations in the pressure 
field. 

 
2.2 Momentum interpolation method 
Rhie and Chow [9] recommended the use of the same 
discretization equation for the cell-face velocities as 
for the nodal ones where all terms, with the exception 
of the pressure gradient, are obtained through linear 
interpolation of the corresponding terms in the 
equations for the neighboring cell-centered velocities. 
The pressure gradient term is not interpolated but 
replaced by the difference of pressure at the nodes 
between which the cell-face lies. This approach is 
known as the Momentum Interpolation Method 
(MIM). In a general, two-dimensional, non-uniform 
grid, the east face velocity, for example, is defined as 
follows: 

     (8) 
where 

 
     (9) 

 
      
     (10) 
 

 
      
     (11) 
 
and fpxis the x-direction linear interpolation factor, 
defined in terms of distances between nodes as 
 

     (12) 
The last term in Equation (8) represents the net 
pressure driving force acting on the ‘staggered’ 
control volume surrounding the east face. By 
substituting Equations (9) and (10) into Equation (8) 
and rearranging, the cell-face velocity can be 
expressed explicitly in terms of the known nodal 
velocities 
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     (13) 
Similar expressions can be obtained for the other 
cell-face velocities uw, vn, vs. 
 
2.3 interpretation of momentum equation 
The above expression (13) can be recast in a more 
compact format, which provides simplicity and 
clarity. First, the momentum equation (2) giving the 
nodal velocity up is rewritten in a more suitable form, 
 

   
     (14) 
      
The first term on the right hand side of the equation 
(14) is a pseudo-velocity [1] composed of the 
neighboring velocities and containing no pressure 
terms,   
 

  
     (15) 
and the second term on the right hand side of the 
equation (14)is contribution of pressure to the actual 
value of velocity, 
 

 
      
     (16) 
Using the above splitting formulation, Equation (8) 
can be recast into the following form: 
 

    
     (17) 
where 

   
     (18) 
and 

    
     (19) 

 
The expression giving ue (17) is made up of two 
parts. The first part, representing the cell-face 
pseudo-velocity, is approximated by a linear 
interpolation of the neighboring cell-centered pseudo-
velocities. The second part stands for the contribution 
of pressure and is evaluated by the pressure 
difference acting on the ‘staggered’ control volume 
surrounding ue. The need for more accurate results, 
especially on coarse grids, makes a further effort in 
improving the MIM necessary, i.e. in the use of a 
more accurate interpolation practice for the 
evaluation of the cell-face pseudo-velocities. 
 
2.4 new momentum interpolation method 
The general form of the quadratic interpolation 
formula has been presented by Arambatzis et al. [18] 
in their formulation of the QUICK scheme. 
According to this formulation, the formulae giving 
the general transport quantity ϕ at the east and north 
cell-faces for a two-dimensional flow have the 
following form 
 

     (20) 
 

     (21) 
 
 
Where the coefficients QAEp, QBEP, etc., are 
functions of the distances between nodes The above 
formulae, representing the face averages of the 
quantity ϕ, are derived by fitting a parabola to the 
nodal values and integrating along the cell-faces. 
Using the above formulae for the evaluation of cell-
face pseudo-velocities, the expressions giving the 
east face velocity can be written as 
 

    
     (22)  
 
Equation (22) can be expressed in the following in 
the following computationally efficient form, using 
the cell-centered momentum equations (15): 
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Figure 1. Horizontal velocity profile along cavity 

centerline, Re =100 
 
 

 
     (23) 
This expression does not contain pseudo-velocities 
but velocity and pressure values, and can be used 
immediately to compute ue

n, requiring no extra 
storage. A similar expression can be obtained for the 
north face velocity 

  
     (24) 
The proposed interpolation is more appropriate when 
used in combination with the QUICK differencing 
scheme, where the convected cell-face velocities are 
approximated to third-order by formulae (20) and 
(21), setting ϕ = u or v. The Rhie and Chow 
momentum interpolation of the convecting cell-face 
velocities is of only second-order (the order of linear 
interpolation, see Miller and Schmidt [11]). In the 
new momentum interpolation scheme, the convecting 
cell-face velocities are approximated to third-order 
by formulae (23) and (6), giving overall third-order 
accuracy to the finite difference equations. 
 
 
2.5. Evaluation of cell-face pressures 
In order to preserve overall consistency in an 
algorithm using the quadratic momentum 
interpolation practice, it is reasonable to adopt the 
same interpolation method when calculating the 
pressure values at the cell faces. These values are 
needed for the evaluation of the correction part of 
cell-face velocities according to the above 
interpolation practice, and also for the calculation of 
the pressure gradient source term in the momentum 

equations. The interpolation equations used are (20) 
and (21), where ϕ = p 
 
2.6. Implementation of MIM in SIMPLE (Semi 
Implicit Method for pressure Linked Equations) 
In the present study, the SIMPLE algorithm treats the 
coupling between the continuity and the momentum 
equation. In the first step of SIMPLE, the pressure 
field from a previous iteration P* determines a 
tentative velocity field u*. To get a converged 
solution, these starred fields have to be corrected by 
pressure and velocity corrections P’, u’.  
 

3.0 RESULTS AND DISCUSSION 
 
3.1. The test problem 
The proposed new MIM is applied to the well-known 
lid-driven square cavity problem, in order to validate 
the calculation procedure as well as to assess its 
performance relative to Rhie and Chow’s 
interpolation method.  Because of simple geometry 
this case has been served as a standard benchmark 
problem for the evaluation of new algorithms.  The 
problem is solved for Reynolds numbers ranging 
from 100 to 5000. The Reynolds number is defined 
by Re = ρUL/µ, where L is the length of the cavity 
and U is the velocity of the sliding wall. The QUICK 
differencing scheme of Leonard [17], as presented in 
Reference [18], is used for the discretization of the 
convective terms and the algebraic equations are 
solved by the strongly implicit procedure (SIP) [20] 
 
3.2. The effect of Reynolds number 
Figures 1–3 show the comparison of the horizontal 
velocity profiles along the vertical cavity centerline 
(x/L = 0.5) for Reynolds numbers 100, 1000 and 
5000. Each figure provides a comparison between the 
original MIM and the new MIM. Also, the results 
calculated by Ghia et al. [19] are shown. All the 
results presented in this section are obtained on a 
coarse, uniformly spaced grid consisting of 15 x 15 
nodes (13 internal control volumes in each direction). 
The comparisons clearly show the superior accuracy 
of the new MIM. The profiles plotted in Figure 1, for 
Re =100, show that the results obtained by the new 
MIM are in closer agreement with the benchmark 
solution. As the Reynolds number increases (Figures 
2 and 3), the differences between the two methods 
with respect to the benchmark results become more 
significant. This indicates that, at higher Reynolds 
numbers, the approximations adopted for the 
evaluation of cell-face pseudo-velocities and the cell-
face pressures have significantly more influence on 
the accuracy of the final solution. This is the 
desirable behavior of the new method making it 
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suitable for high-Reynolds numbers simulations. 
Profiles of the vertical velocity v along the horizontal 
cavity centerline (y /L = 0.5) are shown in Figures 4, 
5 and 6 for Reynolds numbers 100, 1000 and 5000. 
The same observations as before can be made.   
 
 

 

 
 
 

Figure 2. Horizontal velocity profile along cavity 
centerline, Re =100 

 

 
 

 
Figure 3. Horizontal velocity profile along cavity 

centerline, Re = 5000 
 
 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

Figure 4. Vertical velocity profile along cavity 
centerline, Re = 100. 

 

 
 

Figure 5. Vertical velocity profile along cavity 
centerline, Re = 1000. 

 
 

 
 

Figure 6. Vertical velocity profile along cavity 
centerline, Re = 5000 
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4. CONCLUSIONS 
 

� In this paper it is shown that the discretized 
momentum equations for the cell-face 
velocities are composed of two parts. A 
velocity part calculated by the interpolation 
of the neighboring velocities, and a pressure 
driving force term on the ‘staggered’ control 
volume. 

 
� The proposed new method, which uses 

higher order interpolation formulae to 
determine the cell-face velocities. New 
compact and computationally efficient 
expressions, containing no pseudo velocities 
have been derived in order to be used in 
computer codes. 

 
� Cell face pressures were also calculated by 

the same interpolation formulae in order to 
maintain overall consistency in the new 
method. Finally, the implementation of 
QMIM in the SIMPLE algorithm has been 
described. 

 
� The proposed new MIM has been found to 

give more accurate results than the original 
MIM (Rhie and Chow) .The difference 
between the two methods increases as the 
Reynolds number increases in the lid-driven 
cavity benchmark problem.  
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