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 Abstract 
This paper studies the integral problem related 

to the logarithmic function. We can determine 

the analytic form of this type of integral mainly 

using the integration term by term theorem. 

Moreover, two examples are proposed to do a 

calculation practically. The research methods 

adopted in this paper is to find solutions 

through manual calculations and verify the 

answers using Maple. This type of research 

method not only allows the discovery of 

calculation errors, but also helps modify the 

original directions of thinking from manual and 

Maple calculations.   
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1. Introduction 

As information technology advances, 

whether computers can become comparable 

with human brains to perform abstract tasks, 

such as abstract art similar to the paintings of 

Picasso and musical compositions similar to 

those of Beethoven, is a natural question. 

Currently, this appears unattainable. In addition, 

whether computers can solve abstract and 

difficult mathematical problems and develop 

abstract mathematical theories such as those of 

mathematicians also appears unfeasible. 

Nevertheless, in seeking for alternatives, we can 

study what assistance mathematical software 

can provide. This study introduces how to 

conduct mathematical research using the 

mathematical software Maple. The main reasons 

of using Maple in this study are its simple 

instructions and ease of use, which enable  

 

beginners to learn the operating techniques in a 

short period. By employing the powerful 

computing capabilities of Maple, difficult 

problems can be easily solved. Even when 

Maple cannot determine the solution, problem-

solving hints can be identified and inferred from 

the approximate values calculated and solutions 

to similar problems, as determined by Maple. 

For this reason, Maple can provide insights into 

scientific research. 

In calculus and engineering mathematics, 

there are many methods to solve the integral 

problems, for example, change of variables 

method, integration by parts method, partial 

fractions method, trigonometric substitution 

method, etc. This paper considers the following 

some type of indefinite integral related to the 

logarithmic function, which are not easy to 

obtain their answers using the methods 

mentioned above.  
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where xra ,,  are real numbers, ,0r ,0x

and 1x . The analytic form of this type of 

indefinite integral can be obtained by using 

integration term by term theorem; this is the 

major result of this study (i.e., Theorem A). 

Adams et al. [1], Nyblom [2], and Oster [3] 

provided some techniques to solve the integral 

problems. Moreover, Yu [4-27], Yu and Chen 

[28], and Yu and Sheu [29-31] used complex 

power series method, integration term by term 

theorem,  Parseval’s theorem, area mean value 

theorem, and generalized Cauchy integral 
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formula to evaluate some types of integral 

problems. In this paper, we propose two 

examples to demonstrate the manual 

calculations, and verify the results using Maple. 

2. Preliminaries and Main Result 

First, an important theorem used in this 

paper is introduced below which can be found in 

([32, p269]). 

2.1 Integration term by term theorem:  

Suppose that  0nng
 
is a sequence of 

Lebesgue integrable functions defined on I . If 

 
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0n
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       In the following, we obtain the analytic 

form of the indefinite integral (1). 

Theorem A  Suppose that xra ,,  are real 

numbers, 0r , ,0x 1x , and C is a 

constant.  

Case 1. If r is not a positive integer, then 
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Case 2. If r is a positive integer and 1x , 
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Proof   Case 1. If r is not a positive integer, 

then 
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(by integration term by term theorem) 
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Case 2. If r is a positive integer, then using Eq. 

(4) yields 
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3. Example 

In the following, for the indefinite integral 

in this paper, we provide two examples and use 

Theorem A to determine their analytic forms. 

Additionally,  Maple is used to calculate the 
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approximations of some definite integrals and 

their solutions to verify our answers. 

Example 3.1 

By Eq. (2), we obtain  
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for  all ,0x and 1x . 

Therefore, the definite integral 
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Next, we use Maple to verify the correctness of 

Eq. (6). 

>evalf(int(x^(2/3)/(ln(x))^(6/7),x=1/4..1/2), 

22); 

-0.1229745279043421480677 

>evalf(sum((5/3)^k/(k!*(k+1/7))*((ln(1/2))^(k+

1/7)-(ln(1/4))^(k+1/7)),k=0..infinity),22); 

-0.122974527904342148066 

 

Example 3.2 

Using Eq. (3) yields  
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for all 1x . 

Thus, we have  
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We also use Maple to verify the correctness of 

Eq. (8). 

>evalf(int(x^(8/5)/(ln(x))^4,x=2..8),22); 

17.11575989819930118353 

>evalf(sum((13/5)^k/(k!*(k-3))*((ln(8))^(k-3)-

(ln(2))^(k-3)),k=0..2)+sum((13/5)^k/(k!* 

(k-3))*((ln(8))^(k-3)-(ln(2))^(k-3)),k=4.. 

infinity)+(13/5)^3/6*(ln(ln(8))-ln(ln(2))),22); 

17.11575989819930118361 

4. Conclusion 

In this study, we use integration term by 

term theorem to study an integral problem 

related to the logarithmic function. In fact, the 

applications of this theorem are extensive, and 

can be used to easily solve many difficult 

problems; we endeavor to conduct further 

studies on related applications. In addition, 

Maple also plays a vital assistive role in 

problem-solving. In the future, we will extend 

the research topic to other calculus and 

engineering mathematics problems and use 

Maple to verify our answers. 
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