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 Abstract 

This paper considers some type of multiple 

improper integral. We can obtain the closed 

form of this multiple improper integral using 

differentiation with respect to a parameter 

and Leibniz rule. On the other hand, some 

examples are proposed to demonstrate the 

calculations. The method adopted in this 

study is to find solutions through manual 

calculations and verify our answers using 

Maple. This method not only allows the 

discovery of calculation errors, but also 

helps modify the original directions of 

thinking.   
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1. Introduction 

The multiple improper integral problem 

is closely related with probability theory and 

quantum field theory, research in this regard 

can refer to Streit [1] and Ryder [2]. For this 

reason, the evaluation and numerical 

calculation of multiple improper integrals are 

important, and can be studied based on Yu 

[3-8]. In this paper, we study the following 

multiple improper integral 
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where a  is a real number, kn,  are positive  

 

 

integers, and na  . The closed form of 

this multiple improper integral can be 

determined by using differentiation with 

respect to a parameter and Leibniz rule; this 

is the major result of this study (i.e., Theorem 

A). In addition, two examples are used to 

demonstrate the proposed calculations. The 

research methods adopted in this study 

involved finding solutions through manual 

calculations and verifying these solutions by 

using Maple. This type of research method 

not only allows the discovery of calculation 

errors, but also helps modify the original 

directions of thinking from manual and 

Maple calculations. Therefore, Maple 

provides insights and guidance regarding 

problem-solving methods. For the 

instructions and operations of Maple can 

refer to [9-15]. 

2. Main Result 

First, we introduce two important 

theorems used in this study which can be 

found in [16, p283]) and [16, p121] 

respectively. 

2.1 Differentiation with respect to a 

parameter: Suppose that the )1( n variables 

function ),,,,( 21 nxxxf   is defined on 

I],[ 21  . If ),,,,( 21 nxxxf   and its 

partial derivative ),,,,( 21 nxxx
f
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continuous functions on I],[ 21  , and 
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is uniformly 

convergent on the open interval ),( 21  . 

Then )(F nnI
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differentiable on ),( 21  . Moreover,  

)(


F
d

d
nnI

dxdxxx
f





 11 ),,,(


 for  

),( 21  . 

2.2 Leibniz rule: If m  is a positive integer 

and )(),( xgxf are functions such that their 

p -th derivatives )(),( )()( xgxf pp exist for all 

mp ,...,1 , then the formula of the m -th 

derivative of product function )()( xgxf  is 
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where )1()2)(1()(  kmmmmm k  

for mk ,,1  , and 1)( 0 m . 

Before deriving the major result in this 

paper, the following two lemmas are needed. 

Lemma 1  If a  is a real number, n  is a 

positive integer, and na  ,,2,1 , 

then 
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Proof  Let 
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where pA is a constant for all np ,,1  . 

It follows that  
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p . Therefore, 

Eq. (2) holds.                                         q.e.d. 

Lemma 2  If a  is a real number, n  is a 

positive integer, and na  , then 
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(by Lemma 1)                                       q.e.d. 

In the following, we determine the closed 

form of the multiple improper integral (1). 
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Theorem A  Suppose that a  is a real 

number, kn,  are positive integers, and 

na  , then  

n
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                                                                  (4) 

Proof  Using differentiation with respect to a 

parameter and Leibniz rule, differentiating k  

times with respect to a  on both sides of Eq. 

(3) yields 
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              q.e.d. 

3. Example 

In the following, for the multiple 

improper integral problem discussed in this 

study, we propose two examples and use 

Theorem A to obtain their closed forms. 

Additionally,  Maple is used to calculate the 

approximations of these multiple improper 

integrals and their solutions to verify our 

answers. 

Example 1  By Eq. (4), we have the 

following double improper integral 
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Next, we use Maple to verify the 

correctness of Eq. (5). 

>evalf(Doubleint((ln(x1+x2))^4*(x1+x2)^(-

3),x1=1..infinity,x2=1..infinity),14); 

22.50252985678 

>evalf(1/2*sum(sum((-1)^(p-q+3)*product( 

4-j,j=0..(q-1))*(4-q)!/((2-p)!*(p-1)!*q!*(-3 

+p)^(5-q))*(ln(2))^q,q=0..4),p=1..2),14); 

22.50252985699 

Example 2   On the other hand, using Eq. (4) 

yields the triple improper integral 
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We also use Maple to verify the correctness 

of Eq. (6). 

>evalf(Tripleint((ln(x1+x2+x3))^3*(x1+x2+

x3)^(-5),x1=1..infinity,x2=1..infinity,x3 

=1..infinity),14); 

0.0625750425379 

>evalf(-1/9*sum(sum((-1)^(p-q+2)*product 

(3-j,j=0..(q-1))*(3-q)!/((3-p)!*(p-1)!*q!*(-5 

+p)^(4-q))*(ln(3))^q,q=0..3),p=1..3),14); 

0.0625750425380 

4. Conclusion 

This paper uses two techniques: 

differentiation with respect to a parameter 

and Leibniz rule to obtain the closed form of 

some type of multiple improper integral. In 

fact, the applications of the two theorems are 
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extensive, and can be used to easily solve 

many difficult problems; we endeavor to 

conduct further studies on related 

applications. In addition, Maple also plays a 

vital assistive role in problem-solving. In the 

future, we will extend the research topic to 

other calculus and engineering mathematics 

problems and employ Maple to solve these 

problems. 
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