ISSN: 2348-6848 Vol-3, Special Issue-3 # International Conference on Research and Recent Trends in Engineering and Technology. (ICRRTET) Held on 27th January 2016 organized by **Sai Polytechnic College**, Kinhi Jawade, Yavatmal, Maharastra, India. # An Approach to Improve QoS Parameter using VoIP ## 1.Nilima sagulale: nilimasagulale11@gmail.com #### 2.Diksha khelurkar: DikshaKhelurkar27@gmail.com ## 3.Ankita Rothe. ## 4.Gauravi Bhaskarwar. gauravi.bhaskarwar06@gmail.com Department of Computer Technology, Mata Mahakali Polytechnic, Warora #### Abstract- Now a days, Information and Communication technology plays vital role to communicate over the Internet. Internet is one of the most important communications intermediate in the world. Mostly, PSTN (Public Switch Telephone Network) is used for communication but PSTN is not well suited for real time multimedia applications. Recently, VoIP (Voice over Internet Protocol) is also a popularly increased communications technology which recently having an exponential evolution of usage Internet. In this VoIP is focused on Wireless LAN (WLAN) network for real time multimedia application. But, VoIP over WLAN faces many challenges, due to the loose nature of wireless network. In addition, to maintain QoS, Security are the key concern in VoIP network. Existing solutions used several techniques such as Hybrid network, Peer- to-Peer network to provide decent QoS as well as Privacy. But, some vulnerability occurs between Security and QoS. To overcome these issues propose novel Client-Server Network in which AES algorithm used for encryption/decryption process. Also, network is based on SCTP protocol which is responsible for reliable and secure packet transmission over Internet. So, by using novel network analyzes the performance of QoS and Security concerns in VoIP. Keywords: VoIP; Authentication; Security; QoS. #### I. INTRODUCTION Recently, Internet provides lot of various applications with the help of that we can interconnect with each other through Internet Protocol (IP). Voice over Internet Protocol (VoIP) is one of the applications of Internet which allows people to make phone calls through the Internet instead of using the Traditional Public Switched Telephone Network (PSTN). VoIP is an internet telephony which deals extensive range of benefits to talk with each other freely at low rates which Permits for the calls, long distance, local and international over the Internet. VoIP can accomplish a greater efficiency since the data packets in the network are engaged to their destination by diverse routes and sharing the same facilities extreme incompetently. VoIP are lower in cost since IP systems will offer a more cost-effective means for providing communication connections which is one of the sources of concern. VoIP technology converts the analog telephone signals communication into digital communication signals and transfers through the the destination to agaiconverted back from digital to analog sound ISSN: 2348-6848 Vol-3, Special Issue-3 # International Conference on Research and Recent Trends in Engineering and Technology. (ICRRTET) Held on 27th January 2016 organized by **Sai Polytechnic College**, Kinhi Jawade, Yavatmal, Maharastra, India. which can be overheard using speakers or headphone [3] [16]. But, the sound quality is not good in VoIP as compare to a conventional telephone. Also the problem of security is also major in VoIP. Thus, the user does not get a good guarantee from the VoIP service provider. Therefore major aim of VoIP application is to achieve quality of service (QoS) and the security of network. Generally, unify network used in VoIP to provide good security for high latency communication by routing network traffic through a number of nodes with random routes and random delay but it exist tradeoff between anonymity level and performance efficiency of Quality of services. Node or link failures occur due to software error or hardware. Ideally, the routing system discovers link failures. Then, routing system reconfigures routing tables to send the packet to some other alternative path. The traffic is also avoided through failed link. Reconfiguration of routing table takes more time in a network. Therefore, network becomes unbalanced. This unbalancing situation can be avoided through multipath dispersion [5]. Also, low latency applications on unify networks may be vulnerable to timing analysis attacks. Because, timing analysis attack reveal the identity of client. Authentication is essential in any service-oriented communication networks to identify and reject any unauthorized network access [11] [6]. The use of VoIP has made it much easier to achieve anonymity in voice communications, especially when VoIP calls are made between computers. This is because VoIP calls between peer computers have no phone numbers associated with them, and they could easily be protected by end to end encryption and routed through low latency secure networks [16]. The encryption must be as fast as possible for proper streaming. If before successful encryption of one block, the next block arrives there are possibilities of loss of packets over the network which might make the voice content invalid or not understand [12]. #### RELATED WORK Wireless LAN (WLAN) is the essentially organized wireless technologies all over the world. The architecture of WLAN is the same as Local Area Network (LAN) except that the transmission happens via InfrareRF) and not physical through wires. The main characteristics of the WLAN technologies are scalability, mobility, simplicity and cost effectiveness. WLAN delivers connections to the IP networks and VoIP applications are already running over Internet Protocol (IP) networks. Subsequently, these two new technologies are fused to incorporate VoIP over WLANs (VoWLAN). VoIP is the technology used to transmit voice conversations over a data network using IP. VoIP access frequently permits you to call others who are also receiving calls over the Internet. VoIP offers reasonable long distance and international calling. Also, it is cheaper for end-users to make an Internet telephone call than a circuit-switched call. The major issues in VoIP are Security and preserve Quality of (QoS). Commonly, Services Environment is used for providing security in VoIP. Therefore, Pr2P2PSIP is used as a hybrid networks [1]. So that, unify networks is suitable for provide good anonymity for high latency communications by routing network traffic over a number of nodes with random routes and random delay. But, it does not provide QoS. Also, user playing a role of routers in Pr2P2PSIP network which breaks the concept of dividing works on the different components of the network and complicates the design of system. Besides, low latency applications on unify networks may be vulnerable to timing analysis attacks. ISSN: 2348-6848 Vol-3, Special Issue-3 # International Conference on Research and Recent Trends in Engineering and Technology. (ICRRTET) Held on 27th January 2016 organized by **Sai Polytechnic College**, Kinhi Jawade, Yavatmal, Maharastra, India. #### A. Timing Analysis Attacks Generally, unify network used in VoIP to provide good security for high latency communication by routing network traffic through a number of nodes with random routes and random delay but it exist tradeoff between anonymity level and performance efficiency of Ouality of services. Timing analysis attacks exclusively focus on the execution times of different stages in the route set up protocol. When this protocol meets QoS requirement due to setting up shortest path, it is vulnerable and reveal the identity of the caller. Therefore, different phenomenon likes K-Anonymity Algorithm (anonymity aware route set up protocol (AARSP).) K-anonymity algorithm is used for providing the anonymous network. Consequently the hackers could not recognize the stream of packets over the network. Let us consider the caller as source S and the receiver as a destination R. The voice packets want to exchange through the personal network. This personal network consists of proxy nodes. The hacker can hack the voice simply from the proxy node which is present next to the caller or at the proxy node which is existent before the destination R. At this stage, the k-anonymity algorithm which will support to hide the proxy nodes which is next to the caller and which is present earlier the receiver. Random Walk Search Algorithm are also used. The random walk algorithm is not vulnerable to shortest path which is based on timing analysis attacks. Mostly, a random walk algorithm does not essentially navigate the shortest path between any two nodes. [11] [9] [3] [### B. Authentication VoIP uses the two main protocols i.e. Route Setup Protocol and Real-Time Transport Protocol (RTP). Firstly, route setup protocol is use for call setup and termination. Besides, real-time transport protocol is use for media delivery. In order to satisfy QoS requirement, VoIP uses a route setup protocol which is support to sets up the shortest route from a caller src to a receiver dst in peer-to-peer network. Also, RTP support to carry voice traffic among caller and receiver along an established bidirectional voice circuit [9]. Similarly, in peer-to-peer network each node acts as a Client and Server. Thus, more chances to vulnerable network due to any node acts like malicious node. Therefore, this network is vulnerable with respect to privacy. necessary Authentication is in service-oriented networks to identify and reject network any unauthorized access. Authentication protocol such as IEEE 802.11i and 802.11s requires centralized authentication server. Centralized server acts as third party Multi-hope between routing Authentication server and access point in wireless network would result in low reliability, long delay and thus potential service interruption is occurs. Also, center server obstructs distributed operations and thus affects scalability. Therefore, to overcome this problem Ticket-based authentication protocols implemented using Kerberos and a Kerberos-assisted authentication scheme. This does not required centralized server and specially used in Wireless Mesh Network (WMN) [6]. #### C. Transmission Technology of VoIP In comparative study related to AES, DES and RC4. AES is more effective than DES and RC4 in terms of Packet loss, Delay and Throughput. VOIP technology converts the analog signals into digital signals. So, that AES can easily and rapidly encrypt and decrypt this signal [3] [1]. Remaining two ISSN: 2348-6848 Vol-3, Special Issue-3 # International Conference on Research and Recent Trends in Engineering and Technology. (ICRRTET) Held on 27th January 2016 organized by **Sai Polytechnic College**, Kinhi Jawade, Yavatmal, Maharastra, India. techniques will not give good performance as compare to AES. Also, the caller's voice is digitized and this digitized voice is compressed and then separated into packets. The streaming of audio content over the Internet is a challenging task for real time media transmission [10]. Α Stream Control Transmission Protocol (SCTP) is suitable for transmission of real time data. #### III. PROPOSED SYSTEM Since, Internet is diffident and it is underlying network for VoIP, some threats and risks inherited from the loosely network to VoIP. The limitation given in existing system, propose system implements Client-Server Network. In this, SCTP protocol intended to make it easier to accomplish connections over wireless network and to manage the transmission of multimedia data [12]. It supports multihoming in which connected endpoint can have alternate IP addresses linked with it in order to fluctuating condition or route around network failure. SCTP endpoints swap initiation of addresses during transmission [13] [5]. A single port number is used through the entire address list at an endpoint for a specific session. Authentication will pnetwork at the time of connection establishing to identify and reject any unauthorized network access. Besides, AES algorithm will use to encrypt and decrypt transmitting data over the internet. #### A. SCTP Stream Control Transmission Protocol (SCTP) is a reliable transport protocol operating on variable connectionless service such as Internet Protocol (IP). It offers dynamic address reconfiguration and multi-homing. Dynamic Address Reconfiguration is support to notify destination to change local address and resetting available address set. A connection in SCTP is called as an association. Multi-homing is one of the significant features in SCTP protocol that permit anyone of two endpoints in an association can use multiple IP addresses. In an association, main transmission path is a primary path, and the others are backup path. If the primary path is damaged then transmission will switch to a backup path and packets can be sent to an alternative address. Also, SCTP supports non—duplicated, error-free transfer of messages through the use of sequence numbers, and selective retransmission mechanism. #### IV. CONCLUSION Since, VoIP over Wireless LAN (WLAN) network faces voluminous challenges, due to the loose nature of wireless network and security issues. Besides, real time applications require noble Voice quality. Also, appropriate balance between the OoS and Security to the data is the key to the success of any VoIP deployment. Several techniques used to improve the performance of Voice quality as well as Security issues in VoIP. But, some vulnerability occurs to make proper balance between QoS and Security. Therefore, to remove these issues proposed Client-Server Network in which AES and SCTP protocols will great deal for improving QoS and Security in VoIP. The permutation of these two protocols will help to remove tradeoffs between QoS and Security in VoIP. Using this propose network will improve the performance of VoIP system. #### References - [1] Zahraa Sabra and Hassan Artail, "Preserving Anonymity and Quality of Service for VoIP Applications over Hybrid Networks," 17th IEEEMediterranean Electrotechnical Conference, Beirut, Lebanon, 13-16, April 2014. - [2] M.V.Sreeraj, T. Satya Savitri, "SCTP ISSN: 2348-6848 Vol-3, Special Issue-3 # International Conference on Research and Recent Trends in Engineering and Technology. (ICRRTET) (0) Held on 27th January 2016 organized by **Sai Polytechnic College**, Kinhi Jawade, Yavatmal, Maharastra, India. - and FEC based Loss Recovery Technique for VoIP," International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering Vol. 2, Issue1, January 2014. - [3] Abdi Wahab, Rizal Broer Bahaweres, Mudrik Alaydrus, Muhaemin, Riyanarto Sarno, "Performance Analysis of VoIP Client with Integrated Encryption Module," 978-1-4673-2821- 0/13/\$31.00 ©2013 IEEE. - K. Bharathkumar, R. Premalatha [4] Kanikannan, Dr.Rajeswari Mukesh. M.Kasiselvi, T. Kumanan, "Privacy Preserving of VoIP against Peer-toPeer Network Attacks Defense," and International Journal of Computer Network and Security (IJCNS) Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283. - [5] Mukunda D. Waghmare1, Kailash Patidar, "An Efficient Approach to Content Based Image Retrieval" International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 11, November 2015. - [6] Pallavi Gangurde, Sanjay Waware, and Dr. Nisha Sarwade, "Simulation of TCP, UDP and SCTP with constant traffic for VOIP services," Vol. 2, Issue 3, May-Jun 2012, pp.1245-1248. - [7] E. Siva Ganesh, Prof. R. Velayutham and Dr. D. Manimegalai, "A Secure Software Implementation of Nonlinear AES S-Box with the Enhancement of Biometrics," 2012 International Conference on Computing, Electronics and Electrical Technologies [ICCEET]. 978-1-4673-0210-4, 2012 IEEE. - [8] Manoj. B and Manjula N. Harihar, "Image Encryption and Decryption using AES," International Journal of Engineering and Advanced Technology (IJEAT) ISSN 2012 IEEE. - [9] Jayant Rajurkar, T.K.Khan, "Review on Efficient Query processing for Set Predicates of Dynamically Formed Group", International Journal of Advanced Research in Computer Science and Software Engineering (IJARCSSE), ISSN: 2277 128X Volume 4, Issue 9, September 2014. - [10] J. Faritha Banu, V.Ramchandran, "Efficient Bandwidth Estimation Management for VoIP Concurrent Multipath Transfer," International Journal of Internet Computing ISSN No: 2231-6965, VOL-1, ISS-3 2012. - [10] S. Shivkumar and Dr. G. Umamaheswari, "Performance Comparison of Advanced Encryption Standard(AES) and AES key dependent S-box- Simulation using MATLAB," 978-1-61284-764-1, 2011 IEEE. - [11] Haniyeh Kazemitabar, Sameha Ahmed, Kashif Nisar, Abas B Said and Halabi B Hasbullah, "A comprehensive review on VoIP over Wireless LAN networks," 2009-2012 All rights reserved. ISSR Journal 2010. - [12] Jayant Rajurkar, Lalit dole, "A Decision Support System for Predicting Student Performance", International Journal of Innovative Research in Computer and Communication Engineering(IJIRCCE)".Vol. 2, Issue 12, December 2014,Pages- 7232-37 - [13] Celia Li and Uyen Trang Nguyen, "FastAuthentication for Mobile Clients in Wireless Mesh Networks," 978-1-4244-5377-1/10/\$26.00 ©2010 IEEE. - [14] Mudhakar Srivatsa, Arun Iyengar, Ling Liu and Hongbo Jiang, "Privacy in VoIP ISSN: 2348-6848 Vol-3, Special Issue-3 # International Conference on Research and Recent Trends in Engineering and Technology. (ICRRTET) Held on 27th January 2016 organized by **Sai Polytechnic College**, Kinhi Jawade, Yavatmal, Maharastra, India. Networks: Flow Analysis Attacks and Defense," IEEE INFOCOM 2009. [15] Vicuna Nelson, Jimenez Tania and Hayel Yezekael, "Performance of SCTP in Wi-Fi and WiMAX networks with multi-homed mobiles," WNS2, October 24, 2008, Athens, Greece Copyright 2008 ACM 1-59593-504-5.