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 Abstract 
In this article, we study two types of real 

integrals of trigonometric functions. The 

closed forms of the two types of real integrals 

can be obtained using complex integrals. In 

addition, some examples are proposed to do a 

calculation practically. Simultaneously, Maple 

is used to calculate the approximations of 

some definite integrals and their solutions for 

verifying our answers.   
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1. Introduction 

The computer algebra system (CAS) has 

been widely employed in mathematical and 

scientific studies. The rapid computations and 

the visually appealing graphical interface of 

the program render creative research possible. 

Maple possesses significance among 

mathematical calculation systems and can be 

considered a leading tool in the CAS field. The 

superiority of Maple lies in its simple 

instructions and ease of use, which enable 

beginners to learn the operating techniques in a 

short period. In addition, through the 

numerical and symbolic computations 

performed by Maple, the logic of thinking can 

be converted into a series of instructions. The 

computation results of Maple can be used to 

modify our previous thinking directions, 

thereby forming direct and constructive 

feedback that can aid in improving 

understanding of problems and cultivating 

research interests. 

In calculus and engineering mathematics, 

there are many methods to solve the integral 

problems, including change of variables 

method, integration by parts method, partial 

fractions method, trigonometric substitution 

method, etc. This paper considers the 

following two types of integrals of 

trigonometric functions which are not easy to 

obtain their answers using the methods 

mentioned above.  
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where  ,,,r are real numbers,   , 

and   ,r . The closed forms of the 

two types of integrals can be obtained using 

complex integral theory; these are the main 

results of this paper (i.e., Theorems 1 and 2). 

Adams et al. [1], Nyblom [2], and Oster [3] 

provided some techniques to solve the integral 

problems. On the other hand, Yu [4-27], Yu 

and Chen [28], and Yu and Sheu [29-31] used 

complex power series, integration term by 

term theorem,  Parseval’s theorem, area mean 

value theorem, and Cauchy integral formula to 

solve some types of integral problems. This 

paper uses some examples to demonstrate the 
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proposed calculations, and the manual 

calculations are verified using Maple. 

 

2. Preliminaries and Results 

Firstly, some definitions and complex 

integral formulas used in this paper are 

introduced below. 

2.1 Definitions:  

2.1.1 Let  be a complex number, 

where 1i  , and ba,  are real numbers. 

a , the real part of z , is denoted as )Re( z ; b

, the imaginary part of z , is denoted as 

)Im(z . 

2.1.2 The complex logarithmic function zln  

is defined by izz  lnln , where z  is a 

complex number,   is a real number, 

iezz  , and   . 

2.2 Complex integral formula:   
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, where az, are 

complex numbers, az   and C is a constant. 

To obtain the major results, two lemmas 

are needed. 

Lemma 1 If  ,, are real numbers,   , 

z  is a complex number, and C is a constant, 
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    q.e.d. 

Lemma 2  Assume that  ,,r are real 

numbers and r , then 

 )]Re[ln( ire .cos2ln 22   rr       

         (4) 

Moreover, if 0r and  0 , then 
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it follows from Definition 2.1.2 that the 

desired results hold.                              q.e.d. 

Next, we obtain the closed form of the 

integral (1). 

Theorem 1 If ,,r are real numbers, 

  , and   ,r , then  
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for all real numbers  . 

Proof   Let irez  in Eq. (3), we have 









d
rere

irere

ii

ii






))((

)(  

.)ln(

)ln(

Cre

re

i

i



























   

(7) 

Using Eq. (4) and the equality of the real parts 

of both sides of Eq. (7) yields the desired 

result holds.                            q.e.d. 

On the other hand, by Eq. (5) and the 

equality of the imaginary parts of both sides of 

Eq. (7), the closed form of the integral (2) can 

be easily obtained. 

Theorem 2 If the assumptions are the same as 

Theorem 1, 0r , and  0 , then 
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3. Example 

In the following, for the integral problems 

of trigonometric functions in this study, two 

examples are proposed and we use Theorems 1 

and 2 to determine their closed forms. 

Moreover, we employ Maple to calculate the 

approximations of some definite integrals and 

their solutions for verifying our answers. 

Example 3.1 

Let 3,5,2,4  r in Theorem 1, 

then using Eq. (6) Yields  
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for all R . 

Hence, the definite integral 
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Next, we use Maple to verify the correctness 

of Eq. (10). 

>evalf(int((-72*sin(2*theta)+147sin(theta))/ 

((25-24*cos(theta))*(13-12*cos(theta))), 

theta=Pi/4..5*Pi/3),18); 

0.208466734824125287 

>evalf(-1/4*ln((25-24*cos(5*Pi/3))/(25-24 

*cos(Pi/4)))+3/4*ln((13-12*cos(5*Pi/3))/( 

13-12*cos(Pi/4))),18); 

0.208466734824125286 

 

Example 3.2 

If 1,4,6,2  r  in Theorem 2, 

then by Eq. (8) we have  





d





)cos1237)(cos45(

33cos602cos12

,
sin

6cos
cot

2

1

sin

2cos
cot

2

1

1

1

C






 









 














 

(11) 



   International Journal of Research 
 Available at https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 
Volume 03 Issue 04 

February 2016 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 98 

for  0 . 

Thus,  
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Using Maple to verify the correctness of Eq. 

(12) as follows: 

>evalf(int((12*cos(2*theta)-60*cos(theta)+ 

33)/((5-4*cos(theta))*(37-12*cos(theta))), 

theta=Pi/6..3*Pi/4),20); 

0.07591681898384030065 

>evalf(1/2*(arccot((cos(3*Pi/4)-2)/sin(3*Pi 

/4))- arccot((cos(Pi/6)-2)/sin(Pi/6)))+ 1/2*( 

arccot((cos(3*Pi/4)-6)/sin(3*Pi/4))- arccot(( 

cos(Pi/6)-6)/sin(Pi/6))),20); 

0.07591681898384030071 

4. Conclusion 

In this study, we use complex integral 

theory to evaluate the real integrals of 

trigonometric functions. In fact, this technique 

can be applied to solve many integral problems. 

On the other hand, Maple also plays a vital 

assistive role in problem-solving. In the future, 

we will extend the research topics to other 

calculus and engineering mathematics 

problems and solve these problems using 

Maple. These results will be used as teaching 

materials for Maple on education and research 

to enhance the connotations of calculus and 

engineering mathematics. 
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