
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 128

Design & Development of an Automatic Test Packet Generation

Prototype for Resolving Functional and Performance Problems

Ayaz Mohiuddin1&Mohammed Ayazuddin2

1. Lecturer, Department of Information Technology, Salalah College of Technology, Salalah,

Sultanate of Oman, Saudi Arabia.

2. Assistant Professor, Department of IT, Nawab Shah Alam Khan College of Engineering &

Technology, Malakpet, Hyderabad, Telangana, India.

ABSTRACT: Networks are getting larger and more complex, yet administrators rely on rudimentary tools such as

and to debug problems. We propose an automated and systematic approach for testing and debugging networks called

“Automatic Test Packet Generation” (ATPG). ATPG reads router configurations and generates a device-independent

model. The model is used to generate a minimum set of test packets to (minimally) exercise every link in the network or

(maximally) exercise every rule in the network. Test packets are sent periodically, and detected failures trigger a

separate mechanism to localize the fault. ATPG can detect both functional (e.g., incorrect firewall rule) and

performance problems (e.g., congested queue). ATPG complements but goes beyond earlier work in static checking

(which cannot detect liveness or performance faults) or fault localization (which only localize faults given liveness

results). We describe our prototype ATPG implementation and results are indicated on two real-world data sets. We find

that a small number of test packets suffices to test all rules in these networks: For example, 4000 packets can cover all

rules in Stanford backbone network, while 54 are enough to cover all links. Sending 4000 test packets 10 times per

second consumes less than 1% of link capacity. ATPG code and the datasets are publicly available.

Keywords: Automated Test Packet Generation (ATPG); Media Access Control Address; Ethernet Network; Fault

Localization; All-Pairs Reachability Table; Polynomial Runtime

INTRODUCTION

Networking is the word basically relating to computers

and their connectivity. It is very often used in the world

of computers and their use in different connections. The

term networking implies the link between two or more

computers and their devices, with the vital purpose of

sharing the data stored in the computers, with each

other. The networks between the computing devices are

very common these days due to the launch of various

hardware and computer software which aid in making

the activity more convenient to build and use.[1]

Figure 1: Structure of Networking

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 129

Figure 2: Networking Functions

When computers communicate on a network,

they send out data packets without knowing if anyone is

listening. Computers in a network all have a connection

to the network and that is called to be connected to a

network bus. What one computer sends out will reach

all the other computers on the local network.[2] Above

diagrams show the

clear idea about the networking functions.

For the different computers to be able to

distinguish between each other, every every computer

has a unique ID called MAC-address (Media Access

Control Address). This address is not only unique on

your network but unique for all devices that can be

hooked up to a network. The MAC-address is tied to

the hardware and has nothing to do with IP-addresses.

Since all computers on the network receives everything

that is sent out from all other computers the MAC-

addresses is primarily used by the computers to filter

out incoming network traffic that is addressed to the

individual computer.[3] When a computer

communicates with another computer on the network, it

sends out both the other computers MAC-address and

the MAC-address of its own. In that way the receiving

computer will not only recognize that this packet is for

me but also, who sent this data packet so a return

response can be sent to the sender.[4]

MAC-address (Media Access Control

Address)

This address is not only unique on a network

but unique for all devices that can be hooked up to a

network. The MAC-address is tied to the hardware and

has nothing to do with IP-addresses. Since all

computers on the network receives everything that is

sent out from all other computers the MAC-addresses is

primarily used by the computers to filter out incoming

network traffic that is addressed to the individual

computer. When a computer communicates with

another computer on the network, it sends out both the

other computers MAC-address and the MAC-address of

its own. In that way the receiving computer will not

only recognize that this packet is for me but also who

sent this data packet so a return response can be sent to

the sender.

On an Ethernet network

As described here, all computers hear all

network traffic since they are connected to the same

bus. This network structure is called multi-drop. On a

network that is heavy loaded even the resent packets

collide with other packets and have to be resent again.

If several computers communicate with each other at

high speed they may not be able to utilize more than

25% of the total network bandwidth. This is a the way

to minimize this problem is to use network

switches.One problem with this network structure is

that when you have, let say ten computers on a network

and they communicate frequently and due to that they

send out there data packets randomly, collisions occur

between them. Characteristics of Networking

The following characteristics should be considered in

network design and ongoing maintenance:

1) Availability is typically measured in a percentage

based on the number of minutes that exist in a year.

Therefore, uptime would be the number of minutes the

network is available divided by the number of minutes

in a year.

2) Cost includes the cost of the network components,

their installation, and their ongoing maintenance.

3) Reliability defines the reliability of the network

components and the connectivity between them. Mean

time between failures (MTBF) is commonly used to

measure reliability. [5]

4) Security includes the protection of the network

components and the data they contain and/or the data

transmitted between them.

5) Speed includes how fast data is transmitted between

network end points (the data rate).

6) Scalability defines how well the network can adapt

to new growth, including new users, applications, and

network components.

7) Topology describes the physical cabling layout and

the logical way data moves between components. [6]

Types of Networks

Organizations of different structures, sizes, and

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 130

budgets need different types of networks. Networks can

be divided into one of two categories:

Peer-to-Peer Network:

A peer-to-peer network has no dedicated

servers; instead, a number of workstations are

connected together for the purpose of sharing

information or devices. Peer-to-peer networks are

designed to satisfy the networking needs of home

networks or of small companies that do not want to

spend a lot of money on a dedicated server but still

want to have the capability to share information or

devices like in school, college, cyber cafe

 Server-Based Networks:

In server-based network data files that will be

used by all of the users are stored on the one server.

With a server-based network, the network server stores

a list of users who may use network resources and

usually holds the resources as well. This will help by

giving you a central point to set up permissions on the

data files, and it will give you a central point from

which to back up all of the data in case data loss should

occur.[7]

Network Communications:

 Computer networks use signals to transmit data,

and protocols are the languages computers use to

communicate.

 Protocols provide a variety of communications

services to the computers on the network.

 Local area networks connect computers using a

shared, half-duplex, baseband medium, and wide

area networks link distant networks.

 Enterprise networks often consist of clients and

servers on horizontal segments connected by a

common backbone, while peer-to-peer networks

consist of a small number of computers on a single

LAN.

Advantages of Networking:

1. Easy Communication:

It is very easy to communicate through a

network. People can communicate efficiently using a

network with a group of people. They can enjoy the

benefit of emails, instant messaging, telephony, video

conferencing, chat rooms, etc.

2. Ability to Share Files, Data and

Information:

This is one of the major advantages of

networking computers. People can find and share

information and data because of networking. This is

beneficial for large organizations to maintain their data

in an organized manner and facilitate access for

desired people.[8]

3. Sharing Hardware:

Another important advantage of networking

is the ability to share hardware.

For an example, a printer can be shared among the

users in a network so that there’s no need to have

individual printers for each and every computer in the

company. This will significantly reduce the cost of

purchasing hardware.

4. Sharing Software:

Users can share software within the network

easily. Networkable versions of software are available

at considerable savings compared to individually

licensed version of the same software. Therefore large

companies can reduce the cost of buying software by

networking their computers.

5. Security:

Sensitive files and programs on a network can

be password protected. Then those files can only be

accessed by the authorized users. This is another

important advantage of networking when there are

concerns about security issues. Also each and every

user has their own set of privileges to prevent those

accessing restricted files and programs.[9]

6. Speed:

Sharing and transferring files within networks

is very rapid, depending on the type of network. This

will save time while maintaining the integrity of files.

LITERATURE SURVEY

Detecting the occurrence and location of

performance anomalies (e.g., high jitter or loss events)

is critical to ensuring the effective operation of network

infrastructures. In this paper we present a framework

for detecting and localizing performance anomalies

based on using an active probe-enabled measurement

infrastructure deployed on the periphery of a network.

Our framework has three components: an algorithm for

detecting performance anomalies on a path, an

algorithm for selecting which paths to probe at a given

time in order to detect performance anomalies (where a

path is defined as the set of links between two

measurement nodes), and an algorithm for identifying

the links that are causing an identified anomaly on a

path[10] (i.e., localizing). The problem of detecting an

anomaly on a path is addressed by comparing probe-

based measures of performance characteristics with

performance guarantees for the network (e.g., SLAs).

The path selection algorithm is designed to enable a

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 131

tradeoff between ensuring that all links in a network are

frequently monitored to detect performance anomalies,

while minimizing probing overhead. The localization

algorithm is designed to use existing path measurement

data in such a way as to minimize the number of paths

necessary for additional probing in order to identify the

link(s) responsible for an observed performance

anomaly. Our results show that our method is able to

accurately detect and localize performance anomalies in

a timely fashion and with lower probe and

computational overheads than previously proposed

methodologies.

In this research paper, we develop failure-

resilient techniques for monitoring link delays and

faults in a Service Provider or Enterprise IP network.

Our two-phased approach attempts to minimize both

the monitoring infrastructure costs as well as the

additional traffic due to probe messages. In the first

phase, we compute the locations of a minimal set of

monitoring stations such that all network links are

covered, even in the presence of several link failures.

Subsequently, in the second phase, we compute a

minimal set of probe messages that are transmitted by

the stations to measure link delays and isolate network

faults. We show that both the station selection problem

as well as the probe assignment problem are NP-hard.

We then propose greedy approximation algorithms that

achieve a logarithmic approximation factor for the

station selection problem and a constant factor for the

probe assignment problem. These approximation ratios

are provably very close to the best possible bounds for

any algorithm.[11]

We present a new symbolic execution tool,

KLEE, capable of automatically generating tests that

achieve high coverage on a diverse set of complex and

environmentally-intensive programs. We used KLEE to

thoroughly check all 89 stand-alone programs in the

GNU COREUTILS utility suite, which form the core

user-level environment installed on millions of UNIX

systems, and arguably are the single most heavily tested

set of open-source programs in existence. KLEE-

generated tests achieve high line coverage — on

average over 90% per tool (median: over 94%) and

significantly beat the coverage of the developers' own

hand-written test suites.[12] When we did the same for

75 equivalent tools in the BUSYBOX embedded

system suite, results were even better, including 100%

coverage on 31 of them. We also used KLEE as a bug

finding tool, applying it to 452 applications (over 430K

total lines of code), where it found 56 serious bugs,

including three in COREUTILS that had been missed

for over 15 years. Finally, we used KLEE to cross-

check purportedly identical BUSY-BOX and

COREUTILS utilities, finding functional correctness

errors and a myriad of inconsistencies.

The emergence of Open Flow-capable

switches enables exciting new network functionality, at

the risk of programming errors that make

communication less reliable. The centralized

programming model, where a single controller program

manages the network, seems to reduce the likelihood of

bugs. However, the system is inherently distributed and

asynchronous, with events happening at different

switches and end hosts, and inevitable delays affecting

communication with the controller. In this paper, we

present efficient, systematic techniques for testing

unmodified controller programs. Our NICE tool applies

model checking to explore the state space of the entire

system--the controller, the switches, and the hosts.

Scalability is the main challenge, given the diversity of

data packets, the large system state, and the many

possible event orderings. To address this, we propose a

novel way to augment model checking with symbolic

execution of event handlers (to identify representative

packets that exercise code paths on the controller). We

also present a simplified Open Flow switch model (to

reduce the state space), and effective strategies for

generating event interleaving likely to uncover bugs.

Our prototype tests Python applications on the popular

NOX platform. In testing three real applications--a

MAC-learning switch, in-network server load

balancing, and energy-efficient traffic engineering--we

uncover eleven bugs.[13]

In network performance tomography,

characteristics of the network interior, such as link loss

and packet latency, are inferred from correlated end-to-

end measurements. Most work to date is based on

exploiting packet level correlations, e.g., of multicast

packets or unicast emulations of them.[14] However,

these methods are often limited in scope-multicast is

not widely deployed-or require deployment of

additional hardware or software infrastructure. Some

recent work has been successful in reaching a less

detailed goal: identifying the lossiest network links

using only uncorrelated end-to-end measurements. In

this research paper, we abstract the properties of

network performance that allow this to be done and

exploit them with a quick and simple inference

algorithm that, with high likelihood, identifies the

worst performing links. We give several examples of

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 132

real network performance measures that exhibit the

required properties. Moreover, the algorithm is

sufficiently simple that we can analyze its performance

explicitly.[15]

SYSTEM STUDY

FEASIBILITY STUDY

The feasibility of the project is analyzed in

this phase and business proposal is put forth with a very

general plan for the project and some cost estimates.

During system analysis the feasibility study of the

proposed system is to be carried out. This is to ensure

that the proposed system is not a burden to the

company. For feasibility analysis, some understanding

of the major requirements for the system is essential.

Three key considerations involved in the

feasibility analysis are

 ECONOMIC FEASIBILITY

 TECHNICAL FEASIBILITY

 SOCIAL FEASIBILITY

ECONOMIC FEASIBILITY

This study is carried out to check the

economic impact that the system will have on the

organization. The amount of fund that the company can

pour into the research and development of the system is

limited. The expenditures must be justified. Thus the

developed system as well within the budget and this

was achieved because most of the technologies used are

freely available. Only the customized products had to

be purchased.

 TECHNICAL FEASIBILITY

This study is carried out to check the technical

feasibility, that is, the technical requirements of the

system. Any system developed must not have a high

demand on the available technical resources. This will

lead to high demands on the available technical

resources. This will lead to high demands being placed

on the client. The developed system must have a

modest requirement, as only minimal or null changes

are required for implementing this system.

 SOCIAL FEASIBILITY

The aspect of study is to check the level of

acceptance of the system by the user. This includes the

process of training the user to use the system

efficiently. The user must not feel threatened by the

system, instead must accept it as a necessity. The level

of acceptance by the users solely depends on the

methods that are employed to educate the user about the

system and to make him familiar with it. His level of

confidence must be raised so that he is also able to

make some constructive criticism, which is welcomed,

as he is the final user of the system.

SYSTEM ARCHITECTURE

Figure 3: System Architecture

DATA FLOW DIAGRAM

• The DFD is also called as bubble chart. It is a

simple graphical formalism that can be used to

represent a system in terms of input data to the

system, various processing carried out on this

data, and the output data is generated by this

system.

• The data flow diagram (DFD) is one of the

most important modeling tools. It is used to

model the system components. These

components are the system process, the data

used by the process, an external entity that

interacts with the system and the information

flows in the system.

• DFD shows how the information moves

through the system and how it is modified by a

series of transformations. It is a graphical

technique that depicts information flow and

the transformations that are applied as data

moves from input to output.

• DFD is also known as bubble chart. A DFD

may be used to represent a system at any level

of abstraction. DFD may be partitioned into

levels that represent increasing information

flow and functional detail.

 Figure 4: Data Flow Diagram

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 133

UML DIAGRAMS

UML stands for Unified Modeling Language.

UML is a standardized general-purpose modeling

language in the field of object-oriented software

engineering. The standard is managed, and was created

by the Object Management Group.

The goal is for UML to become a common

language for creating models of object oriented

computer software. In its current form UML is

comprised of two major components: a Meta-model

and a notation. In the future, some form of method or

process may also be added to; or associated with,

UML.

The Unified Modeling Language is a standard

language for specifying, Visualization, Constructing

and documenting the artifacts of software system, as

well as for business modeling and other non-software

systems.

The UML represents a collection of best

engineering practices that have proven successful in

the modeling of large and complex systems.

The UML is a very important part of

developing objects oriented software and the software

development process. The UML uses mostly graphical

notations to express the design of software projects.

GOALS:

The Primary goals in the design of the UML are as

follows:

• Provide users a ready-to-use, expressive

visual modeling Language so that they can

develop and exchange meaningful models.

• Provide extendibility and specialization

mechanisms to extend the core concepts.

• Be independent of particular programming

languages and development process.

• Provide a formal basis for understanding the

modeling language.

• Encourage the growth of OO tools market.

• Support higher level development concepts

such as collaborations, frameworks, patterns

and components.

• Integrate best practices.

USE CASE DIAGRAM

A use case diagram in the Unified Modeling

Language (UML) is a type of behavioral diagram

defined by and created from a Use-case analysis. Its

purpose is to present a graphical overview of the

functionality provided by a system in terms of actors,

their goals (represented as use cases), and any

dependencies between those use cases. The main

purpose of a use case diagram is to show what system

functions are performed for which actor. Roles of the

actors in the system can be depicted.

Figure 5: Use Case Diagram

 SEQUENCE DIAGRAM

A sequence diagram in Unified Modeling

Language (UML) is a kind of interaction diagram that

shows how processes operate with one another and in

what order. It is a construct of a Message Sequence

Chart. Sequence diagrams are sometimes called event

diagrams, event scenarios, and timing diagrams.

Figure 6: Sequence Diagram

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 134

 ACTIVITY DIAGRAM

Activity diagrams are graphical representations

of workflows of stepwise activities and actions with

support for choice, iteration and concurrency. In the

Unified Modeling Language, activity diagrams can be

used to describe the business and operational step-by-

step workflows of components in a system. An activity

diagram shows the overall flow of control.

Figure 7: Activity Diagram

Collaboration Diagram

Figure 8: Collaboration Diagram

INPUT DESIGN

The input design is the link between the

information system and the user. It comprises the

developing specification and procedures for data

preparation and those steps are necessary to put

transaction data in to a usable form for processing can be

achieved by inspecting the computer to read data from a

written or printed document or it can occur by having

people keying the data directly into the system. The

design of input focuses on controlling the amount of

input required, controlling the errors, avoiding delay,

avoiding extra steps and keeping the process simple. The

input is designed in such a way so that it provides

security and ease of use with retaining the privacy. Input

Design considered the following things:

 What data should be given as input?

 How the data should be arranged or coded?

 The dialog to guide the operating personnel

in providing input.

 Methods for preparing input validations and

steps to follow when error occur.

OBJECTIVES

 Input Design is the process of converting a

user-oriented description of the input into a

computer-based system. This design is

important to avoid errors in the data input

process and show the correct direction to

the management for getting correct

information from the computerized system.

 It is achieved by creating user-friendly

screens for the data entry to handle large

volume of data. The goal of designing input

is to make data entry easier and to be free

from errors. The data entry screen is

designed in such a way that all the data

manipulates can be performed. It also

provides record viewing facilities.

 When the data is entered it will check for

its validity. Data can be entered with the

help of screens. Appropriate messages are

provided as when needed so that the user

will not be in maize of instant. Thus the

objective of input design is to create an

input layout that is easy to follow.

OUTPUT DESIGN

A quality output is one, which meets the

requirements of the end user and presents the information

clearly. In any system results of processing are

communicated to the users and to other system through

outputs. In output design it is determined how the

information is to be displaced for immediate need and

also the hard copy output. It is the most important and

direct source information to the user.

Efficient and intelligent output design improves the

system’s relationship to help user decision-making.

• Designing computer output should proceed in an

organized, well thought out manner; the right

output must be developed while ensuring that

each output element is designed so that people

will find the system can use easily and

effectively. When analysis design computer

output, they should Identify the specific output

that is needed to meet the requirements.

• Select methods for presenting information.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 135

• Create document, report, or other formats that

contain information produced by the system.

The output form of an information system should

accomplish one or more of the following objectives.

 Convey information about past activities,

current status or projections of the Future.

 Signal important events, opportunities,

problems, or warnings.

 Trigger an action.

 Confirm an action.

SYSTEM ANALYSIS

EXISTING SYSTEM

Testing liveness of a network is a fundamental

problem for ISPs and large data center operators.

Sending probes between every pair of edge ports is

neither exhaustive nor scalable. It suffices to find a

minimal set of end-to-end packets that traverse each link.

However, doing this requires a way of

abstracting across device specific configuration files,

generating headers and the links they reach, and finally

determining a minimum set of test packets (Min-Set-

Cover).

DISADVANTAGES OF EXISTING SYSTEM

 Not designed to identify liveness failures, bugs

router hardware or software, or performance

problems.

 The two most common causes of network failure

are hardware failures and software bugs, and that

problems manifest themselves both as reachability

failures and throughput/latency degradation.

PROPOSED SYSTEM

Automatic Test Packet Generation (ATPG) is a

framework that automatically generates a minimal set of

packets to test the liveness of the underlying topology

and the congruence between data plane state and

configuration specifications. The tool can also

automatically generate packets to test performance

assertions such as packet latency.

It can also be specialized to generate a minimal

set of packets that merely test every link for network

liveness.

ADVANTAGES OF PROPOSED SYSTEM

 A survey of network operators revealing

common failures and root causes.

 A test packet generation algorithm.

 A fault localization algorithm to isolate faulty

devices and rules.

 ATPG use cases for functional and performance

testing.

 Evaluation of a prototype ATPG system using rule

sets collected from the Stanford and Internet2

backbones.

 Figure 9: Block Diagram of Proposed System

MODULES:

 Test Packet Generation

 Generate All-Pairs Reachability Table

 ATPG Tool

 Fault Localization

MODULES DESCRIPTION

Test Packet Generation:

We assume a set of test terminals in the network

can send and receive test packets. Our goal is to generate

a set of test packets to exercise every rule in every switch

function, so that any fault will be observed by at least one

test packet. This is analogous to software test suites that

try to test every possible branch in a program. The

broader goal can be limited to testing every link or every

queue. When generating test packets, ATPG must respect

two key constraints First Port (ATPG must only use test

terminals that are available) and Header (ATPG must

only use headers that each test terminal is permitted to

send).

Router

Router

Router

N

N

N

Parser

All Pairs

Reachability

Test Packet

DB

Test Packet Generator

Fault Localization

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 136

Generate All-Pairs Reachability Table:

ATPG starts by computing the complete set of

packet headers that can be sent from each test terminal to

every other test terminal. For each such header, ATPG

finds the complete set of rules it exercises along the path.

To do so, ATPG applies the all-pairs reachability

algorithm described. On every terminal port, an all-

header (a header that has all wild carded bits) is applied

to the transfer function of the first switch connected to

each test terminal. Header constraints are applied here.

ATPG Tool:

ATPG generates the minimal number of test

packets so that every forwarding rule in the network is

exercised and covered by at least one test packet. When

an error is detected, ATPG uses a fault localization

algorithm to determine the failing rules or links.

Fault Localization:

ATPG periodically sends a set of test packets. If

test packets fail, ATPG pinpoints the fault(s) that caused

the problem. A rule fails if its observed behavior differs

from its expected behavior. ATPG keeps track of where

rules fail using a result function ―Success‖ and ―failure‖

depend on the nature of the rule: A forwarding rule fails

if a test packet is not delivered to the intended output

port, whereas a drop rule behaves correctly when packets

are dropped. Similarly, a link failure is a failure of a

forwarding rule in the topology function. On the other

hand, if an output link is congested, failure is captured by

the latency of a test packet going above a threshold.

SYSTEM TESTING

The purpose of testing is to discover errors.

Testing is the process of trying to discover every

conceivable fault or weakness in a work product. It

provides a way to check the functionality of components,

sub-assemblies, assemblies and/or a finished product It is

the process of exercising software with the intent of

ensuring that the

Software system meets its requirements and

user expectations and does not fail in an unacceptable

manner. There are various types of test. Each test type

addresses a specific testing requirement.

 TYPES OF TESTS

Unit testing

Unit testing involves the design of test cases that

validate that the internal program logic is functioning

properly, and that program inputs produce valid outputs.

All decision branches and internal code flow should be

validated. It is the testing of individual software units of

the application .it is done after the completion of an

individual unit before integration. This is a structural

testing, that relies on knowledge of its construction and

is invasive. Unit tests perform basic tests at component

level and test a specific business process, application,

and/or system configuration. Unit tests ensure that each

unique path of a business process performs accurately to

the documented specifications and contains clearly

defined inputs and expected results.

Integration testing

Integration tests are designed to test integrated

software components to determine if they actually run as

one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields.

Integration tests demonstrate that although the

components were individually satisfaction, as shown by

successfully unit testing, the combination of components

is correct and consistent. Integration testing is

specifically aimed at exposing the problems that arise

from the combination of components.

Functional test

Functional tests provide systematic

demonstrations that functions tested are available as

specified by the business and technical requirements,

system documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid

input must be accepted.

Invalid Input : identified classes of invalid

input must be rejected.

Functions : identified functions must be

exercised.

Output : identified classes of

application outputs must be exercised.

Systems/Procedures : interfacing systems or

procedures must be invoked.

Organization and preparation of functional tests

is focused on requirements, key functions, or special test

cases. In addition, systematic coverage pertaining to

identify Business process flows; data fields, predefined

processes, and successive processes must be considered

for testing. Before functional testing is complete,

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 137

additional tests are identified and the effective value of

current tests is determined.

System Test

System testing ensures that the entire integrated

software system meets requirements. It tests a

configuration to ensure known and predictable results.

An example of system testing is the configuration

oriented system integration test. System testing is based

on process descriptions and flows, emphasizing pre-

driven process links and integration points.

White Box Testing

White Box Testing is a testing in which in

which the software tester has knowledge of the inner

workings, structure and language of the software, or at

least its purpose. It is purpose. It is used to test areas that

cannot be reached from a black box level.

Black Box Testing

Black Box Testing is testing the software

without any knowledge of the inner workings, structure

or language of the module being tested. Black box tests,

as most other kinds of tests, must be written from a

definitive source document, such as specification or

requirements document, such as specification or

requirements document. It is a testing in which the

software under test is treated, as a black box you cannot

―see‖ into it. The test provides inputs and responds to

outputs without considering how the software works.

Unit Testing

Unit testing is usually conducted as part of a

combined code and unit test phase of the software

lifecycle, although it is not uncommon for coding and

unit testing to be conducted as two distinct phases.

Test strategy and approach

 Field testing will be performed manually and

functional tests will be written in detail.

Test objectives

 All field entries must work properly.

 Pages must be activated from the identified link.

 The entry screen, messages and responses must

not be delayed.

Features to be tested

 Verify that the entries are of the correct format

 No duplicate entries should be allowed

 All links should take the user to the correct

page.

Integration Testing

Software integration testing is the incremental

integration testing of two or more integrated software

components on a single platform to produce failures

caused by interface defects.

The task of the integration test is to check that

components or software applications, e.g. components in

a software system or – one step up – software

applications at the company level – interact without

error.

Test Results: All the test cases mentioned above passed

successfully. No defects

encountered.

 Acceptance Testing

User Acceptance Testing is a critical phase of

any project and requires significant participation by the

end user. It also ensures that the system meets the

functional requirements.

Test Results: All the test cases mentioned above passed

successfully. No defects encountered.

IMPLEMENTATION

 MODULES

 Test Packet Generation

 Generate All-Pairs Reachability Table

 ATPG Tool

 Fault Localization

Figure 9: Example Topology with Three

Switches

MODULES DESCRIPTION

 Test Packet Generation:

We assume a set of test terminals in the network

can send and receive test packets. Our goal is to generate

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 138

a set of test packets to exercise every rule in every switch

function, so that any fault will be observed by at least

one test packet. This is analogous to software test suites

that try to test every possible branch in a program. The

broader goal can be limited to testing every link or every

queue. When generating test packets, ATPG must respect

two key constraints First Port (ATPG must only use test

terminals that are available) and Header (ATPG must

only use headers that each test terminal is permitted to

send).

1) Algorithm: We assume a set of test terminals in the

network can send and receive test packets. Our goal is to

generate a set of test packets to exercise every rule in

every switch function, so that any fault will be observed

by at least one test packet. This is analogous to software

test suites that try to test every possible branch in a

program. The broader goal can be limited to testing every

link or every queue.

When generating test packets, ATPG must

respect two key constraints: 1) Port: ATPG must only

use test terminals that are available; 2) Header: ATPG

must only use headers that each test terminal is permitted

to send. For example, the network administrator may

only allow using a specific set of VLANs. Formally, we

have the following problem.

2) Properties: The TPS algorithm has the following

useful properties.

Property 1 (Coverage): The set of test packets

exercise all reachable rules and respect all port and

header constraints.

Proof Sketch: Define a rule to be reachable if it can be

exercised by at least one packet satisfying the header

constraint, and can be received by at least one test

terminal. A reachable rule must be in the all-pairs

reachability table; thus, set cover will pick at least one

packet that exercises this rule. Some rules are not

reachable: For example, an IP prefix may be made

unreachable by a set of more specific prefixes either

deliberately (to provide backup) or accidentally (due to

misconfiguration).

Property 2 (Near-Optimality): The set of test packets

selected by TPS is optimal within logarithmic factors

among all tests giving complete coverage.

Proof Sketch: This follows from the logarithmic (in the

size of the set) approximation factor inherent in Greedy

Set Cover.

Property 3 (Polynomial Runtime): The complexity

of finding test packets is O(TD) where T the number of

test terminals is, D is the network diameter, and R is the

average number of rules in each switch.

Proof Sketch: The complexity of computing

reachability from one input port is O (D) [16], and this

computation is repeated for each test terminal.

Generate All-Pairs Reachability Table:

ATPG starts by computing the complete set of

packet headers that can be sent from each test terminal to

every other test terminal. For each such header, ATPG

finds the complete set of rules it exercises along the path.

To do so, ATPG applies the all-pairs reachability

algorithm described. On every terminal port, an all-

header (a header that has all wild carded bits) is applied

to the transfer function of the first switch connected to

each test terminal. Header constraints are applied here.

ATPG starts by computing the complete set of

packet headers that can be sent from each test terminal to

every other test terminal. For each such header, ATPG

finds the complete set of rules it exercises along the path.

To do so, ATPG applies the all-pairs reachability

algorithm described in [16]: On every terminal port, an

all- header (a header that has all wild carded bits) is

applied to the transfer function of the first switch

connected to each test terminal. Header constraints are

applied here. For example, if traffic can only be sent on

VLAN, then instead of starting with an all-header, the

VLAN tag bits are set to . As each packet pk traverses

the network using the network function, the set of rules

that match pk are recorded in pk.history. Doing this for

all pairs of terminal ports generates an all-pairs

reachability table as shown in Table I For each row, the

header column is a wildcard expression representing the

equivalent class of packets that can reach an egress

terminal from an ingress test terminal.

 Table 1: All-pairs reachability table

All possible headers from every terminal to

every other terminal, along with the rules they

exercise. Table 1 shows a simple example network,

and Table 2 is the corresponding all-pairs reachability

table. For example, an all x-test packet injected at will

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 139

pass through switch A. A forwards packets with dst_ip

= 10.0/16 to B and those with dst_ip = 10.1/16 to C. B

th en forwards dst_ip = 10.0/16, tcp = 80 to , and

switch C forwards dst_ip = 10.1/16 to . These are

reflected in the first two rows of Table 2.

Table 2: Corresponding all-pairs

reachability table

ATPG Tool

ATPG generates the minimal number of test

packets so that every forwarding rule in the network is

exercised and covered by at least one test packet. When

an error is detected, ATPG uses a fault localization

algorithm to determine the failing rules or links.

Fault Localization

ATPG periodically sends a set of test packets. If

test packets fail, ATPG pinpoints the fault(s) that caused

the problem. A rule fails if its observed behavior differs

from its expected behavior. ATPG keeps track of where

rules fail using a result function ―Success‖ and

―failure‖ depend on the nature of the rule: A forwarding

rule fails if a test packet is not delivered to the intended

output port, whereas a drop rule behaves correctly when

packets are dropped. Similarly, a link failure is a failure

of a forwarding rule in the topology function. On the

other hand, if an output link is congested, failure is

captured by the latency of a test packet going above a

threshold.

We divide faults into two categories: action

faults and match faults. An action fault occurs when

every packet matching the rule is processed incorrectly.

Examples of action faults include unexpected packet loss,

a missing rule, congestion, and mis-wiring. On the other

hand, match faults are harder to detect because they only

affect some packets matching the rule: for example,

when a rule matches a header it should not, or when a

rule misses a header it should match. Match faults can

only be detected by more exhaustive sampling such that

at least one test packet exercises each faulty region. For

example, if a TCAM bit is supposed to be, but is ―stuck

at 1,‖ then all packets with a 0 in the corresponding

position will not match correctly. Detecting this error

requires at least two packets to exercise the rule: one with

a 1 in this position, and the other with a 0.

We will only consider action faults because they

cover most likely failure conditions and can be detected

using only one test packet per rule. We leave match

faults for future work.

We can typically only observe a packet at the

edge of the network after it has been processed by every

matching rule. Therefore, we define an end-to-end

version of the result function

DISCUSSION

Overhead and Performance

The principal sources of overhead for ATPG are

polling the network periodically for forwarding state and

performing all pairs reachability. While one can reduce

overhead by running the offline ATPG calculation less

frequently, this runs the risk of using out-of-date

forwarding information. Instead, we reduce overhead in

two ways. First, we have recently sped up the all-pairs

reachability calculation using a fast multithreaded/multi-

machine header space library. Second, instead of

extracting the complete network state every time ATPG

is triggered, an incremental state updater can

significantly reduce both the retrieval time and the time

to calculate reachability. We are working on a real-time

version of ATPG that incorporates both techniques. Test

agents within terminals incur negligible overhead

because they merely de-multiplex test packets addressed

to their IP address at a modest rate (e.g., 1 per

millisecond) compared to the link speeds Gb/s most

modern CPUs are capable of receiving.

Limitations

As with all testing methodologies, ATPG has

limitations.

1) Dynamic boxes: ATPG cannot model boxes

whose internal state can be changed by test

packets. For example, an NAT that dynamically

assigns TCP ports to outgoing packets can

confuse the online monitor as the same test

packet can give different results.

2) Nondeterministic boxes: Boxes can load-

balance packets based on a hash function of

packet fields, usually combined with a random

seed; this is common in multipath routing such

as ECMP. When the hash algorithm and

parameters are unknown, ATPG cannot properly

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 140

model such rules. However, if there are known

packet patterns that can iterate through all

possible outputs, ATPG can generate packets to

traverse every output.

3) Invisible rules: A failed rule can make a

backup rule active, and as a result, no changes

may be observed by the test packets. This can

happen when, despite a failure, a test packet is

routed to the expected destination by other

rules. In addition, an error in a backup rule

cannot be detected in normal operation. Another

example is when two drop rules appear in a

row: The failure of one rule is undetectable

since the effect will be masked by the other

rule.

4) Transient network states: ATPG cannot

uncover errors whose lifetime is shorter than the

time between each round of tests. For example,

congestion may disappear before an available

bandwidth probing test concludes. Finer-grained test

agents are needed to capture abnormalities of short

duration.

5) Sampling: ATPG uses sampling when generating

test packets. As a result, ATPG can miss match

faults since the error is not uniform across all

matching headers. In the worst case (when only one

header is in error), exhaustive testing is needed.

RESULTS & CONCLUSION

Testing liveness of a network is a fundamental

problem for ISPs and large data center operators.

Sending probes between every pair of edge ports is

neither exhaustive nor scalable [30]. It suffices to find a

minimal set of end-to-end packets that traverse each link.

However, doing this requires a way of abstracting across

device specific configuration files (e.g., header space),

generating headers and the links they reach (e.g., all-

pairs reachability), and finally determining a minimum

set of test packets (Min-Set-Cover). Even the

fundamental problem of automatically generating test

packets for efficient liveness testing requires techniques

akin to ATPG.

ATPG, however, goes much further than

liveness testing with the same framework. ATPG can test

for reachability policy (by testing all rules including drop

rules) and performance health (by associating

performance measures such as latency and loss with test

packets). Our implementation also augments testing with

a simple fault localization scheme also constructed using

the header space framework. As in software testing, the

formal model helps maximize test coverage while

minimizing test packets. Our results show that all

forwarding rules in Stanford backbone or Internet2 can

be exercised by a surprisingly small number of test

packets (for Stanford, and for Internet2).

Network managers today use primitive tools

such as and. Our survey results indicate that they are

eager for more sophisticated tools. Other fields of

engineering indicate that these desires are not

unreasonable: For example, both the ASIC and software

design industries are buttressed by billion-dollar tool

businesses that supply techniques for both static (e.g.,

design rule) and dynamic (e.g., timing) verification. In

fact, many months after we built and named our system,

we discovered to our surprise that ATPG was a well-

known acronym in hardware chip testing, where it stands

for Automatic Test Pattern Generation [2]. We hope

network ATPG will be equally useful for automated

dynamic testing of production networks.

REFERENCES

[1] ―ATPG code repository,‖ [Online]. Available:

http://eastzone.github.com/atpg/

[2] ―Automatic Test Pattern Generation,‖

2013 [Online]. Available:

http://en.wikipedia.org/wiki/Automatic_test_pattern_gen

eration

[3] P. Barford, N. Duffield, A. Ron, and J. Sommers,

―Network performance anomaly detection and

localization,‖ in Proc. IEEE INFOCOM, Apr. , pp. 1377–

1385.

[4] ―Beacon,‖ [Online]. Available:

http://www.beaconcontroller.net/

[5] Y. Bejerano and R. Rastogi, ―Robust monitoring of

link delays and faults in IP networks,‖ IEEE/ACM Trans.

Netw., vol. 14, no. 5, pp. 1092–1103, Oct. 2006.

[6] C. Cadar, D. Dunbar, and D. Engler, ―Klee:

Unassisted and automatic generation of high-

coverage tests for complex systems programs,‖ in

http://eastzone.github.com/atpg/
http://eastzone.github.com/atpg/
http://en.wikipedia.org/wiki/Automatic_test_pattern_generatio
http://en.wikipedia.org/wiki/Automatic_test_pattern_generatio
http://www.beaconcontroller.net/
http://www.beaconcontroller.net/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 141

Proc. OSDI, Berkeley, CA, USA, 2008, pp. 209–

224.

[7] M. Canini,D.Venzano, P. Peresini,D.Kostic, and J.

Rexford, ―A NICE way to test OpenFlow applications,‖

in Proc. NSDI, 2012, pp. 10–10.

[8] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C.

Diot, ―Netdiagnoser:

Troubleshooting network unreachabilities using end-to-

end probes and routing data,‖ in Proc. ACM CoNEXT,

2007, pp. 18:1–18:12.

[9] N. Duffield, ―Network tomography of binary

network performance characteristics,‖ IEEE Trans. Inf.

Theory, vol. 52, no. 12, pp. 5373–5388, Dec. 2006.

[10] N. Duffield, F. L. Presti, V. Paxson, and D.

Towsley, ―Inferring link loss using striped unicast

probes,‖ in Proc. IEEE INFOCOM, 2001, vol. 2, pp. 915–

923.

[11] N. G. Duffield and M. Grossglauser, ―Trajectory

sampling for direct traffic observation,‖ IEEE/ACM

Trans. Netw., vol. 9, no. 3, pp. 280–292, Jun. 2001.

[12] P. Gill, N. Jain, and N. Nagappan,

―Understanding network failures in data centers:

Measurement, analysis, and implications,‖ in Proc. ACM

SIGCOMM, 2011, pp. 350–361.

[13] ―Hassel, the Header Space Library,‖

[Online]. Available:

 https://bitbucket.org/peymank/hassel-public/

[14] Internet2, Ann Arbor, MI, USA, ―The Internet2

observatory data collections,‖

[Online]. Available:

http://www.internet2.edu/observatory/archive/data-

collections.html

[15] M. Jain and C. Dovrolis, ―End-to-end available

bandwidth: Measurement methodology, dynamics, and

relation with TCP throughput,‖ IEEE/ACM Trans. Netw.,

vol. 11, no. 4, pp. 537–549, Aug. 2003.

https://bitbucket.org/peymank/hassel-public/
http://www.internet2.edu/observatory/archive/data-collections.html
http://www.internet2.edu/observatory/archive/data-collections.html
http://www.internet2.edu/observatory/archive/data-collections.html
http://www.internet2.edu/observatory/archive/data-collections.html

