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 Abstract 

In this article, we use Maple for the auxiliary 

tool to study four types of improper integrals. 

The closed forms of these improper integrals 

can be obtained by using Laplace transform. 

On the other hand, some examples are 

proposed to demonstrate the calculations, and 

we verify their answers using Maple.    
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1. Introduction 

The computer algebra system (CAS) has 

been widely employed in mathematical and 

scientific studies. The rapid computations and 

the visually appealing graphical interface of the 

program render creative research possible. 

Maple possesses significance among 

mathematical calculation systems and can be 

considered a leading tool in the CAS field. The 

superiority of Maple lies in its simple 

instructions and ease of use, which enable 

beginners to learn the operating techniques in a 

short period. In addition, through the numerical 

and symbolic computations performed by 

Maple, the logic of thinking can be converted 

into a series of instructions. The computation 

results of Maple can be used to modify our 

previous thinking directions, thereby forming 

direct and constructive feedback that can aid in 

improving understanding of problems and 

cultivating research interests. 

In calculus and engineering mathematics 

courses, there are many methods to solve the  

 

integral problems, for example, change of 

variables method, integration by parts method, 

partial fractions method, trigonometric 

substitution method, etc. This paper studies the 

following four types of improper integrals 

which are not easy to obtain their answers 

using the methods mentioned above. 
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where ,,, ryx  are real numbers, n  is a non-

negative integer, 0x , and 0cos r . The 

closed forms of these four types of improper 

integrals can be obtained by using Laplace 

transform, these are the major results in this 

paper: Theorems 1 and 2. Adams et al. [1], 

Nyblom [2], and Oster [3] provided some 

methods to solve some integral problems. Yu 

[4-24], Yu and Chen [25], and Yu and Sheu 

[26-28] used complex power series, complex 

integral formulas, integration term by term, 

differentiation with respect to a parameter, 

Parseval’s theorem, and area mean value 

theorem to solve some types of integrals. In 

this article, we propose some improper 

integrals to do calculation practically. On the 

other hand, Maple is used to calculate the 

approximations of these improper integrals and 

their closed forms for verifying our answers. 
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2. Preliminaries and Results 

Some notations and formulas used in this 

paper are introduced below. 

2.1 Notations:  

2.1.1 Let ibaz    be a complex number, 

where 1i , and ba,  are real numbers. 

a , the real part of  z , is denoted as )Re( z ; 

b , the imaginary part of z , is denoted as 

)Im(z . 

2.1.2 )1()1()(  nssss n , whers s  is 

a real number, and n  is a positive integer;  

1)( 0 s . 

2.2 Formulas:   

2.2.1 Euler’s formula:  

 sincos iei  , where   is any real 

number. 

2.2.2 DeMoivre’s formula:  

,sincos)sin(cos  nini n   where n  

is an integer, and  is a real number. 

2.2.3 Laplace transform ([29, p607]): 

Suppose that n is a non-negative integer, and 

s is a complex number with 0)Re( s , then 
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In the following, we determine the closed 

forms of the improper integrals (1) and (2). 

Theorem 1 Suppose that yx,  are real 

numbers, n  is a non-negative integer, and 
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Proof  Using Eq. (5) yields 
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Similarly, by Eq. (8) we have 
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The closed forms of the improper integrals 

(3) and (4) can be obtained below. 
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Theorem 2 If ,r  are real numbers, n  is a 

non-negative integer, and 0cos r , then 
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Proof  Using Eq. (5) yields 
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Also, using Eq. (11) yields 
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3. Example 

For the four types of improper integrals in 

this study, we will propose some examples and 

use Theorems 1 and 2 to obtain their closed 

forms. In addition, Maple is used to calculate 

the approximations of these improper integrals 

and their closed forms for verifying our 

answers. 

Example 1   By Eq. (6), we have 
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The correctness of Eq. (12) can be verified by 

using Maple. 

>evalf(int(t^3*exp(-2*t)*cos(5*t),t=0.. 

infinity),18); 

0.000347810841801207724 

>evalf(246/707281,18); 

0.000347810841801207724 

On the other hand, using Eq. (7) yields 
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We also use Maple to verify the correctness of 

Eq. (13). 
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>evalf(int(t^6*exp(-4*t)*sin(7*t),t=0.. 

infinity),18); 

0.000286552112904915346 

>evalf(280948752/980445578125,18); 

0.000286552112904915346 

Example 2  We can determine the following 

improper integral using Eq. (9), 
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The correctness of Eq. (14) can be verified by 

using Maple. 

>evalf(int(t^4*exp(-2*cos(Pi/8)*t)*cos(2* 

sin(Pi/8)*t),t=0..infinity),18); 

−0.287012574273817332 

>evalf(3*cos(5*Pi/8)/4,18); 

−0.287012574273817332 

In addition, using Eq.(10) yields 

dttet t ])5/sin(3sin[)]5/cos(3[
0
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.
729

)5/8sin(560 
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>evalf(int(t^7*exp(-3*cos(Pi/5)*t)*sin(3* 

sin(Pi/5)*t),t=0..infinity),18); 

−0.730578393861846366 

>evalf(560*sin(8*Pi/5)/729,18); 

−0.730578393861846367 

4. Conclusion 

In this paper, we use Laplace transform to 

solve some improper integrals. In fact, the 

applications of Laplace transform are extensive, 

and can be used to easily solve many difficult 

problems; we endeavor to conduct further 

studies on related applications. In addition, 

Maple also plays a vital assistive role in 

problem-solving. In the future, we will extend 

the research topics to other calculus and 

engineering mathematics problems and solve 

these problems using Maple.  
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