
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 04
February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 261

Dynamic File Nodes Distribution in Cloud Systems

T.Kiranmai 1& V.Venkata Siva Sankara Reddy2 M.Tech
2

Assistant Professor ., Department Of Computer Science and Engineering
1,2

 Qis Institute of Technology . Ongole

Abstract-
The load rebalancing problem in cloud

computing. The main objective of the paper is to

Enhance distributed load rebalancing algorithm

to cope with the load imbalance factor,

movement cost, and algorithmic overhead. The

load rebalance algorithm is compared against a

centralized approach in a production system

and the performance of the proposal

implemented in the Hadoop distributed file

system for cloud computing applications. The

cloud applications process large amount of data

to provide the desired results. Data volumes to

be processed by cloud applications are growing

much faster than computing power. This growth

demands on new strategies for processing and

analysing the information. The project explores

the use of Hadoop MapReduce framework to

execute scientific workflows in the cloud. Cloud

computing provides massive clusters for

efficient large computation and data analysis. In

such file systems, a file is partitioned into a

number of file chunks allocated in distinct nodes

so that MapReduce tasks can performed in

parallel over the nodes to make resource

utilization effective and to improve the response

time of the job. In large failure prone cloud

environments files and nodes are dynamically

created, replaced and added in the system due

to which some of the nodes are over loaded

while some others are under loaded. It leads to

load imbalance in distributed file system. To

overcome this load imbalance problem, a fully

distributed Load rebalancing algorithm has

been implemented, which is dynamic in nature

does not consider the previous state or behavior

of the system (global knowledge) and it only

depends on the present behaviour of the system

and estimation of load, comparison of load,

stability of different system, performance of

system, interaction n between the nodes, nature

of load to be transferred, selection of nodes and

network traffic. The current Hadoop

implementation assumes that computing nodes

in a cluster are homogeneous in nature.

I. Introduction

Cloud computing refers to delivery of computer

resources from a remote place based on user

needs. Network connections are necessary to

access information and utilize resources.

According to Gartner [1], cloud computing can

be defined as, a style of computing, where

massively scalable IT- enabled capabilities are

delivered „as a service‟ to external customers

using Internet technologies. According to the

Seccombe [2] and National Institute of

Standards & Technology [3], guidelines for

cloud computing, it has four different

deployment models namely private, community,

public and hybrid. Performance, security, data

locality to both cloud architects and end users

are the key features of public model. Increase in

the challenges on how to transfer and where to

store and compute data are the issues caused by

large distributed file systems in cloud

computing. Cloud Computing Technologies

such as Map Reduce paradigm [4],

virtualization [5] and Distributed File Systems

([6], [7]) are used to achieve scalability and

reliability in clouds. Hadoop File Systems

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 04
February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 262

(HDFS) and Google File Systems (GFS) are

used to overcome the issues which arise in

achieving those factors .HDFS cluster consist of

single name node and a server manages the file

system namespace and regulates access to files.

Load balancing is the main issue in large scale

distributed computing. It is the process of

distributing tasks to all nodes involved in cloud

computing. Efficient allocation of resources to

every computing task helps to achieve resource

utilization ratio and high user satisfaction.

Minimizing resource consumption, avoiding

bottlenecks, implementing fail-over, enabling

scalability, reducing network inconsistencies

and solving network traffic are the main goals of

load computing. Whole cloud gets fail while

analyzing existing system clouds performance

bottleneck due to failure of central node.

Functional difficulties and technical difficulties

are caused because of those failures. Cloud

computing allocate resources dynamically,

which connects and add thousands of nodes

together. The main goal is to allocate files to

these nodes, for avoiding heavy nodes that files

are uniformly distributed to these nodes. Load

balancing provides maximization of network

bandwidth, reduction of network traffic and

network inconsistencies. We can add, delete and

update nodes dynamically for heterogeneity of

the nodes. Heterogeneity of the nodes will

increase the scalability and system performance.

In Distributed File System the main

functionalities of nodes is to serve computing

and storage functions. Cloud computing is a

relatively new way of referring to the use of

shared computing resources, and it is an

alternative to having local servers handle

applications. Cloud computing groups together

large numbers of computer servers and other

resources and typically offers their combined

capacity on an on-demand, pay-per-cycle basis

without sophisticated deployment and

management of resources. The end users of a

cloud computing network usually have no idea

where the servers are physically located, they

just spin up their application and start working.

This flexibility is the key advantage to cloud

computing, and what distinguishes it from other

forms of grid or utility computing and software

as a service (SaaS). The ability to launch new

instances of an application with minimal labor

and expense allows application providers to

scale up and down rapidly, recover from a

failure, bring up development or test instances,

and roll out new versions to the customer base.

Distributed file systems are key building blocks

for cloud computing applications based on the

MapReduce J. Deanet all [1] programming

paradigm. MapReduce programs are designed to

compute large volumes of data in a parallel

fashion. This requires dividing the workload

across a large number of machines. Hadoop

provides a systematic way to implement this

programming paradigm. The computation takes

a set of input key/value pairs and produces a set

of output key/value pairs. The computation

involves two basic operations: Map and Reduce.

The Map operation, written by the user, takes an

input pair and produces a set of intermediate

key/value pairs. The MapReduce library groups

together all intermediate values associated with

the same intermediate Key #1 and passes them

to the Reduce function. The Reduce function,

also written by the user, accepts an intermediate

Key #1 and a set of values for that key. It

merges together these values to form a possibly

smaller set of values. Typically just an output

value of 0 or 1 is produced per Reduce

invocation. The intermediate values are supplied

to the user's Reduce function via an iterator (an

object that allows a programmer to traverse

through all the elements of a collection

regardless of its specific implementation. The

proposed fully distributed load rebalancing

algorithm can be integrated with the Hadoop [3]

Single-Node Cluster or Multi-Node Cluster to

enhance the performance of the NameNode in

balancing the loads of storage nodes present in

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 04
February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 263

the cluster. Figure 1 represents a typical Single-

Node Hadoop Cluster. The three major

categories of machine roles in a Client

machines, Masters Nodes, and Slave nodes. The

Master nodes oversee the two key functional

pieces that make up Hadoop: storing lots of data

(HDFS), and running parallel computations on

all that data (Map Reduce). The Name Node

oversees and coordinates the data storage

function (HDFS), while the Job Tracker

oversees and coordinates the parallel processing

of data using Map Reduce. Slave Nodes make

up the vast majority of machines and do all the

dirty work of storing the data and running the

computations. Each slave runs both a Data Node

and Task Tracker daemon that communicate

with and receive instructions from their master

nodes. The Task Tracker daemon is a slave to

the Job Tracker, the Data Node daemon a slave

to the Name Node. Client machines have

Hadoop installed with all the cluster settings,

but are neither a Master nor a Slave. Instead, the

role of the Client machine is to load data into

the cluster, submit Map Reduce jobs describing

how that data should be processed and then

retrieve or view the results of the job when it’s

finished. In smaller clusters (~40 nodes) you

may have a single physical server playing

multiple roles, such as both Job Tracker and

Name Node.

II. Related work

Data Balancing on Cloud

an associated implementation for processing and

generating large data sets. Users specify a map

function that processes a key/value pair to

generate a set of intermediate key/value pairs,

and a reduce function that merges all

intermediate values associated with the same

intermediate key. Many real world tasks are

expressible in this model. The map and reduce

primitives present in Lisp and many other

functional languages. We realized that most of

our computations involved applying a map

operation to each logical ―record‖ in our input in

order to compute a set of intermediate key/value

pairs, and then applying a reduce operation to

all the values that shared the same key, in order

to combine the derived data appropriately. The

functional model with user specified map and

reduce operations allows us to parallelize large

computations easily and to use re-execution as

the primary mechanism for fault tolerance.

Programs written in this functional style are

automatically parallelized and executed on a

large cluster of commodity machines. The run-

time system takes care of the details of

partitioning the input data, scheduling the

program’s execution across a set of machines,

handling machine failures, and managing the

required inter-machine communication. This

allows programmers without any experience

with parallel and distributed systems to easily

utilize the resources of a large distributed

system. Distributed file systems are key

building blocks for cloud computing

applications based on the MapReduce

programming paradigm. In such file systems,

nodes simultaneously serve computing and

storage functions; a file is partitioned into a

number of chunks allocated in distinct nodes so

that MapReduce tasks can be performed in

parallel over the nodes. The implementation of

MapReduce runs on a large cluster of

commodity machines and is highly scalable: a

typical MapReduce computation processes

many terabytes of data on thousands of

machines. Programmers find the system easy to

use: hundreds of MapReduce programs have

been implemented and upwards of one thousand

MapReduce jobs are executed on Google’s

clusters every day. The MapReduce

programming model has been successfully used

at Google for many different purposes. The

model is easy to use, even for programmers

without experience with parallel and distributed

systems, since it hides the details of

parallelization, fault-tolerance, locality

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 04
February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 264

optimization, and load balancing. Second, a

large variety of problems are easily expressible

as MapReduce computations. For example,

MapReduce is used for the generation of data

for Google’s production web search service, for

sorting, for data mining, for machine learning,

and many other systems. Third, we have

developed an implementation of MapReduce

that scales to large clusters of machines

comprising thousands of machines. The

implementation makes efficient use of these

machine resources and therefore is suitable for

use on many of the large computational

problems encountered at Google. So

MapReduce processes many terabytes of data on

thousands of machines. Easy to use scalable

programming model for large-scale data

processing on clusters. It achieves efficiency

through disk-locality and also achieves fault-

tolerance through replication. movement.

Second, it can avoid transferring loads across

high-latency wide area links, thereby enabling

fast convergence on load balance and quick

response to load imbalance. To use proximity

information in load balancing the main

contributions are: 1) Relying on a self-

organized, fully distributed k-ary tree structure

constructed on top of a DHT, load balance is

achieved by aligning those two skews in load

distribution and node capacity inherent in P2P

systems. 2) Proximity information is used to

guide virtual server reassignments such that

virtual servers are reassigned and transferred

between physically close heavily loaded nodes

and lightly loaded nodes, thereby minimizing

the load movement cost and allowing load

balancing to perform efficiently.

Fig: single node cluster

The load rebalancing problem in distributed file

systems specialized for large scale, dynamic and

data-intensive clouds. Our objective is to

allocate the chunks of files as uniformly as

possible among the nodes such that no node

manages an excessive number of chunks.

ALGORITHM is. Experimental Setup Proposed

algorithm is implemented with the help of

simulation package like Cloudsim and cloudsim

based tool. Java language is used for

implementing VM load balancing algorithm.

We assume that the cloudsim toolkit has been

deployed in one data centre having 5 virtual

machines (with 1024 Mb of memory in each

VM running on physical host with 1000 MIPS)

where the parameter values are as under. Table

1- Parameter Values Parameter Values VM

image size 10,000 VM memory 512 MB VM

bandwidth 1000 Data Centre- Architecture X86

Data Centre- OS

Round_Robin_Load_Balancing ()

{

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 04
February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 265

Initialize all the VM allocation status to

AVAILABLE in the VM state list;

Initialize hash map with no entries;

While(new request are recived by the Data

Centre Controller)

{

Initialize all the VM allocation status to

AVAILABLE in the VM state list;

Initialize hash map with no entries;

 While(new request are recived by the Data

Centre Controller)

{

The VM is reallocated to the user base request;

}

 Else

 {

Allocate a VM to the user base request using

Round Robin Algorithm;

Update the entry of the user base and the VM in

the hash map and the VM state list;

 }

 }

 }

III. Balancing for DHT-Based Systems

DHT based P2P systems offer a distributed hash

table (DHT) abstraction for object storage and

retrieval. Many solutions have been proposed to

tackle the load balancing issue in DHT-based

P2P systems. However, all these solutions either

ignore the heterogeneity nature of the system, or

reassign loads among nodes without considering

proximity relationships, or both. To tackle this

issue an efficient, proximity-aware load

balancing scheme by using the concept of

virtual servers. The goal is to ensure fair load

distribution over nodes proportional to their

capacities, but also to minimize the load-

balancing cost (e.g., bandwidth consumption

due to load movement) by transferring virtual

servers between heavily loaded nodes and

lightly loaded nodes in a proximity-aware

fashion. To achieve the latter goal by using

proximity information to guide virtual server

reassignments. There are two main advantages

of a proximity-aware load balancing scheme.

First, from the system perspective, a load

balancing scheme bearing network proximity in

mind can reduce the bandwidth consumption

(e.g., bisection backbone bandwidth) dedicated

to load

IV.Peer-to-Peer Lookup for Internet

Applications

A distributed peer-to-peer applications need to

determine the node that stores a data item. The

Chord protocol solves this challenging problem

in decentralized manner. Chord provides

support for just one operation: given a key, it

maps the key onto a node. Data location can be

easily implemented on top of Chord by

associating a key with each data item, and

storing the key/data pair at the node to which

the key maps. Chord simplifies the design of

peer-to-peer systems and applications based on

it by addressing these difficult problems:

Load balance: Chord acts as a distributed hash

function, spreading keys evenly over the nodes;

this provides a degree of natural load balance.

Decentralization: Chord is fully distributed: no

node is more important than any other. This

improves robustness and makes Chord

appropriate for loosely-organized peerto- peer

applications.

Scalability: The cost of a Chord lookup grows

as the log of the number of nodes, so even very

large systems are feasible. No parameter tuning

is required to achieve this scaling.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 04
February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 266

Availability: Chord automatically adjusts its

internal tables to reflect newly joined nodes as

well as node failures, ensuring that, barring

major failures in the underlying network, the

node responsible for a key can always be found.

This is true even if the system is in a continuous

state of change.

Flexible naming: Chord places no constraints

on the structure of the keys it looks up: the

Chord key-space is flat. This gives applications

a large amount of flexibility in how they map

their own names to Chord keys. Chord provides

fast distributed computation of a hash function

mapping keys to nodes responsible for them.

Chord assigns keys to nodes with consistent

hashing which has several desirable properties.

With high probability the hash function balances

load (all nodes receive roughly the same number

of keys). Also with high probability, when an

Nth node joins (or leaves) the network, only a

O(1=N) fraction of the keys are moved to a

different location—this is clearly the minimum

necessary to maintain a balanced load. Chord

improves the scalability of consistent hashing by

avoiding the requirement that every node know

about every other node. A Chord node needs

only a small amount of ―routing‖ information

about other nodes. Because this information is

distributed, a node resolves the hash function by

communicating with other nodes. In an N-node

network, each node maintains information about

only O(logN) other nodes, and a lookup requires

O(logN) messages. The consistent hash function

assigns each node and key an m bit identifier

using SHA-1 [10] as a base hash function. A

node’s identifier is chosen by hashing the

node’s IP address, while a key identifier is

produced by hashing the key. We will use the

term ―key‖ to refer to both the original key and

its image under the hash function, as the

meaning will be clear from context. Similarly,

the term ―node‖ will refer to both the node and

its identifier under the hash function. The

identifier length m must be large enough to

make the probability of two nodes or keys

hashing to the same identifier negligible.

Consistent hashing assigns keys to nodes as

follows. Identifiers are ordered on an identifier

circle modulo 2m. Key k is assigned to the first

node whose identifier is equal to or follows (the

identifier of) k in the identifier space. This node

is called the successor node of key k, denoted by

successor(k). If identifiers are represented as a

circle of numbers from 0 to 2m- 1, then

successor(k) is the first node clockwise from k.

In this paper the Chord uses consistent hashing

to assign keys to Chord nodes. Consistent

hashing tends to balance load, since each node

receives roughly the same number of keys, and

requires relatively little movement of keys when

nodes join and leave the system. Chord will be a

valuable component for peer-to-peer, large-scale

distributed applications and also adapts

efficiently as nodes join and leave the system,

and can answer queries even if the system is

continuously changing. Chord acts as a

distributed hash function, spreading keys evenly

over the nodes; this provides a degree of natural

load balance.

V. Global Load Balancing in Peer-to-Peer

Systems

A new framework, called Histogram-based

Global Load Balancing (HiGLOB) to facilitate

global load balancing in structured P2P systems.

Each node P in HiGLOB has two key

components. The first component is a histogram

manager that maintains a histogram that reflects

a global view of the distribution of the load in

the system. The histogram stores statistical

information that characterizes the average load

of no overlapping groups of nodes in the P2P

network. It is used to determine if a node is

normally loaded, overloaded, or under loaded.

The second component of the system is a load

balancing manager that takes actions to

redistribute the load whenever a node becomes

overloaded or under loaded. The load-balancing

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 04
February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 267

manager may redistribute the load both

statically when a new node joins the system and

dynamically when an existing node in the

system becomes overloaded or under loaded.

the cost of constructing and maintaining them

may be expensive especially in dynamic

systems. As a result, we introduce two

techniques that reduce the maintenance cost. .

Reduce the cost of constructing histogram.

Constructing a histogram for a new node may be

expensive since it requires histogram

information from all neighbor nodes.

Additionally, the histograms of the new node’s

neighbors also need to be updated since adding

a new node to a group of nodes changes the

average load of that group. Constructing and

maintaining histograms may therefore be

expensive if nodes join and leave the system

frequently. In light of the fact that every new

node in the P2P system must find and notify its

neighbor nodes about its existence while these

neighbor nodes need to send their information to

the new node to setup connections after that, we

suggest that histogram information can be

piggybacked with messages used in this process.

In this way, we can avoid sending separate

histogram messages and totally eliminate the

effect of node join on the histogram

construction of the new node and histogram

update of its neighbor nodes. The overhead cost

of using histograms is now solely based on

histogram update messages caused by changing

of load at nodes in the system. Maintaining

histograms can be expensive since any load

change at a node causes an update to be

propagated to all other nodes in the system. To

avoid this propagation, we suggest that we do

not need to keep exact histogram values. We

only need to keep approximate values in the

histogram. A node only needs to send load

information to other nodes when there is a

significant change in either its load or the

average load of a non-overlapping group.

VI. Conclusion

In this paper the load rebalancing problem in

large-scal, dynamic and distributed file systems

in clouds has been presented. This is our first

paper in which only the overview of load

rebalancing algorithm have been done and we

will provide a load balanced cloud, then only

the resources can be well utilized and

provisioned, maximizing the performance of

MapReduce-based applications. The load-

balancing algorithm to deal with the load

rebalancing problem in large-scale, dynamic,

and distributed file systems in clouds has been

presented in this paper. The proposal strives to

balance the loads of data nodes and task nodes

efficiently. Then only can able to distribute the

file chunks as uniformly as possible. The

proposed algorithm operates in a distributed

manner in which nodes perform their load-

balancing tasks independently without

synchronization or global knowledge regarding

the system. In a loadbalanced cloud, the

resources can be well utilized and provisioned,

maximizing the performance of MapReduce-

based applications. The algorithm also

outperforms the competing distributed algorithm

in terms of load imbalance factor, movement

cost, and algorithmic overhead.

References

[1] 1 J. Dean and S. Ghemawat,

―MapReduce: Simplified Data Processing on

Large Clusters,‖ in Proc. 6th Symp. Operating

System Design and Implementation

(OSDI’04), Dec. 2004, pp. 137–150.

[2] 2 G. DeCandia, D. Hastorun, M.

Jampani, G. Kakulapati, A. Lakshman, A.

Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels, ―Dynamo: Amazon’s Highly

Available Key-value Store,‖ in Proc. 21st

ACM Symp.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 04
February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 268

[3] 3 Hadoop Distributed File System,

―RebalancingBlocks,‖http://developer.yahoo.c

om/hadoop/tutorial/module2.html#rebalancing.

[4] 4.HDFSFederation,http://hadoop.apache.

org/common/docs/r0.23.0/hadoop

yarn/hadoop-yarn-site/Federation.html.

[5] 5 D. Karger and M. Ruhl, ―Simple

Efficient Load Balancing Algorithms for Peer-

to-Peer Systems,‖ in Proc. 16th ACM Symp.

Parallel Algorithms and Architectures

(SPAA’04), June 2004, pp. 36–43.

[6] M. Raab and A. Steger, ―Balls into

Bins—A Simple and Tight Analysis,‖LNCS

1518, pp. 159–170, Oct. 1998.

[7] M. Jelasity, A. Montresor, and O.

Babaoglu, ―Gossip-Based Aggregationin Large

Dynamic Networks,‖ ACM Trans. Comput.

Syst., vol. 23, no. 3,pp. 219–252, Aug. 2005.

[8] M. Jelasity, S. Voulgaris, R. Guerraoui,

A.-M. Kermarrec, and M. V. Steen,―Gossip-

Based Peer Sampling,‖ ACM Trans. Comput.

Syst., vol. 25, no. 3,Aug. 2007.

[9] H. Sagan, Space-Filling Curves, 1st ed.

Springer, 1994.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang,

Y. Shi, C. Tian, Y. Zhang, andS. Lu, ―BCube:

A High Performance, Server-Centric Network

Architecturefor Modular Data Centers,‖ in

Proc. ACM SIGCOMM’09, Aug. 2009, pp.63–

74.

[11] H. Abu-Libdeh, P. Costa, A. Rowstron,

G. O’Shea, and A. Donnelly,―Symbiotic

Routing in Future Data Centers,‖ in Proc.

ACM SIGCOMM’10, Aug. 2010, pp. 51–62.

[12] S. Surana, B. Godfrey, K.

Lakshminarayanan, R. Karp, and I.

Stoica,―Load Balancing in Dynamic Structured

P2P Systems,‖ PerformanceEvaluation, vol. 63,

no. 6, pp. 217–240, Mar. 2006.

http://develop/
http://hadoop.apach/

