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Abstract-   
The load rebalancing problem in cloud 

computing. The main objective of the paper is to 

Enhance distributed load rebalancing algorithm 

to cope with the load imbalance factor, 

movement cost, and algorithmic overhead. The 

load rebalance algorithm is compared against a 

centralized approach in a production system 

and the performance of the proposal 

implemented in the Hadoop distributed file 

system for cloud computing applications.  The 

cloud applications process large amount of data 

to provide the desired results. Data volumes to 

be processed by cloud applications are growing 

much faster than computing power. This growth 

demands on new strategies for processing and 

analysing the information. The project explores 

the use of Hadoop MapReduce framework to 

execute scientific workflows in the cloud. Cloud 

computing provides massive clusters for 

efficient large computation and data analysis. In 

such file systems, a file is partitioned into a 

number of file chunks allocated in distinct nodes 

so that MapReduce tasks can performed in 

parallel over the nodes to make resource 

utilization effective and to improve the response 

time of the job. In large failure prone cloud 

environments files and nodes are dynamically 

created, replaced and added in the system due 

to which some of the nodes are over loaded 

while some others are under loaded. It leads to 

load imbalance in distributed file system. To 

overcome this load imbalance problem, a fully 

distributed Load rebalancing algorithm has 

been implemented, which is dynamic in nature 

does not consider the previous state or behavior 

of the system (global knowledge) and it only 

depends on the present behaviour of the system 

and estimation of load, comparison of load, 

stability of different system, performance of 

system, interaction n between the nodes, nature 

of load to be transferred, selection of nodes and 

network traffic. The current Hadoop 

implementation assumes that computing nodes 

in a cluster are homogeneous in nature.  

 

I. Introduction 

Cloud computing refers to delivery of computer 

resources from a remote place based on user 

needs. Network connections are necessary to 

access information and utilize resources. 

According to Gartner [1], cloud computing can 

be defined as, a style of computing, where 

massively scalable IT- enabled capabilities are 

delivered „as a service‟ to external customers 

using Internet technologies. According to the 

Seccombe [2] and National Institute of 

Standards & Technology [3], guidelines for 

cloud computing, it has four different 

deployment models namely private, community, 

public and hybrid. Performance, security, data 

locality to both cloud architects and end users 

are the key features of public model. Increase in 

the challenges on how to transfer and where to 

store and compute data are the issues caused by 

large distributed file systems in cloud 

computing. Cloud Computing Technologies 

such as Map Reduce paradigm [4], 

virtualization [5] and Distributed File Systems 

([6], [7]) are used to achieve scalability and 

reliability in clouds. Hadoop File Systems 
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(HDFS) and Google File Systems (GFS) are 

used to overcome the issues which arise in 

achieving those factors .HDFS cluster consist of 

single name node and a server manages the file 

system namespace and regulates  access to files. 

Load balancing is the main issue in large scale 

distributed computing. It is the process of 

distributing tasks to all nodes involved in cloud 

computing. Efficient allocation of resources to 

every computing task helps to achieve resource 

utilization ratio and high user satisfaction. 

Minimizing resource consumption, avoiding 

bottlenecks, implementing fail-over, enabling 

scalability, reducing network inconsistencies 

and solving network traffic are the main goals of 

load computing. Whole cloud gets fail while 

analyzing existing system clouds performance 

bottleneck due to failure of central node. 

Functional difficulties and technical difficulties 

are caused because of those failures. Cloud 

computing allocate resources dynamically, 

which connects and add thousands of nodes 

together. The main goal is to allocate files to 

these nodes, for avoiding heavy nodes that files 

are uniformly distributed to these nodes. Load 

balancing provides maximization of network 

bandwidth, reduction of network traffic and 

network inconsistencies. We can add, delete and 

update nodes dynamically for heterogeneity of 

the nodes. Heterogeneity of the nodes will 

increase the scalability and system performance. 

In Distributed File System the main 

functionalities of nodes is to serve computing 

and storage functions.  Cloud computing is a 

relatively new way of referring to the use of 

shared computing resources, and it is an 

alternative to having local servers handle 

applications. Cloud computing groups together 

large numbers of computer servers and other 

resources and typically offers their combined 

capacity on an on-demand, pay-per-cycle basis 

without sophisticated deployment and 

management of resources. The end users of a 

cloud computing network usually have no idea 

where the servers are physically located, they 

just spin up their application and start working. 

This flexibility is the key advantage to cloud 

computing, and what distinguishes it from other 

forms of grid or utility computing and software 

as a service (SaaS). The ability to launch new 

instances of an application with minimal labor 

and expense allows application providers to 

scale up and down rapidly, recover from a 

failure, bring up development or test instances, 

and roll out new versions to the customer base. 

Distributed file systems are key building blocks 

for cloud computing applications based on the 

MapReduce J. Deanet all [1] programming 

paradigm. MapReduce programs are designed to 

compute large volumes of data in a parallel 

fashion. This requires dividing the workload 

across a large number of machines. Hadoop 

provides a systematic way to implement this 

programming paradigm. The computation takes 

a set of input key/value pairs and produces a set 

of output key/value pairs. The computation 

involves two basic operations: Map and Reduce. 

The Map operation, written by the user, takes an 

input pair and produces a set of intermediate 

key/value pairs. The MapReduce library groups 

together all intermediate values associated with 

the same intermediate Key #1 and passes them 

to the Reduce function.  The Reduce function, 

also written by the user, accepts an intermediate 

Key #1 and a set of values for that key. It 

merges together these values to form a possibly 

smaller set of values. Typically just an output 

value of 0 or 1 is produced per Reduce 

invocation. The intermediate values are supplied 

to the user's Reduce function via an iterator (an 

object that allows a programmer to traverse 

through all the elements of a collection 

regardless of its specific implementation. The 

proposed fully distributed load rebalancing 

algorithm can be integrated with the Hadoop [3] 

Single-Node Cluster or Multi-Node Cluster to 

enhance the performance of the NameNode in 

balancing the loads of storage nodes present in 
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the cluster. Figure 1 represents a typical Single-

Node Hadoop Cluster. The three major 

categories of machine roles in a Client 

machines, Masters Nodes, and Slave nodes. The 

Master nodes oversee the two key functional 

pieces that make up Hadoop: storing lots of data 

(HDFS), and running parallel computations on 

all that data (Map Reduce). The Name Node 

oversees and coordinates the data storage 

function (HDFS), while the Job Tracker 

oversees and coordinates the parallel processing 

of data using Map Reduce. Slave Nodes make 

up the vast majority of machines and do all the 

dirty work of storing the data and running the 

computations. Each slave runs both a Data Node 

and Task Tracker daemon that communicate 

with and receive instructions from their master 

nodes. The Task Tracker daemon is a slave to 

the Job Tracker, the Data Node daemon a slave 

to the Name Node. Client machines have 

Hadoop installed with all the cluster settings, 

but are neither a Master nor a Slave. Instead, the 

role of the Client machine is to load data into 

the cluster, submit Map Reduce jobs describing 

how that data should be processed and then 

retrieve or view the results of the job when it’s 

finished. In smaller clusters (~40 nodes) you 

may have a single physical server playing 

multiple roles, such as both Job Tracker and 

Name Node. 

II. Related work 

Data  Balancing on Cloud 

an associated implementation for processing and 

generating large data sets. Users specify a map 

function that processes a key/value pair to 

generate a set of intermediate key/value pairs, 

and a reduce function that merges all 

intermediate values associated with the same 

intermediate key. Many real world tasks are 

expressible in this model. The map and reduce 

primitives present in Lisp and many other 

functional languages. We realized that most of 

our computations involved applying a map 

operation to each logical ―record‖ in our input in 

order to compute a set of intermediate key/value 

pairs, and then applying a reduce operation to 

all the values that shared the same key, in order 

to combine the derived data appropriately. The 

functional model with user specified map and 

reduce operations allows us to parallelize large 

computations easily and to use re-execution as 

the primary mechanism for fault tolerance. 

Programs written in this functional style are 

automatically parallelized and  executed on a 

large cluster of commodity machines. The run-

time system takes care of the details of 

partitioning the input data, scheduling the 

program’s execution across a set of machines, 

handling machine failures, and managing the 

required inter-machine communication. This 

allows programmers without any experience 

with parallel and distributed systems to easily 

utilize the resources of a large distributed 

system. Distributed file systems are key 

building blocks for cloud computing 

applications based on the MapReduce 

programming paradigm. In such file systems, 

nodes simultaneously serve computing and 

storage functions; a file is partitioned into a 

number of chunks allocated in distinct nodes so 

that MapReduce tasks can be performed in 

parallel over the nodes. The implementation of 

MapReduce runs on a large cluster of 

commodity machines and is highly scalable: a 

typical MapReduce computation processes 

many terabytes of data on thousands of 

machines. Programmers find the system easy to 

use: hundreds of MapReduce programs have 

been implemented and upwards of one thousand 

MapReduce jobs are executed on Google’s 

clusters every day. The MapReduce 

programming model has been successfully used 

at Google for many different purposes. The 

model is easy to use, even for programmers 

without experience with parallel and distributed 

systems, since it hides the details of 

parallelization, fault-tolerance, locality 
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optimization, and load balancing. Second, a 

large variety of problems are easily expressible 

as MapReduce computations. For example, 

MapReduce is used for the generation of data 

for Google’s production web search service, for 

sorting, for data mining, for machine learning, 

and many other systems. Third, we have 

developed an implementation of MapReduce 

that scales to large clusters of machines 

comprising thousands of machines. The 

implementation makes efficient use of these 

machine resources and therefore is suitable for 

use on many of the large computational 

problems encountered at Google. So 

MapReduce processes many terabytes of data on 

thousands of machines. Easy to use scalable 

programming model for large-scale data 

processing on clusters. It achieves efficiency 

through disk-locality and also achieves fault-

tolerance through replication.  movement. 

Second, it can avoid transferring loads across 

high-latency wide area links, thereby enabling 

fast convergence on load balance and quick 

response to load imbalance.  To use proximity 

information in load balancing the main 

contributions are: 1) Relying on a self-

organized, fully distributed k-ary tree structure 

constructed on top of a DHT, load balance is 

achieved by aligning those two skews in load 

distribution and node capacity inherent in P2P 

systems. 2) Proximity information is used to 

guide virtual server reassignments such that 

virtual servers are reassigned and transferred 

between physically close heavily loaded nodes 

and lightly loaded nodes, thereby minimizing 

the load movement cost and allowing load 

balancing to perform efficiently. 

 

 

Fig: single node cluster 

The load rebalancing  problem in distributed file 

systems specialized for large scale, dynamic and 

data-intensive clouds. Our objective is to 

allocate the chunks of files as uniformly as 

possible among the nodes such that no node 

manages an excessive number of chunks. 

ALGORITHM is. Experimental Setup Proposed 

algorithm is implemented with the help of 

simulation package like Cloudsim and cloudsim 

based tool. Java language is used for 

implementing VM load balancing algorithm. 

We assume that the cloudsim toolkit has been 

deployed in one data centre having 5 virtual 

machines (with 1024 Mb of memory in each 

VM running on physical host with 1000 MIPS) 

where the parameter values are as under. Table 

1- Parameter Values Parameter Values VM 

image size 10,000 VM memory 512 MB VM 

bandwidth 1000 Data Centre- Architecture X86 

Data Centre- OS  

Round_Robin_Load_Balancing () 

{  
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Initialize all the VM allocation status to 

AVAILABLE in the VM state list;  

Initialize hash map with no entries;  

While(new request are recived by the Data 

Centre Controller) 

{  

Initialize all the VM allocation status to 

AVAILABLE in the VM state list;  

Initialize hash map with no entries; 

 While(new request are recived by the Data 

Centre Controller) 

{  

The VM is reallocated to the user base request;  

} 

 Else 

 {  

Allocate a VM to the user base request using 

Round Robin Algorithm;  

Update the entry of the user base and the VM in 

the hash map and the VM state list; 

 } 

 } 

 } 

III. Balancing for DHT-Based Systems 

DHT based P2P systems offer a distributed hash 

table (DHT) abstraction for object storage and 

retrieval. Many solutions have been proposed to 

tackle the load balancing issue in DHT-based 

P2P systems. However, all these solutions either 

ignore the heterogeneity nature of the system, or 

reassign loads among nodes without considering 

proximity relationships, or both. To tackle this 

issue an efficient, proximity-aware load 

balancing scheme by using the concept of 

virtual servers. The goal is to ensure fair load 

distribution over nodes proportional to their 

capacities, but also to minimize the load-

balancing cost (e.g., bandwidth consumption 

due to load movement) by transferring virtual 

servers between heavily loaded nodes and 

lightly loaded nodes in a proximity-aware 

fashion. To achieve the latter goal by using 

proximity information to guide virtual server 

reassignments. There are two main advantages 

of a proximity-aware load balancing scheme. 

First, from the system perspective, a load 

balancing scheme bearing network proximity in 

mind can reduce the bandwidth consumption 

(e.g., bisection backbone bandwidth) dedicated 

to load 

IV.Peer-to-Peer Lookup for Internet 

Applications 

A distributed peer-to-peer applications need to 

determine the node that stores a data item. The 

Chord protocol solves this challenging problem 

in decentralized manner. Chord provides 

support for just one operation: given a key, it 

maps the key onto a node. Data location can be 

easily implemented on top of Chord by 

associating a key with each data item, and 

storing the key/data pair at the node to which 

the key maps. Chord simplifies the design of 

peer-to-peer systems and applications based on 

it by addressing these difficult problems: 

Load balance: Chord acts as a distributed hash 

function, spreading keys evenly over the nodes; 

this provides a degree of natural load balance. 

Decentralization: Chord is fully distributed: no 

node is more important than any other. This 

improves robustness and makes Chord 

appropriate for loosely-organized peerto- peer 

applications. 

Scalability: The cost of a Chord lookup grows 

as the log of the number of nodes, so even very 

large systems are feasible. No parameter tuning 

is required to achieve this scaling. 



   International Journal of Research 
 Available at https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 04 
February 2016 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 266 

Availability: Chord automatically adjusts its 

internal tables to reflect newly joined nodes as 

well as node failures, ensuring that, barring 

major failures in the underlying network, the 

node responsible for a key can always be found. 

This is true even if the system is in a continuous 

state of change. 

Flexible naming: Chord places no constraints 

on the structure of the keys it looks up: the 

Chord key-space is flat. This gives applications 

a large amount of flexibility in how they map 

their own names to Chord keys. Chord provides 

fast distributed computation of a hash function 

mapping keys to nodes responsible for them. 

Chord assigns keys to nodes with consistent 

hashing which has several desirable properties. 

With high probability the hash function balances 

load (all nodes receive roughly the same number 

of keys). Also with high probability, when an 

Nth node joins (or leaves) the network, only a 

O(1=N) fraction of the keys are moved to a 

different location—this is clearly the minimum 

necessary to maintain a balanced load. Chord 

improves the scalability of consistent hashing by 

avoiding the requirement that every node know 

about every other node. A Chord node needs 

only a small amount of ―routing‖ information 

about other nodes. Because this information is 

distributed, a node resolves the hash function by 

communicating with other nodes. In an N-node 

network, each node maintains information about 

only O(logN) other nodes, and a lookup requires 

O(logN) messages. The consistent hash function 

assigns each node and key an m bit identifier 

using SHA-1 [10] as a base hash function. A 

node’s identifier is chosen by hashing the 

node’s IP address, while a key identifier is 

produced by hashing the key. We will use the 

term ―key‖ to refer to both the original key and 

its image under the hash function, as the 

meaning will be clear from context. Similarly, 

the term ―node‖ will refer to both the node and 

its identifier under the hash function. The 

identifier length m must be large enough to 

make the probability of two nodes or keys 

hashing to the same identifier negligible. 

Consistent hashing assigns keys to nodes as 

follows. Identifiers are ordered on an identifier 

circle modulo 2m. Key k is assigned to the first 

node whose identifier is equal to or follows (the 

identifier of ) k in the identifier space. This node 

is called the successor node of key k, denoted by 

successor(k). If identifiers are represented as a 

circle of numbers from 0 to 2m- 1, then 

successor(k) is the first node clockwise from k. 

In this paper the Chord uses consistent hashing 

to assign keys to Chord nodes. Consistent 

hashing tends to balance load, since each node 

receives roughly the same number of keys, and 

requires relatively little movement of keys when 

nodes join and leave the system. Chord will be a 

valuable component for peer-to-peer, large-scale 

distributed applications and also adapts 

efficiently as nodes join and leave the system, 

and can answer queries even if the system is 

continuously changing. Chord acts as a 

distributed hash function, spreading keys evenly 

over the nodes; this provides a degree of natural 

load balance. 

 

V. Global Load Balancing in Peer-to-Peer 

Systems 

A new framework, called Histogram-based 

Global Load Balancing (HiGLOB) to facilitate 

global load balancing in structured P2P systems. 

Each node P in HiGLOB has two key 

components. The first component is a histogram 

manager that maintains a histogram that reflects 

a global view of the distribution of the load in 

the system. The histogram stores statistical 

information that characterizes the average load 

of no overlapping groups of nodes in the P2P 

network. It is used to determine if a node is 

normally loaded, overloaded, or under loaded. 

The second component of the system is a load 

balancing manager that takes actions to 

redistribute the load whenever a node becomes 

overloaded or under loaded. The load-balancing 
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manager may redistribute the load both 

statically when a new node joins the system and 

dynamically when an existing node in the 

system becomes overloaded or under loaded.  

the cost of constructing and maintaining them 

may be expensive especially in dynamic 

systems. As a result, we introduce two 

techniques that reduce the maintenance cost. . 

Reduce the cost of constructing histogram. 

Constructing a histogram for a new node may be 

expensive since it requires histogram 

information from all neighbor nodes. 

Additionally, the histograms of the new node’s 

neighbors also need to be updated since adding 

a new node to a group of nodes changes the 

average load of that group. Constructing and 

maintaining histograms may therefore be 

expensive if nodes join and leave the system 

frequently. In light of the fact that every new 

node in the P2P system must find and notify its 

neighbor nodes about its existence while these 

neighbor nodes need to send their information to 

the new node to setup connections after that, we 

suggest that histogram information can be 

piggybacked with messages used in this process. 

In this way, we can avoid sending separate 

histogram messages and totally eliminate the 

effect of node join on the histogram 

construction of the new node and histogram 

update of its neighbor nodes. The overhead cost 

of using histograms is now solely based on 

histogram update messages caused by changing 

of load at nodes in the system. Maintaining 

histograms can be expensive since any load 

change at a node causes an update to be 

propagated to all other nodes in the system. To 

avoid this propagation, we suggest that we do 

not need to keep exact histogram values. We 

only need to keep approximate values in the 

histogram. A node only needs to send load 

information to other nodes when there is a 

significant change in either its load or the 

average load of a non-overlapping group. 

 

VI. Conclusion 

In this paper the load rebalancing problem in 

large-scal, dynamic and distributed file systems 

in clouds has been presented. This is our first 

paper in which only the overview of load 

rebalancing algorithm have been done and we 

will provide a load balanced cloud, then only 

the resources can be well utilized and 

provisioned, maximizing the performance of 

MapReduce-based applications. The load-

balancing algorithm to deal with the load 

rebalancing problem in large-scale, dynamic, 

and distributed file systems in clouds has been 

presented in this paper. The proposal strives to 

balance the loads of data nodes and task nodes 

efficiently. Then only can able to distribute the 

file chunks as uniformly as possible. The 

proposed algorithm operates in a distributed 

manner in which nodes perform their load-

balancing tasks independently without 

synchronization or global knowledge regarding 

the system. In a loadbalanced cloud, the 

resources can be well utilized and provisioned, 

maximizing the performance of MapReduce-

based applications. The algorithm also 

outperforms the competing distributed algorithm 

in terms of load imbalance factor, movement 

cost, and algorithmic overhead. 
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