
 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 283

The Implementation of Column-Oriented Database in

Postgresql for Improving Performance of Queries

Sukhdeep Kaur

Guide Name: - Dr. Dinesh Kumar
University College of Computer Applications

EMAIL ID: - Sukhmahal48@gmail.com

ABSTRACT
The era of Column-oriented database systems has truly begun with open source database systems like C-Store,

MonetDb, LucidDb and commercial ones like Vertica. Column-oriented database stores data column-by-column

which means it stores information of single attribute collectively. Row-Store database stores data row-by-row

which means it stores all information of an entity together. Hence, when there is a need to access the data at the

granularity of an entity, Row-Store performs well. But, in decision making applications, data is accessed in bulk

at the granularity of an attribute. The need for Column-oriented database arose from the need of business

intelligence needed for efficient decision making where traditional Row-oriented database gives poor

performance. PostgreSql is an open source Row-oriented and most widely used relational database management

system which does not have facility for storing data in Column-oriented fashion. This work discusses the best

method for implementing column-store on top of Row store in PostgreSql along with successful design and

implementation of the same. Performance results of our Column-Store are presented, and compared with that of

traditional Row-store results with the help of TPC-H benchmark. We also discuss about the areas in which this

new feature could be used so that performance will be very high as compared to Row-Stores.

 Index Terms — Data Mining and Data Warehousing; Knowledge Database; Postgre SQL Database

System and Database Relations

1. INTRODUCTION

Whenever we say relational data, most obvious

interpretation is a table which has attribute as one

dimension and entity as another. We imagine a table

stored on some storage media in such a 2-

dimensional form. But this is just a concept for

better understanding of any relation stored some

storage media. At physical level, it is not possible to

store data like the way we imagine. Therefore, Data

are physically stored consecutively one after another

in 1-dimensional way. While storing in 1-

dimensional manner we have 2 choices. We can

either store the data entity by-entity or attribute-by-

attribute. This leads to two kinds of databases Row-

Store and Column-Store respectively. They are as

follows:

1.1 ROW - STORE

Traditional Row-Store DBMS stores data tuple by

tuple i.e. all attribute values of an entity are stored

together rather sequentially one after the other.

Hence, Row-store is used where information is

required from DBMS on a granularity of an entity.

In Row-Store, write-queries like insert, delete,

update can be easily performed [3] since they apply

for an entity/tuple. But, read-queries like select have

predicates which are conditions to be applied on

attributes/columns and non- predicates which are

columns to be projected as result of the query.

Therefore, these queries apply for

attributes/columns rather than entity/tuple. Hence,

Row- Store is said to be Write-Optimized since it

favors write operations. The Figure 1.1 shows the

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 284

manner in which data is stored in Row-Stores on physical media.

 Figure 1.1: Relation stored Row-by-Row

1.2 COLUMN – STORE

Column-Store DBMS stores data column by column

i.e. all values of an attribute are stored collectively.

So that, ith value of every column of a relation will

form a tuple together. Hence, Column-store is used

where information is required from DBMS on a

granularity of an attribute. In Column-Store, read-

queries like select can be easily performed [3] since

they apply for attribute/column. But, write- queries

like insert, update, delete which are applied for

entity or tuple are not easily processed. Therefore,

Column-Store is said to be Read-Optimized since it

favors read operations. The Figure 1.2 shows the

manner in which data is stored in Column-Stores on

physical media.

 Figure 1.2: Relation stored Column-by-Column

1.3 COMPARISON OF COLUMN – STORE

VS. ROW STORE

The question of which type of database system

is better depends on the kind of query workloads

[3]. If after data insertion, updation, deletions

are going to be more and if accessing entire

tuples is a need then Row-Stores are the best.

They are the most common ones for business

transactional data processing. For example, a

bank uses databases to store information of its

customers. Some customer A might want to

transfer money to the account of customer B.

Here, Customer A and B are entities. Here a

simple updation has to be done in accounts of A

and B both which is deduct amount x from

account of A and credit amount x to account of

B. As it can be seen information will be required

by the bank from DBMS on the granularity of

an entity here, Row-Store which stores data

entity-by-entity will be most obvious choice out

of the two database systems we studied.

Therefore, when it comes to analytical

applications or decision making applications,

column- stores prove to be the best [3]. Business

organizations have to handle large amount of

data and extract meaningful information from

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 285

that data for efficient decision making which is

commonly termed as Business Intelligence. This

includes finding associations between data,

classifying or clustering data etc. This lead to a

large area of research called data mining. It is

observed that for these kinds of applications,

once data warehouse is built i.e. once data is

loaded, most of the operations on data are read

operations. Unlike business processing, all

attributes of an entity would not be required for

the analysis. Row-store, if compared with

column-store for these applications, has

significantly slower performance as it has been

shown [1]. Again there are some optimizations

possible with Column-Stores and are not

possible with Row-Stores which can improve

performance of Column-Stores compared Row-

Stores significantly [1, 3]. The first and the most

important is Compression [4]. As data are stored

column-by-column, compression can be easily

applied on a column. This is possible because a

column has a data type in which similar data is

stored. Like mobile number in India will always

contain 10 digits. If one could store data is

compressed format, performing column

extraction will become very easy. Next is block

processing, where multiple tuples from a

column are extracted and are passed as a block

from one operator to another. There is one more

optimization called as Late Materialization

where tuple construction i.e. joining of columns

is performed as late as possible. These

optimizations are specific to Column-Stores

because Row-Stores do not have required

properties to apply these optimizations.

1.4 POSTGRESQL DATABASE

MANAGEMENT SYSTEM

PostgreSql is world's most advanced object-

relational database management system [7]. It is

free and open-source software. It is developed

by PostgreSql Global Development Group

consisting of handful of volunteers employed

and supervised by companies such as Red Hat

and Enterprise DB. PostgreSql is available for

almost all operating systems like: Linux (all

recent distributions), Windows, UNIX, Mac OS

X, FreeBSD, OpenBSD, Solaris, and all other

Unix-like systems. It works on all majority of

architectures like: x86, x86-64, IA64, PowerPC,

Sparc, Alpha, ARM, MIPS, PA-RISC, VAX,

M32R [7]. MySQL and PostgreSql both

compete strongly in field of relational databases

since they both have advanced functionalities

and also comparable performance and speed and

most importantly they are open-source.

PostgreSql which uses a client/server model can

be broken-up into three large subsystems [7]:

1. Client Server: This subsystem consists

of Client Application and Client

Interface Library. Client Application

wants to perform some operation on the

data. This Client application can be

anyone of text-oriented tool, a graphical

application, or some specialized tool.

Therefore, it is the responsibility of the

Client interface library to convert each

client application to proper SQL queries

that the server can understand and parse.

Hence, server need not parse different

languages and waste its time, but only

interpret SQL queries, which make the

whole system faster.

2. Server Process: Postgres server executes

daemon thread constantly which is the

master server process. When it receives

a call from a client process, it forks a

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 286

new postgres server process. Once the

process is created, it links the client and

postgres process so that they can

communicate without the postmaster. An

SQL query is passed to Postgres server

and it is incrementally transformed into

result data. The master server process

always waits for calls from clients. But,

slave master processes and clients come

and go.

3. Database Control: Stored data is

accessed through the Storage subsystem.

Figure 1.3: Architecture of PostgreSql Database Management System

PostgreSql conforms to SQL standard. Its

features [7] are as follows:

1. Complex Queries: Queries can

nested, consisting of many operators or

the criteria may be complicated.

2. Triggers: It is a piece of code which

gets executed implicitly when a certain

event occurs on a specific relation in the

database.

3. Views: View is a query which is

stored inside database. Whenever a view

is accessed, its corresponding query gets

executed internally and this is

transparent to the user.

4. Foreign keys: It is a key in a

relational table that matches candidate

key of another table.

1.5 THESIS OBJECTIVE AND SCOPE

Our aim is to implement Column-store on top

of Row-store in PostgreSql to improve

performance of Read-queries. PostgreSql is

basically an open-source row-oriented database

which does not have any feature of storing data

column-by-column. We are enhancing

PostgreSql to have this feature so that for

decision making applications performance of

Read queries will be higher than that compared

with row-oriented database system.

Modifications will be done in such a way that

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 287

all queries processing for Column-Store table

will be transparent to the user.

1.6 THESIS OUTLINE

In section II, we explore structure of

PostgreSql, Column-Store optimizations and

different approaches [1] for implementing

column-store as part of our literature survey. In

Section III, we explain Column-store approach

to be implemented in PostgreSql in detail, the

new data structures introduced and how

read/write queries are processed i.e. the internal

design and working of the query for the

column-store implementation. In Section IV,

we will evaluate performance of our

implementation by using TPC-H benchmark

and compare it with Row-Store PostgreSql.

Section V concludes the report and explains the

future scope of the work.

 LITERATURE SURVEY

Keeping our aim in mind, our literature survey

will consist of 3 main areas Post-greSql,

Column Store Databases and Approaches for

Column-store implementation.

2.1 POSTGRE SQL

As we have implemented Column-Stores in

PostgreSql, there is a need to understand what

important aspects of PostgreSql are. In chapter

1 we have seen client/server model of

PostgreSql. In this section we will see the

system catalogs [7] and data types defined in

PostgreSql and query processing stages [7].

2.1.1 SYSTEM CATALOGS AND DATA

TYPES

System Catalog is the metadata for the system

and Metadata is data about data i.e. which gives

descriptive information about stored data itself.

For modifying PostgreSql, these data structures

should be thoroughly understood. Also, we

might be required to create new ones. The data

structures are as follows:

1. System Catalog for describing a relation

 pg class: For each row-oriented

table, one row is added to this

system table containing name of

the relation, its owner,

permissions.

 pg attribute: For each row-

oriented table, one row is added

to this system table for each

attribute present in the table

having attribute name, data type

etc.

 pg index: For every index

created on any column of a

relation, a row is added to this

system table containing index

name, type of index etc. Also

index is a relation so its entry is

also made into pg class.

 pg proc: For every defined

function, an entry is made into

this system table about its name,

arguments types, result types etc.

 pg language: For defined

functions, there is always some

implementation language like C,

SQL, PL/SQL. This entry is

made into pg language.

2. System Catalog for Aggregate Functions

 pg aggregate: For each defined

aggregate function, an entry is made

into this table about their working-state

data type, update function, result

function.

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 288

3. System Catalog for Operators

 pg operator: Various types of operators

are used while handling expression.

These operators are included in this

system table.

4. System Catalog for Data Types

 pg type: An entry is made into this

system table for every data type defined.

It can built-in or user-defined.

2.2 COLUMN - STORE

There are some advantages of Column-Store

over Row-Store. These advantages are due to

the way in which data is stored in Column-

Store.

1. Compression:

Storing values of a column contiguously

makes the adjacent values on disk

similar to each other or rather of the

same data type [4]. This leads us to one

of the most important optimization

called compression. We can compress

the data using several existing

compression techniques. This

optimization is not possible in row-

stores because in a tuple all the

attributes are different. Therefore,

compression is a new optimization

strategy for column-stores.

2. Materialization:

In Column-stores, attribute values of a

single tuple are stored at multiple

locations on disk. But most of the times

queries try to access more than one

column from database. The output

standard is always an entity-at-a-time

not column-at-time. Therefore, the

attributes from different columns of the

same relation have to be combined

together into rows to be displayed. This

reconstruction of tuples is called as

materialization [5]. This is nothing but

taking join of various columns. There

are two ways to reconstruct tuples from

column-stores:

 i. Early Materialization:

In this type, whichever columns

are mentioned in the query are

retrieved first join is taken so

that we will have row-oriented

tuples. And then the predicated

are applied. Those who satisfy

are answer to the query. But this

way all advantage of column-

stores is lost and process

becomes less efficient. In early

materialization [3, 5], as soon as

a column is accessed, its values

are added to an intermediate

result tuple, eliminating the need

for future re-accesses.

ii. Late Materialization:

In this approach, tuples are not

formed until some part of the

query plan has been processed.

Here, predicates are applied on

columns of relation first and

those positions which satisfy the

predicates are listed. Finally, a

position-wise AND operation is

performed on them. Now, you

have a list of positions which

satisfy the predicates so again

access the columns required and

extract the corresponding values

and take a join. This seems to be

a better strategy than early

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 289

materialization [3, 5].The

primary advantages of late

materialization [5] are that it

allows the executor to use high-

performance operations on

compressed, column- oriented

data and to defer tuple

construction to later in the query

plan, possibly allowing it to

construct fewer tuples.

2.3 APPROACHES FOR

IMPLEMENTING COLUMN -

STORE

Keeping our aim in mind, we did some

literature survey to study various different

approaches for Column-Store implementation.

Now, we explore the approaches in detail.

 Figure 2.1: Types of

approaches to design Column-

store databases

Daniel J. Abadi, Samuel R. Madden and Nabel

Hackem [1, 3] have done a lot of work on

Column-Stores in recent times. Specifically

Daniel J. Abadi has done immensely valuable

work in the field of Column-oriented databases

[1, 2, 3, 4, 5, 6, 17, 19]. They implemented

Column Store from scratch called "C-Store" [2,

12]. They suggested three approaches for the

implementation of Column-stores which are as

follows:

2.4 SUMMARY

In the literature survey, we learned about

PostgreSql query processing in brief. Thus, we

decided to do modifications in the process

between parse tree formation and query tree

formation stages which simplifies our code and

its understanding. Then we studied

optimizations specific to Column-Store. For

implementation of Column-Store, we

considered various approaches from the past

research. We observed that out of these,

modifying the storage layer or execution layer

or both would completely change the DBMS.

Hence, changing logical schema is chosen as an

approach for our implementation. Considering

all advantages and disadvantages of all three

approaches, vertical partitioning is considered

for implementing column-store on top of row-

store.

PROBLEM FORMULATION

Before developing research we keep following

things in mind so that we can develop powerful

and quality research.

3.1 PROBLEM FORMULATION

The era of Column-oriented database systems

has truly begun with open source database

systems like C-Store, MonetDb, LucidDb and

commercial ones like Vertica. Column-oriented

database stores data column-by-column which

means it stores information of single attribute

collectively. Row-Store database stores data

row-by-row which means it stores all

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 290

information of an entity together. Hence, when

there is a need to access the data at the

granularity of an entity, Row-Store performs

well. But, in decision making applications, data

is accessed in bulk at the granularity of an

attribute. The need for Column-oriented

database arose from the need of business

intelligence needed for efficient decision

making where traditional Row-oriented

database gives poor performance. PostgreSql is

an open source Row-oriented and most widely

used relational database management system

which does not have facility for storing data in

Column-oriented fashion. This work discusses

the best method for implementing column-store

on top of Row store in PostgreSql along with

successful design and implementation of the

same. Performance results of our Column-Store

are presented, and compared with that of

traditional Row-store results with the help of

TPC-H benchmark. We also discuss about the

areas in which this new feature could be used so

that performance will be very high as compared

to Row-Stores.

3.2 OBJECTIVE

Our aim is to implement Column-store on top

of Row-store in PostgreSql to improve

performance of Read-queries. PostgreSql is

basically an open-source row-oriented database

which does not have any feature of storing data

column-by-column. We are enhancing

PostgreSql to have this feature so that for

decision making applications performance of

Read queries will be higher than that compared

with row-oriented database system.

Modifications will be done in such a way that

all queries processing for Column-Store table

will be transparent to the user.

RESEARCH METHODOLOGY

POSTGRESQL COLUMN – STORE

DESIGN

In this section we give a brief idea about how

Vertical partitioning approach [1, 3] is

implemented in PostgreSql for having Column-

store feature. There are a lot of DDL and DML

queries implemented and the required design

modifications into PostgreSql are proposed as

follows:

4.1 CREATING A COLUMN – STORE

RELATION

For every column-store type of relation a

number of internal relations will be created

equal to number of attributes present in the

relation. Hence, a unique identifier (Oid) will

be allotted for every internal table created. No

table is created by the name of mentioned

relation, directly internal tables are created

corresponding the attributes, thus saving one

unique identifier. Each internal relation will

consist of two columns <record id, attribute>

wherein record id column will be common with

other attributes of the same relation. This

column will act as a unique identifier of the

tuple as a whole. For creating a column-store,

table users will be given an option of col store.

A new keyword col store will be included in the

create query. So, a new query would look like

Create colstore table table-name (attr1 datatype,

attr2 datatype ...);

View is basically a stored query. It does not

take much space as only view

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 291

Figure 4.1: Creating Colstore Table

definition is stored inside database and not the

data. Whenever any changes are made in the

tables which are present in the view, those

changes are automatically reflected in the result

since query stored for view is _red every time

view is called. This feature of view will help us

whenever we want to take join of all internal

tables (For example, select * from table name

...). So a logical view is formed which takes

natural join of all internal tables on the basis of

record id. But when join of all internal tables is

not required, we propose to take join of only

those internal tables whose corresponding

attributes are mentioned in the query as

predicate or non predicate rather than using

existing view. Name of internal tables,

sequence and view will be made unique by

concatenating their respective unique identifiers

(Oids) to their names so ambiguity in the names

will be easily avoided.

4.2 META DATA FOR THE COLUME –

STORE RELATION

Now that internal tables, sequence has all been

created, there is a need to store meta-data of the

relation i.e. to identify which internal tables

correspond to which column-store relations. For

storing this mapping between the relation and

internal tables, a new data structure is created

named pg map. One more data structure is

created for storing sequence id generated for

column store relation named pg_attrnum. Every

entry in these two system tables is uniquely

identified by a key. For pg map <relation-name,

attribute number> forms a key whereas for

pg_attrnum, <relation-name> forms the key.

These two system tables are showed in figures

4.2 and 4.3. When a column-store table is

created, respective values are entered into these

tables. Therefore, whenever user wants to _re

any type of query on column-store relations,

these system tables will be accessed. System

caches are built for both the relations so that

searching in these tables will be faster [29, 31,

32]. These tables will be searched on the basis

of a unique key as explained earlier. In chapter

2, we had seen various system catalogs for

describing, Row-Store relation, functions,

operators etc. Similarly, for Column-Store we

define new system catalog for describing a

Column-Store relation.

i. pg map: For every attribute in Column-

Store relation, an internal Row-

Store table is created. Therefore, for

each attribute of Column-Store

table, there will be a mapping stored

between [Colstore table, attribute]

and corresponding row-store table

created. So, for each attribute

relation (Row-Store relation)

created, a row is created containing

its object identifier, name,

corresponding attribute number,

name of Column-Store relation.

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 292

ii. Pg_attrnum: For each Column-Store table, there will be an entry in this system table which will

store number of attributes, corresponding object identifier of sequence created, view created.

 Figure 4.2: System Table pg map for storing mapping between relation and internal tables

4.3 INSERTING DATA INTO COLUMN – STORE TABLE

All modifications for executing these kinds of data manipulation queries are done at the query tree

formation stage. Values which are passed by user for insertion are taken as a list in PostgreSql [7].

 Figure 4.3: System Table pg_attrnum for storing meta-data of Column-Store Table

In Row-Store this list is directly inserted into required table.But, for Column-Stores, this list is broken

into separate column values and values are passed to the corresponding tables along with the next

unique sequence value generated. Since each internal table has two attributes <record id, attribute>,

value of attribute column is given as input by user but input for record id is generated internally by

using unique sequence generated for each relation. Whenever insert is performed, sequence value is

incremented each time. If a select clause is present within insert then it will be processed and

expression list generated will be broken and sent similarly. This way even if user fires only one insert

statement, multiple insert statements will be generated and processed internally.

4.4 ALTERING THE COLUMN – STORE TABLE

Adding or dropping any column from Column-store means creating or deleting internal table

respectively. So, if user wants to add a column, an internal table will be created corresponding to the

relation mentioned and system tables will be updated accordingly. Similar is the case with dropping a

column.

4.5 DROPPING THE COLUMN – STORE TABLE

When any Column-Store relation is dropped, all internal tables are dropped. Also, view, sequence

created at the time of table creation are also dropped. Most importantly, system tables are freed from

entries corresponding to relation being dropped.

4.6 SELECTING DATA FROM COLUMN – STORE TABLE

Select query is the one of which Column-Stores are expected to improve the performance. In Row-

Stores, even when only some of the attributes are required to be accessed, all irrelevant attributes are

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 293

accessed which increase execution time of the query. This concept is implemented for Column-Store

implementation in PostgreSql. Basically as we have created internal tables for every attribute of any

Column-Store relation, we have to take join of required internal tables to produce the result. Because

the result of any query is always entity-oriented, this tuple construction is required by taking join. Here

join is actually natural join taken on the basis of the common key defined earlier i.e. record id. For

taking join of only required internal tables, we first identify attributes present in the select query as

either predicates or non-predicates. Then we find internal table names for all those attributes which are

present in the query and take their natural join based on the common key Record id and form a join

node. We add this join node to list of from clause. This process is repeated for all relations present in

the from clause entered by the user. Point to be noted is that join internal tables corresponding to only

one relation is taken. In such a way, we would not have to access irrelevant attributes for any relation.

Internal tables corresponding to irrelevant attributes will not be included in the join formation. Only

when all attributes are needed to be accessed (For example, select * from table-name...), view created

will be accessed directly rather than adding internal tables one-by-one to the from clause. View is

nothing but natural join of all internal tables of the mentioned colstore relation.

Figure 4.4 explains various stages of a column-store table on which select query is applied. This will

make the scenario clearer.

Figure 4.4: Taking join of internal tables

Let us see what difference does this approach make in the query plan of a

SELECT query which is as follows:

select

sum (l_extendedprice) / 7.0 as avg_yearly

from

lineitem,part

where

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 294

p_partkey = l_partkey and p_brand = 'Brand#13'

group by

avg_yearly

order by

 avg_yearly;

In this SELECT query, p_partkey, l_partkey and p brand are predicates. Predicate is a attribute present

in a query on which some condition is applied. Also, l_extendedprice is a non-predicate. Non-predicate

is an attribute present in the query which is to be projected.

4.7 SUMMARY

In this section, design and architectural details of our Column-Store implementation in PostgreSql are

described. Create table query is modified as required. Insertion is quite slow as compared to Row-Store

but for large datasets, good performance of insert is not required. Data is loaded in warehouse and is

not time critical query. Select query is modified for Column-Store in such a way that its performance is

improved by a large factor for analytical queries.

Figure 4.6: Plan Tree for SELECT query in Col-Store

EXPERIMENTAL RESULT

The main aim of our work is improving

performance of SELECT query. Write queries

like insert, update, delete will give be very slow

in Column-Stores as compared to Row-Stores.

On small dataset, the results of SELECT queries

in Column-Store are poor which was as

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 295

expected. This is because of a number of join

operations performed for each relation. But, on

large datasets, Column-Store gives excellent

results for select queries which have small

number of attributes to be accessed. Our

implementation is basically for large datasets.

We have mentioned that point in chapter 3. For

evaluating the performance of our

implementation, we use TPC-H benchmark [14,

15, 16, 25]. Dataset size we have taken for our

analysis is 5000 tuples per table. The schema

diagram of their dataset is as given below:

 For each attribute of each table shown in

the figure 5.1, an internal table will be created in

our implementation of Column-Store Database.

Firstly, we check how is the performance of

select query on gradually increasing the number

of columns accessed. Lineitem table consists of

16 attributes and orders table consists of 9

attributes. Hence, we start by selecting 2

attributes, one from each table. Then, we

gradually increase this number to 25 and

observe the performance of SELECT query.

This will give us exact idea of how SELECT

query in Column- Store behaves.

 This table 5.1 shows that as the number

of attributes approach maximum possible value

the execution time goes on increasing. Until the

value of number of attributes is 8, the execution

time required for Column-Store is less than that

for Row-Store. In fact, Column-Store execution

time is excellent until number of attributes

accessed are 8. Again point to be considered is

that orders have 9 attributes which is less than

15 of lineitem. Therefore, the increase in

execution time is not always in the same

proportion. It can be seen that when number of

attributes are increased from 5 to 6 then there is

a sudden increase in execution time. This is

because, the effect of accessing one attribute

from orders on execution time is more than the

effect of accessing one attribute from lineitem.

The graph is plotted as shown in figure 5.2.

From these results, it is concluded that if 1/3th

of the attributes are accessed then performance

of Column-Store is very good as compared to

Row-Store. But, 2 conditions should be

satisfied. First, number of attributes for tables

must be high. Second, Dataset size should be in

the range of thousands, lacks and more. The

more the number of attributes and the larger the

dataset, the lesser will be the execution time in

Column-Store as compared to Row-Store.

Now let us see the performance comparison of

Row-Store against Column-Store with the help

of some TPC-H benchmark [20] queries. We

have considered those queries which are suitable

for Column-Oriented databases. i.e. queries

which have less attributes to be accessed. For

queries which access large number of attributes,

performance will certainly be worse as

compared to Row-Stores.

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 296

 Figure 5.1: E-R Diagram of TPC-H Benchmark Dataset

 Table 5.1: Experimental results for simple select query

Number of Attributes

Accessed
Execution Time

in seconds for Row-Store

Execution Time

in seconds for

Column-Store

2 257.462 sec 128.731 sec

3 257.326 sec 128.899 sec

4 259.526 sec 153.923 sec

5 258.694 sec 168.932 sec

6 260.090 sec 208.639 sec

7 268.338 sec 226.282 sec

8 270.112 sec 264.680 sec

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 297

9 273.445 sec 288.565 sec

15 280.778 sec 8543.667 sec

25 290.199 sec 20899.542 sec

 Figure 5.2: Comparison of Column-Store vs. Row-Store

We have considered following 10 queries for evaluating our performance.

1. Select

 l returnag,sum(l quantity) as sum qty,sum(l extendedprice) as sum base price,

 sum(l extendedprice * (1 - l discount) * (1 + l tax)) as sum charge,

 avg(l extendedprice) as avg price, avg(l discount) as avg disc

from

 lineitem

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 298

group by

 l returnag;

Row-Store: 12.015 sec

Column-Store: 7.0 sec

2. Select

 n name,sum(l extendedprice) as revenue from

 nation,lineitem,region

where

 r name = 'AFRICA'

group by

 n name

order by

 revenue;

Row-Store: 16.086 sec

Column-Store: 1.527 sec

3. Select

 c name,sum(l quantity)

 from

 customer,orders,lineitem

 where

 c custkey = o custkey

 and o orderkey = l orderkey

 group by

 c name;

Row-Store: 13.087 sec

Column-Store: 9.14 sec

4. Select

 sum(l extendedprice) / 7.0 as avg yearly

 from

 lineitem,part

 where

 p partkey = l partkey

 and p brand = 'Brand#13';

Row-Store: 12.978 sec

Column-Store: 8.284 sec

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 299

5. Select

 min(ps supplycost)

 from

 lineitem,supplier,nation,region,part,partsupp

 where

 p partkey = l partkey

 and s suppkey = l suppkey

 and s nationkey = n nationkey

 and n regionkey = r regionkey

 and r name = 'AMERICA';

Row-Store: 14.847 sec

Column-Store: 1.739 sec

6. Select

 sum(l extendedprice * l discount) as revenue

 from

 lineitem

 where

 l quantity<25;

Row-Store: 12.936 sec

Column-Store: 2.638 sec

7. Select

 l shipmode,

 sum(case when o orderpriority = '1-URGENT' or o orderpriority = '2-HIGH'

 then 1 else 0 end) as high line count,

 sum(case when o orderpriority <> '1-URGENT' and o orderpriority <> '2-HIGH'

 then 1 else 0 end) as low line count

from

 lineitem,orders

group by

 l shipmode;

Row-Store: 326.421 sec

Column-Store: 162.005 sec

8. Select

 100.00 * sum(case when p type like 'PROMO%' then

 l extendedprice *(1 - l discount) else 0 end) /

 sum(l extendedprice * (1 - l discount)) as promo revenue

from

 lineitem, part;

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 300

Row-Store: 388.471 sec

Column-Store: 193.018 sec

9. Select

 l suppkey

 from

 lineitem

 where

 l shipdate >= date '1994-08-01'

 and l shipdate < date '1994-08-01' + interval '3' month

 group by

 l suppkey;

Row-Store: 12.959 sec

Column-Store: 6.507 sec

10. Select

 substring(c phone from 1 for 2) as cntrycode

 from

 customer

 where

 substring(c phone from 1 for 2) in ('40', '41', '33', '38', '21', '27', '39');

 Row-Store: 0.021 sec

 Column-Store: 0.018 sec

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Read queries when applied on huge datasets

perform poorly due to their storage structure

(tuple by-tuple). But, Column-Stores give a very

good performance for such queries. In

PostgreSql, Column-Store could not be built

from scratch due to its Row-oriented structure.

Thus, we decided to implement Column-Store

on top of Row-Store. The design of Column-

Store on top of Row-Store is a great challenge

because modifications should be done at proper

stages of query processing to get optimal

performance improvement over Row-Store. In

our work, we investigated various approaches of

implementation of Column-Store on top of

Row-Store and found that Vertical Partitioning

is most preferred of all due to less complexity

and no limitations on the kind of possible read

queries. We studied the architecture of

PostgreSql. After understanding the intricacies

of PostgreSql, query tree formation stage was

found to be most suitable for modification. The

thesis discussed the design and architecture of

Column-Store Database System along with its

implementation in PostgreSql.

The results show that performance of our

Column-Store implementation is very high as

compared to Row-Store in queries which access

less attributes. Also, relation should consist of

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 301

large number of attributes. We see that as

number of columns accessed increases, the

performance of Column-Store degrades which is

as expected. This is because number of joins of

internal tables increases in such a case which

leads to increase in execution time. The same

case would be very efficient in Row-Store. But,

the idea behind Column-Stores is to use them

for specific applications as described in chapter

3. The main focus of this thesis was to

implement Column-Store in PostgreSql in a

systematic manner so that performance of read-

oriented queries becomes better than Row-Store.

We have compared Row-Store and Column-

Store performance on TPC-H benchmark. The

results clearly show that Column-Stores are

better than Row-Stores in the cases we

expected.

6.2 Future Work

One very useful extension to this work is to

pack many tuples together to form page sized

"Super Tuples" [11]. This way duplication of

header information can be avoided and many

tuples could be processed together in a block.

The super tuple design uses a nested iteration

model, which ultimately reduces CPU overhead

and disk I/O. But, again accessing single tuple

becomes difficult here. Since, our

implementation is application specific, it can be

assumed that we would not be required to access

specific tuple. Compression techniques [4]

could also be applied while data storage not for

saving disk space but for increasing

performance by doing operations on compressed

data. Compression optimization is unique to

Column-Stores since similar data are stored on

disk contiguously. This is because data of same

attribute will be of same data type.

REFERENCES

[1]. Daniel J. Abadi, Samuel R. Madden, Nabil

Hachem, Column-Stores vs. Row-Stores: How

Different Are They Really? Vancouver, BC,

Canada, SIG-MOD08, June, 2008.

[2]. Mike Stonebraker, D. J. Abadi, C-Store: A

Column-oriented DBMS, 31
st
 VLDB

Conference, Throndhiem, Norway, 2005.

[3]. D. J. Abadi, Query execution in column-

oriented database systems, MIT PHD

Dissertation, PhD Thesis, 2008.

[4]. D. J. Abadi, S. R. Madden, and M. Ferreira,

Integrating and execution in column-oriented

database systems, SIGMOD, pages 671-682,

2006.

[5] D. J. Abadi, D. S. Myers, D. J. DeWitt, and

S. R. Madden, Materialization strategies in a

column-oriented DBMS, ICDE, pages 466-475,

2007.

[6] Stavros Harizopoulos (HP Labs), Daniel

Abadi (Yale), Peter Boncz (CWI), Column-

Oriented Database Systems, VLDB Tutorial

2009.

[7] http://www.postgresql.org/.

[8] S. Harizopoulos, V. Liang, D. J. Abadi, and

S. R. Madden, Performance trade-offs in read-

optimized databases, VLDB, pages 487498,

2006.

[9] G. Graefe, Efficient columnar storage in b-

trees, SIGMOD Rec., 36(1), pages 36, 2007.

http://www.postgresql.org/

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 04

February 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 302

[10] A. Weininger, Efficient execution of joins

in a star schema, SIGMOD, pages 542545,

2002.

[11] Halverson, J. L. Beckmann, J. F. Naughton,

and D. J. Dewitt, A Comparison of C-Store and

Row-Store in a Common Framework, Technical

Report TR1570, University of Wisconsin-

Madison, 2006.

[12] C-Store source code,

http://db.csail.mit.edu/projects/cstore/.

[13] R. Ramamurthy, D. Dewitt, and Q. Su A

case for fractured mirrors In VLDB, pages 89

101, 2002.

[14] TPC-H, http://www.tpc.org/tpch/.

[15] TPC-H benchmark with PostgreSql,

http://www.fuzzy.cz/en/articles/ dss-tpc-h-

benchmark-with-PostgreSql/.

http://db.csail.mit.edu/projects/cstore/
http://www.tpc.org/tpch/
http://www.fuzzy.cz/en/articles/

