
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 08
April 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 494

Software Maintenance

Bandana Kumari
B.Tech. Scholar, Indus Institute of Technology & Management Bilhaur, Kanpur Dr. A.P.J.Abdul

Kalam Technical University

vandana9589@gmail.com

Abstract

This paper overviews software maintenance, its

relevance, the problems, and the available

solutions; the underlying objective is to present

software maintenance not as a problem, but in

terms of solutions. Of course, this view of

maintenance does not apply to software, as

software does not deteriorate with the use and the

passing of time. Nevertheless, the need for

modifying a piece of software after delivery has

been with us since the very beginning of electronic

computing. The Lehman’s laws of evolution [17,

18] state that successful software systems are

condemned to change over time. A predominant

proportion of changes is to meet ever changing

user needs. This is captured by the first law of

Lehman [17, 18]: “A program that is used in a real

world environment necessarily must change or

become progressively less useful in that

environment”. Significant changes also derive from

the need to adapt software to interact with external

entities, including people, organizations, and

artificial systems. In fact, software is infinitely

malleable and, therefore, it is often perceived as the

easiest part to change in a system [6].

Keywords: Corrective maintenance; Adaptive

maintenance; Perfective maintenance; Emergency

maintenance; iterative-enhancement

1 Introduction

The term maintenance, when accompanied to

software, assumes a meaning profoundly different

from the meaning it assumes in any other

engineering discipline. In fact, many engineering

disciplines intend maintenance as the process of

keeping something in working order, in repair. The

key concept is the deterioration of an engineering

artifact due to the use and the passing of time; the

aim of maintenance is therefore to keep the

artifact’s functionality in line with that defined and

registered at the time of release.

2 Definitions

Software maintenance is a very broad activity often

defined as including all work made on a software

system after it becomes operational [21]. This

covers the correction of errors, the enhancement,

deletion and addition of capabilities, the adaptation

to changes in data requirements and operation

environments, the improvement of performance,

usability, or any other quality attribute. The IEEE

definition is as follows [11]:

 “Software maintenance is the process of

modifying a software system or component after

delivery to correct faults, improve performances or

other attributes, or adapt to a changed

environment.”

This definition reflects the common view that

software maintenance is a post-delivery activity: it

starts when a system is released to the customer or

user and encompasses all activities that keep the

system operational and meet the user’s needs. This

view is well summarized by the classical waterfall

models of the software life cycle, which generally

comprise a final phase of operation and

maintenance. Pigoski [23] captures the needs to

begin maintenance when development begins in a

new definition:

 “Software maintenance is the totality of

activities required to provide cost-effective support

to a software system. Activities are performed

during the pre-delivery stage as well as the post-

delivery stage. Pre-delivery activities include

planning for post delivery operations,

supportability, and logistics determination. Post-

delivery activities include software modification,

training, and operating a help desk.”

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 08
April 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 495

This definition is consistent with the approach to

software maintenance taken by ISO in its standard

on software life cycle processes [15]. It definitively

dispels the image that software maintenance is all

about fixing bugs or mistakes.

3 Categories of software maintenance

ISO [14] introduces three categories of software

maintenance:

Problem resolution, which involves the detection,

analysis, and correction of software

nonconformities causing operational problems;

Interface modifications, required when additions or

changes are made to the hardware system

controlled by the software;

Functional expansion or performance

improvement, which may be required by the

purchaser in the maintenance stage.

The IEEE definition of maintainability reflects the

definition of maintenance: the ease with which a

software system or component can be modified to

correct faults, improve performance or other

attributes, or adapt to a changed environment [11].

ISO assumes maintainability as one of the six

primary characteristics of its definition of software

quality and suggests that it depends on four sub-

characteristics: analyzability, changeability,

stability, testability [13]; the new version of the

standard, currently under development, adds

compliance as a fifth sub-characteristic.

A recommendation is that all changes should be

made in accordance with the same procedures, as

far as possible, used for the development of

software. However, when resolving problems, it is

possible to use temporary fixes to minimize

downtime, and implement permanent changes later.

IEEE [12] redefines the Lientz and Swanson [20]

categories of corrective, adaptive, and perfective

maintenance, and adds emergency maintenance as a

fourth category. The IEEE definitions are as

follows [12]:

“Corrective maintenance: reactive modification of

a software product performed after delivery to

correct discovered faults.

Adaptive maintenance: modification of a software

product performed after delivery to keep a

computer program usable in a changed or

changing environment.

Perfective maintenance: modification of a software

product performed after delivery to improve

performance or maintainability.

Emergency maintenance: unscheduled corrective

maintenance performed to keep a system

operational.”

These definitions introduce the idea that software

maintenance can be either scheduled or

unscheduled and reactive or proactive.

4 Costs and challenges

However one decides to categorize the maintenance

effort, it is still clear that software maintenance

accounts for a huge amount of the overall software

budget for an information system organization.

Since 1972 [7], software maintenance was

characterized as an “iceberg” to highlight the

enormous mass of potential problems and costs that

lie under the surface.

Several technical and managerial problems

contribute to the costs of software maintenance.

Among the most challenging problems of software

maintenance are: program comprehension, impact

analysis, and regression testing.

One of the major challenges in software

maintenance is to determine the effects of a

proposed modification on the rest of the system.

Once a change has been implemented, the software

system has to be retested to gain confidence that it

will perform according to the (possibly modified)

specification. The process of testing a system after

it has been modified is called regression testing

[19]. The aim of regression testing is twofold: to

establish confidence that changes are correct and to

ensure that unchanged portions of the system have

not been affected. Regression testing differs from

the testing performed during development because

a set of test cases may be available for reuse.

Indeed, changes made during a maintenance

process are usually small (major rewriting are a

rather rare event in the history of a system) and,

therefore, the simple approach of executing all test

cases after each change may be excessively costly.

Alternatively, several strategies for selective

regression testing are available that attempt to

select a subset of the available test cases without

affecting test effectiveness [10, 24].

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 08
April 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 496

5 Models

A typical approach to software maintenance is to

work on code first, and then making the necessary

changes to the accompanying documentation, if

any. Ideally, after the code has been changed the

requirement, design, testing and any other form of

available documents impacted by the modification

should be updated. However, due to its perceived

malleability, users expect software to be modified

quickly and cost-effectively. Changes are often

made on the fly, without proper planning, design,

impact analysis, and regression testing. Documents

may or may not be updated as the code is modified;

time and budget pressure often entails that changes

made to a program are not documented and this

quickly degrades documentation. In addition,

repeated changes may demolish the original design,

thus making future modifications progressively

more expensive to carry out.

Evolutionary life cycle models suggest an

alternative approach to software maintenance.

These models share the idea that the requirements

of a system cannot be gathered and fully

understood initially. Accordingly, systems are to be

developed in builds each of which completes,

corrects, and refines the requirements of the

previous builds based on the feedback of users [9].

An example is iterative enhancement [2], which

suggests structuring a problem to ease the design

and implementation of successively larger/refined

solutions. The construction of a new build (that is,

maintenance) begins with the analysis of the

existing system’s requirements, design, and code

and test documentation and continues with the

modification of the highest-level document affected

by changes, propagating the changes down to the

full set of documents. In short, at each step of the

evolutionary process the system is redesigned based

on an analysis of the existing system.

A key advantage of the iterative-enhancement

model is that documentation is kept updated as the

code changes. Visaggio [26] reports data from

replicated controlled-experiments conducted to

compare the quick-fix and the iterative-

enhancement models and shows that the

maintainability of a system degrades faster with the

quick-fix model. The experiments also indicate that

organizations adopting the iterative-enhancement

model make maintenance changes faster than those

applying the quick-fix model; the latter finding is

counter-intuitive, as the most common reason for

adopting the quick-fix model is time pressure.

The iterative-enhancement model is well suited for

systems that have a long life and evolve over time;

it supports the evolution of the system in such a

way to ease future modifications. On the contrary,

the full-reuse model is more suited for the

development of lines of related products. It tends to

be more costly on the short run, whereas the

advantages may be sensible in the long run;

organizations that apply the full-reuse model

accumulate reusable components of all kinds and at

many different levels of abstractions and this makes

future developments more cost effective.

6 Processes

6.1 Reverse engineering

Reverse engineering as been defined as “the

process of analyzing a subject system to identify

the system’s components and their

interrelationships and to create representations of

the system in another form or at a higher level of

abstraction” [8]. Accordingly, reverse engineering

is a process of examination, not a process of

change, and therefore it does not Involve changing

the software under examination.

The IEEE Standard for Software Maintenance [12]

suggests that the process of reverse engineering

evolves though six steps: dissection of source code

into formal units; semantic description of formal

units and creation of functional units; description of

links for each unit (input/output schematics of

units); creation of a map of all units and

successions of consecutively connected units (linear

circuits); declaration and semantic description of

system applications, and; creation of an anatomy of

the system. The first three steps concern local

analysis on a unit level (in the small), while the

other three steps are for global analysis on a system

level (in the large).

Benedusi et al. [5] advocate the need for a high-

level organizational paradigm when setting up

complex processes in a field, such as reverse

engineering, in which methodologies and tools are

not stable but continuously growing. The role of

such a paradigm is not only to define a framework

in which available methods and tools can be used,

but also to allow the repetitions of processes and

hence to learn from them. They propose a

paradigm, called Goals/Models/Tools, that divides

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 08
April 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 497

the setting up of a reverse engineering process into

the following three sequential phases: Goals,

Models, and Tools.

Goals: this is the phase in which the motivations for

setting up the process are analyzed so as to identify

the information needs and the abstractions to be

produced. Models: this is the phase in which the

abstractions identified in the previous phase are

analyzed so as to define representation models that

capture the information needed for their production.

Tools: this is the phase for defining, acquiring,

enhancing, integrating, or constructing: extraction

tools and procedures, for the extraction from the

system’s artifacts of the row data required for

instantiating the models defined in the model phase;

and abstraction tools and procedures, for the

transformation of the program models into the

abstractions identified in the goal phase.

The Goals/Models/Tools paradigm has been

extensively used to define and execute several real-

world reverse engineering processes [4, 5].

6.2 Re-engineering

The practice of re-engineering a software system to

better understand and maintain it has long been

accepted within the software maintenance

community. Chikofsky and Cross II taxonomy

paper [8] defines re-engineering as “the

examination and alteration of a subject system to

reconstitute it in a new form and the subsequent

implementation of the new form”. The same paper

indicates renovation and reclamation as possible

synonyms; renewal is anothercommonly used term.

Arnold [1] gives a more comprehensive definition

as follows:

 “Software Re-engineering is any activity that:

(1) improves one’s understanding of software, or

(2) prepares or improves the software itself, usually

for increased maintainability, reusability, or

evolvability.”

it is evident hat re-engineering entails some form of

reverse engineering to create a more abstract view

of a system, a regeneration of this abstract view

followed by forward engineering activities to

realize the system in the new form. The presence

of a reverse engineering step distinguishes re-

engineering from restructuring, the latter consisting

of transforming an artifact from one form to

another at the same relative level of abstraction [8].

Software re-engineering has proven important for

several reasons. Arnold [1] identifies seven main

reasons that demonstrate the relevance of re-

engineering:

“Re-engineering can help reduce an organization’s

evolution risk;

Re-engineering can help an organization recoup its

investment in software;

Re-engineering can make software easier to

change;

Re-engineering is a big business;

Re-engineering capability extends CASE toolsets;

Re-engineering is a catalyst for automatic software

maintenance;

Re-engineering is a catalyst for applying artificial

intelligence techniques to solve software re-

engineering problems.”

7 Maintenance management

Management is “the process of designing and

maintaining an environment in which individuals,

working together in groups, accomplish efficiently

selected aims” [27]. In the case of maintenance the

key aim is to provide cost-effective support to a

software system during its entire lifespan.

Management is concerned with quality and

productivity that imply effectiveness and

efficiency. Many authors [16, 27, 25] agree that

management consists of five separate functions.

The functions are: planning, organizing, staffing,

leading (sometimes also called directing), and

controlling.

Planning consists of selecting missions and

objectives and predetermining a course of actions

for accomplishing them. Commitment of human

and material resources and scheduling of actions

are among the most critical activities in this

function.

Organizing is the management function that

establishes an intentional structure of roles for

people to fill in an organization. This entails

arranging the relationships among roles and

granting the responsibilities and needed authority.

Staffing involves filling the positions in the

organization by selecting and training people. Two

key activities of this function are evaluating and

appraising project personnel and providing for

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 08
April 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 498

general development, i.e. improvement of

knowledge, attitudes, and skills.

Leading is creating a working environment and an

atmosphere that will assist and motivate people so

that they will contribute to the achievement of

organization and group goals.

Controlling measures actual performances against

planned goals and, in case of deviations, devises

corrective actions. This entails rewarding and

disciplining project personnel.

The standard IEEE-1219 [12] suggests a template

to guide the preparation of a software maintenance

plan based on the standard itself; figure. Pigoski

[23] highlights that a particular care must be made

to plan the transition of a system from the

development team to the maintenance organization,

as this is a very critical element of the life cycle of

a system.

Software maintenance organizations can be

designed and set up with three different

organizational structures: functional, project, or

matrix [25, 28].

Functional organizations are hierarchical in nature.

The maintenance organization is broken down into

different functional units, such as software

modification, testing, documentation, quality

assurance, etc. Functional organizations present the

advantage of a centralized organization of similar

specialized resources. The main weakness is that

interface problems may be difficult to solve:

whenever a functional department is involved in

more than a project conflicts may arise over the

relative priorities of these projects in the

competition for resources. In addition, the lack of a

central point of complete responsibility and

authority for the project may entails that a

functional department places more emphasis on its

own specialty than on the goal of the project.

Project organizations are the opposite of the

functional organizations. In this case a manager is

given the full responsibility and authority for

conducting the project; all the resources needed for

accomplishing the project goals are separated from

the regular functional structure and organized into

an autonomous, self-contained team. The project

manager may possibly acquire additional resources

from outside the overall organization. Advantages

of this type of organization are a full control over

the project, quick decision making, and a high

motivation of project personnel. Weaknesses

include the fact that there is a start-up time for

forming the team, and there may be an inefficient

use of resources.

Matrix organizations are a composition of

functional and project organizations with the

objective of maximizing the strengths and

minimizing the weaknesses of both types of

organizations. The standard vertical hierarchical

organization is combined with a horizontal

organization for each project. The strongest point of

this organization is that a balance is struck between

the objectives of the functional departments and

those of the projects. The main problem is that

every person responds to two managers, and this

can be a source of conflicts. A solution consists of

specifying the roles, responsibility and authority of

the functional and project managers for each type

of decisions to be made.

A common problem of software maintenance

organizations is inexperienced personnel. Beath and

Swanson [3] report that 25% of the people doing

maintenance are students and up to 61% are new

hires. Pigoski [23] confirms that 60% to 80% of the

maintenance staff is newly hired personnel.

Maintenance is still perceived by many

organizations as a non strategic issue, and this

explain why it is staffed with students and new

hired people. To compound the problem there is the

fact that most Universities do not teach software

maintenance, and maintenance is very rarely though

in corporate training and education programs, too.

As an example, software maintenance is not listed

within the 22 software courses of the software

engineering curriculum sketched in reference [22].

The lack of appraisal of maintenance personnel

generates other managerial problems, primarily

high turnover and low morale.

8 Conclusions

This article has overviewed software maintenance,

its strategic problems, and the available solutions.

The underlying theme of the article has been to

show that technical and managerial solutions exist

that can support the application of high standards of

engineering in the maintenance of software. Of

course, there are open problems and more basic and

applied research is needed both to gain a better

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 08
April 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 499

understanding of software maintenance and to find

better solutions.

Nowadays, the way in which software systems are

designed and built is changing profoundly, and this

will surely have a major impact on tomorrow’s

software maintenance. Object technology,

commercial-off-the-shelf products, computer

supported cooperative work, outsourcing and

remote maintenance, Internet/Intranet enabled

systems and infrastructures, user enhance able

systems, are a few examples of areas that will

impact software maintenance. Object technology

has become increasingly popular in recent years

and a majority of the new systems are currently

being developed with an object-oriented approach.

Among the main reasons for using object

technology is enhanced modifiability, and hence

easier.

References

[1] Arnold, R. S., “A Road Map to Software Re-

engineering Technology”, Software Reengineering

- a tutorial, IEEE Computer Society Press, Los Alamitos,

CA, 1993, pp. 3-22.

[2] Basili, V. R., “Viewing Maintenance as Reuse-

Oriented Software Development”, IEEE Software,

7(1):19-25, 1990.

[3] Beath, C. N., Swanson, E. B., “Maintaining

Information Systems in Organizations”, John Wiley &

Sons, New York, NY, 1989.

[4] Benedusi, P., Cimitile, A., De Carlini, U., “A

Reverse Engineering Methodology to Reconstruct

Hierarchical Data Flow Diagrams”, Proceedings of the

Conference on Software Maintenance, Miami, FL, IEEE

Computer Society Press, Los Alamitos, CA, 1989, pp.

180-189.

[5] Benedusi, P., Cimitile, A., De Carlini, U., “Reverse

Engineering Processes, Document Production and

Structure Charts”, The Journal of Systems and Software,

16:225-245, 1992.

[6] Brooks, F. P. Jr., “No Silver Bullet”, IEEE

Computer, 20(4):10-19, 1987.

[7] Canning, R., “The Maintenance Iceberg”, EDP

Analyzer, 10(10), 1972.

[8] Chikofsky, E. J., Cross II, J. H., “Reverse

Engineering and Design Recovery: A Taxonomy”, IEEE

Software, 7(1):13-17, 1990.

[9] Gilb, T., “Principles of Software Engineering

Management”, Addison-Wesley, Reading, MA, 1988.

 [10] Hartmann, J., Robson, D. J., “Techniques for

Selective Revalidation”, IEEE Software, 16(1):31-38,

1990.

[11] IEEE Std. 610.12, “Standard Glossary of Software

Engineering Terminology”, IEEE Computer Society

Press, Los Alamitos, CA, 1990.

[12] IEEE Std. 1219-1998, “Standard for Software

Maintenance”, IEEE Computer Society Press, Los

Alamitos, CA, 1998.

[13] ISO/IEC 9126, “Information Technology –

Software Product Evaluation – Quality Characteristics

and Guidelines for Their Use”, Geneva, Switzerland,

1991.20

[14] ISO/IEC 9000-3, “Quality Management and Quality

Assurance Standards – Part 3: Guidelines for the

Application of ISO 9001 to the Development, Supply

and Maintenance of Software”, Geneva, Switzerland,

1991.

[15] ISO/IEC 12207, “Information Technology –

Software Life Cycle Processes”, Geneva, Switzerland,

1995.

 [16] Koontz, H., O’Donnell, C., “Principles of

Management: An Analysis of Managerial Functions”,

fifth edition, McGraw-Hill, New York, NY, 1972.

 [17] Lehman, M. M., “Lifecycles and the Laws of

Software Evolution”, Proceedings of the IEEE, Special

Issue on Software Engineering, 19:1060-1076, 1980.

[18] Lehman, M. M., “Program Evolution”, Journal of

Information Processing Management, 19(1):19-36, 1984.

[19] Leung, H. K. N., White, L. J., “Insights into

Regression Testing”, Proceedings of the Conference on

Software Maintenance, Miami, Florida, IEEE Computer

Society Press, 1990, pp. 60-69.

 [20] Lientz, B. P., Swanson, B. E., “Software

Maintenance Management”, Addison- Wesley, Reading,

MA, 1980.

 [21] Martin, J., Mc Clure, C., “Software Maintenance –

the Problem and its Solutions”, Prentice Hall,

Englewood Cliffs, NJ, 1983.

[22] Parnas, D. L., “Software Engineering Programs are

not Computer Science Programs”, IEEE Software,

16(6):19-30, 1999.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 08
April 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 500

[23] Pigoski, T. M., “Practical Software Maintenance –

Best Practices for Managing Your Software Investment”,

John Wiley & Sons, New York, NY, 1997.

 [24] Rothermel, G., Harrold, M. J., “A Framework for

Evaluating Regression Test Selection Techniques”,

Proceedings of the 16th International Conference on

Software Engineering, Sorrento, Italy, IEEE Computer

Society Press, CA, 1994, pp. 201-210.

 [25] Thayer, R. H., “Software Engineering Project

Management”, Software Engineering Project

Management, Second Edition, Thayer, R. H., ed., IEEE

Computer Society Press, Los Alamitos, CA, 1997, pp.

72-104.

 [26] Visaggio, G., “Assessing the Maintenance Process

through Replicated Controlled Experiments”, The

Journal of Systems and Software, 44(3):187-197, 1999.

 [27] Weihrich, H., “Management: Science, Theory, and

Practice”, Software Engineering Project Management,

Second Edition, Thayer, R. H., ed., IEEE Computer

Society Press, Los Alamitos, CA, 1997, pp. 4-13.

 [28] Youker, R., “Organization Alternatives for Project

Managers”, Project Management Quarterly, 8(1), The

Project Management Institute, 1997.

