
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 09

May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 18

Offline/Online Semantic Web Crawler
Nikita Suryavanshi; Deeksha Singh & Sunakashi

Galgotias College Of Engineering And Technology, Knowledge Park II, Greater Noida

Abstract-

Broad web search engines as well as many more

specialized search tools rely on web crawlers to

acquire large collections of pages for indexing

and analysis. Such a web crawler may interact

with millions of hosts over a period of weeks or

months, and thus issues of robustness, flexibility,

and manageability are of major importance. In

addition,

I/O performance, network resources, and OS

limits must be taken into account in order to

achieve high performance at a reasonable cost.

In this paper, we describe the design and

implementation of a distributed web crawler that

runs on a network of workstations.

The crawler scales to (at least) several hundred

pages per second, is resilient against system

crashes and other events, and can be adapted to

various crawling applications.

We present the software architecture of the

system, discuss the performance bottlenecks, and

describe efficient techniques for achieving high

performance. We also report preliminary

experimental results based on a crawl of 120

million pages on 5 million hosts.

 Search engine come to our rescue in such cases

.with a search engine ,all the students has to do is

type in the “keyword” relating to the information

that he needs .The search engine would then

return a set of results that match best with the

keywords entered.

 A Web search engine can therefore be defined

as a software program at takes input from the

user, searches its database and returns a set of

results .It is important to note here that the search

engine does not search the internet: rather it

searches its database ,which is populated with

data from the internet by its crawler .Therefore

,we chose to develop web search engine and the

ranking method to arrange the pages found by

search engine relevantly. So that the user who

entered the query can find the most relevant page

first (page which consist of relevant information

required by user) .Our project has a feature called

“Page Rank & Hits” that allows user to receive

most relevant result in response to a query .For

instance if user enters a keyword “student” as his

query the pages consisting relevant information

will be searched and then ranked according to

their hit ratio and the page rank.

Keyword- ASP.NET; Visual Studio 2008; Visual

Management Studio; My SQL

I. INTRODUCTION

Web crawlers are programs that exploit the graph

structure of the Web to move from page to page.

In their infancy such programs were also called

wanderers, robots, spiders, fish, and worms, words

that are quite evocative of Web imagery. It may be

observed that the noun “crawler” is not indicative

of the speed of these programs, as they can be

considerably fast. In our own experience, we have

been able to crawl up to tens of thousands of pages

within a few minutes while consuming a small

fraction of the available bandwidth.4

From the beginning, a key motivation for

designing Web crawlers has been to retrieve Web

pages and add them or their representations to a

local repository. Such a repository may then serve

particular application needs such as those of a

Web search engine. In its simplest form a crawler

starts from a seed page and then uses the external

links within it to attend to other pages. The

process repeats with the new pages

offering more external links to follow, until a

sufficient number of pages are identified or some

higher-level objective is reached. Behind this

World

Wide

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 09

May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 19

simple description lies a host of issues related to

network connections, spider traps, canonicalizing

URLs, parsing HTML pages, and the ethics of

dealing with remote Web servers. In fact, a current

generation Web crawler can be one of the most

sophisticated yet fragile parts of the application in

which it is embedded. Were the Web a static

collection of pages we would have little long-term

use for crawling. Once all the pages had been

fetched to a repository (like a search engine’s

database), there would be no further need for

crawling. However, the Web is a dynamic entity

with subspaces evolving at differing and often

rapid rates. Hence there is a continual need for

crawlers to help applications stay current as new

pages are added and old ones are deleted, moved

or modified.

General-purpose search engines serving as entry

points to Web pages strive for coverage that is as

broad as possible. They use Web crawlers to

maintain their index databases , amortizing the

cost of crawling and indexing over the millions of

queries received by them. These crawlers are blind

and exhaustive in their approach, with

comprehensiveness as their major goal. In

contrast, crawlers can be selective about the pages

they fetch and are then referred to as preferential

or heuristic-based crawlers. These may be used for

building focused repositories, automating resource

discovery, and facilitating software agents. There

is a vast literature on preferential crawling

applications including [15, 9, 31, 20, 26, 3].

Preferential crawlers built to retrieve pages within

a certain topic are called topical or focused

crawlers. Synergism between search engines and

topical crawlers is certainly possible, with the

latter taking on the specialized responsibility of

identifying subspaces relevant to particular

communities of users. Techniques for preferential

crawling that focus on improving the “freshness”

of a search engine have also been suggested.

II. BUILDING A CRAWLING INFRASTRUCTURE

Figure 1 shows the flow of a basic sequential

crawler (in Sect. 2.6 we consider multithreaded

crawlers). The crawler maintains a list of unvisited

URLs called the frontier.

The list is initialized with seed URLs, which may

be provided by a user or another program. Each

crawling loop involves picking the next URL to

crawl from the frontier, fetching the page

corresponding to the URL through HTTP, parsing

the retrieved page to extract the URLs and

application-specific information, and finally

adding the unvisited URLs to the frontier. Before

the URLs are added to the frontier they may be

assigned a score that represents the estimated

benefit of visiting the page corresponding to the

URL. The crawling process may be terminated

when a certain number of pages have been

crawled. If the crawler is ready to crawl another

page and the frontier is empty, the situation signals

a deadend for the crawler. The crawler has no new

page to fetch, and hence it stops. Crawling can be

viewed as a graph search problem. The Web is

seen as a large graph with pages at its nodes and

hyperlinks as its edges. A crawler starts at a few

of the nodes (seeds) and then follows the edges to

reach other nodes. The process of fetching a page

and extracting the links within it is analogous to

expanding a node in graph search. A topical

crawler tries to follow edges that are expected to

lead to portions of the graph that are relevant to a

topic

 Frontier

The frontier is the to-do list of a crawler that

contains the URLs of unvisited pages. In graph

search terminology the frontier is an open list of

unexpanded (unvisited) nodes. Although it may be

necessary to store the frontier on disk for large -

scale crawlers, we will represent the frontier as an

in-memory data structure for simplicity. Based on

the available memory, one can decide the

maximum size of the frontier. Because of the large

amount of memory available on PCs today, a

frontier size of a 100,000 URLs or more is not

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 09

May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 20

exceptional. Given a maximum frontier size we

need a mechanism to decide which URLs to

ignore when this limit is reached. Note that the

frontier canfill rather quickly as pages are crawled.

One can expect around 60,000 URLs in the

frontier with a crawl of 10,000 pages, assuming an

average of about 7 links per page

 History and Page Repository

The crawl history is a time-stamped list of URLs

that were fetched by the crawler. In effect, it

shows the path of the crawler through the Web,

starting from the seed pages. A URL entry is made

into the history only after fetching the

corresponding page. This history may be used for

post-crawl analysis and evaluations. For example,

we can associate a value with each page on the

crawl path and identify significant events (such as

the discovery of an excellent resource). While

history may be stored occasionally to the disk, it is

also maintained as an in-memory data structure.

This provides for a fast lookup to check whether a

page has been crawled or not. This check is

important to avoid revisiting pages and also to

avoid adding the URLs of crawled pages to the

limited size frontier. For the same reasons it is

important to canonicalize the URLs (Sect. 2.4)

before adding them to the history.

Once a page is fetched, it may be stored/indexed

for the master application (such as a search

engine). In its simplest form a page repository may

store the crawled pages as separate files. In that

case, each page must map to a unique file name.

One

way to do this is to map each page’s URL to a

compact string using some form of hashing

function with low probability of collisions (for

uniqueness of file names). The resulting hash

value is used as the file name.

 Fetching

In order to fetch a Web page, we need an HTTP

client that sends an HTTP request for a page and

reads the response. The client needs to have

timeouts to make sure that an unnecessary amount

of time is not spent on slow servers or in reading

large pages. In fact, we may typically restrict the

client to download only the first 10–20KB of the

page. The client needs to parse the response

headers for status codes and redirections. We may

also like to parse and store the last-modified

header to determine the age of the document. Error

checking and exception handling are important

during the page-fetching process since we need to

deal with millions of remote servers using the

same code. In addition, it may be beneficial to

collect statistics on timeouts and status codes for

identifying problems or automatically changing

timeout values. Modern programming languages

such as Java and Perl provide very simple and

often multiple programmatic interfaces for

fetching pages from the Web. However, one must

be careful in using high-level interfaces where it

may be harder to find lower-level problems. For

example, with Java one may want to use the

java.net. Socket class to send HTTP requests

instead of using the more ready-made java.net.

HttpURLConnection class.

 Parsing

Once a page has been fetched, we need to parse its

content to extract information that will feed and

possibly guide the future path of the crawler.

Parsing may imply simple hyperlink/URL

extraction or it may involve the more complex

process of tidying up the HTML content in order

to analyze the HTML tag tree . Parsing might also

involve steps to convert the extracted URL to a

canonical form, remove stop words from the

page’s content, and stem the remaining words.

These components of parsing are described next

 Multithreaded Crawlers

The multithreaded crawler model needs to deal

with an empty frontier just like a sequential

crawler. However, the issue is less simple now. If

a thread finds the frontier empty, it does not

automatically mean that the crawler as a whole has

reached a dead end. It is possible that other threads

are fetching pages and may add new URLs in the

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 09

May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 21

near future. One way to deal with the situation is

by sending a thread to a sleep state when it sees an

empty frontier. When the thread wakes up, it

checks again for URLs. A global monitor keeps

track of the number of threads currently sleeping.

Only when all the threads are in the sleep state

does the crawling process stop. More

optimizations can be performed on the

multithreaded model described here, as for

instance to decrease contentions between the

threads and to streamline network access

III . Evaluation of Crawlers

In a general sense, a crawler (especially a topical

crawler) may be evaluated on its ability to retrieve

“good” pages.However, a major hurdle is the

problem of recognizing these good pages. In an

operational environment real users may judge the

relevance of pages as these are crawled, allowing

us to determine if the crawl was successful or not.

Unfortunately, meaningful experiments involving

real users for assessing Web crawls are extremely

problematic. For instance, the very scale of the

Web suggests that in order to obtain a reasonable

notion of crawl effectiveness one must conduct a

large number of crawls, i.e., involve a large

number of users.

Second, crawls against the live Web pose serious

time constraints. Therefore crawls other than

short-lived ones will seem overly burdensome to

the user. We may choose to avoid these time loads

by showing the user the results of the full crawl

but this again limits the extent of the crawl.

III. APPLICATION

Crawling in general and topical crawling in

particular is being applied for various other

applications, many of which do not appear as

technical papers. For example, business

intelligence has much to gain from topical

crawling. A large number of companies have Web

sites where they often describe their current

objectives, future plans, and product lines. In some

areas of business, there are a large number of start-

up companies that have rapidly changing Web

sites. All these factors make it important for

various business entities to use sources other than

the general-purpose search engines to keep track

of relevant and publicly available information

about their potential competitors or collaborators.

Crawlers have also been used for biomedical

applications like finding relevant literature on a

gene. On a different note, there are some

controversial applications of crawlers such as

extracting e-mail addresses from Web sites for

spamming.

IV. SUMMARY ANALYSIS

Given a particular measure of page importance we

can summarize the performance of the crawler

with metrics that are analogous to the information

retrieval (IR) measures of precision and recall.

Precision is the fraction of retrieved (crawled)

pages that are relevant, while recall is the fraction

of relevant pages that are retrieved (crawled). In a

usual IR task the notion of a relevant set for recall

is restricted to a given collection or database.

Considering the Web to be one large collection,

the relevant set is generally unknown for most

Web IR tasks. Hence, explicit recall is hard to

measure. Many authors provide precision-like

measures that are easier to compute in order to

evaluate the crawlers. We will discuss a few such

precision-like measures:

1. Acquisition rate: In cases where we have

Boolean relevance scores we could measure the

explicit rate at which “good” pages are found.

Therefore, if 50relevant pages are found in the

first 500 pages crawled , then we have an

acquisition

rate or harvest rate [1] of 10% at 500 pages.

2. Average relevance: If the relevance scores are

continuous they can be averaged over the crawled

pages. This is a more general form of harvest rate.

The scores may be provided through simple cosine

similarity or a trained classifier. Such averages

(may be computed over the progress of the crawl

(first100 pages, first 200 pages, and so on).

Sometimes running averages are calculated over a

window of a few pages (e.g., the last 50 pages

from a current crawl point) .Since measures

analogous to recall are hard to compute for the

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 09

May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 22

Web, authors resort to indirect indicators for

estimating recall. Some such indicators are:

1. Target recall: A set of known relevant URLs is

split into two disjoint sets–targets and seeds. The

crawler is started from the seeds pages and the

recall of the targets is measured. The target recall

is computed as target recall =

| Pt ∩Pc |

| Pt |

where Pt is the set of target pages, and Pc is the

set of crawled pages Robustness: The seed URLs

are split into two disjoint sets Sa and Sb. Each set

is used to initialize an instance of the same

crawler. The overlap in the pages crawled starting

from the two disjoint sets is measured. A large

overlap is interpreted as robustness of the crawler

in covering relevant portions of the Web [9, 6].

There are other metrics that measure the crawler

performance in a manner that combines both

precision and recall. For example, search length

[21] measures the number of pages crawled before

a certain percentage of the relevant pages are

retrieved.

V. RESEARCH SCOPE

As, the defined concepts for web crawling and

improving its performance by the various crawling

algorithms have been explained here. It has not

end of the work for improving performance of

crawling. There are many more techniques and

algorithms may be considered for crawler to

improve its performance. We can also improve its

performance to modify the sitemap of any website,

i.e. in sitemap protocol all URL has a static

priority and we can change it by dynamic priority

and this priority is calculated through user interest

i.e. number of hits has high priority.

VI. CONCLUSION

Crawling: The websites submitted to the Crawler

were crawled without any issues. The number of

WebPages and the rates, at which they crawled,

depends on the speed of the internet.

Searching: All the search results in response to a

query are successfully retrieved. The time taken

for the retrieval of results is a function of the size

of the database.

Ranking: On the search query, an effective

ranking algorithm is then applied so that the result

should appear in relevant order.

So, we have achieved our aim by developing a

search tool that gives the most relevant output in

response to a query. The project developed by us

is portable, cost-effective and efficient. It also has

a user friendly interface.

The paper surveys several crawling methods or

algorithms that are used for downloading the web

pages from the World Wide Web. We believe that

all of the algorithms discuss in this paper are well

effective and high performance for web search,

reduce the network traffic and crawling costs, but

overall advantages and disadvantage favor more

for By using HTTP Get Request and also Dynamic

Web Page and download updated web pages By

the using of filter is produce relevant results.

VI. REFERENCES

[1] Internet theory available at,

http://en.wikipedia.org/wiki/Internet

[2] Search Engine theory available at,

http://en.wikipedia.org/wiki/searchengine

[3] Web Crawler theory available at

,http://en.wikipedia.org/wiki/webcrawler

[4] Benefits of google search engine available

at, http://www.google.co.uk/ technology

/whyuse.html

[5] Benefits of having a high page rank

available at, http://www.blong.info/ benefits-

high-page-rank-pr.php

[6] Page Rank theory available at,

http://en.wikipedia.org/wiki/PageRank

http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/searchengine
http://en.wikipedia.org/wiki/webcrawler
http://www.google.co.uk/%20technology%20%20%20/whyuse.html
http://www.google.co.uk/%20technology%20%20%20/whyuse.html
http://www.blong.info/%20benefits-high-page-rank-pr.php
http://www.blong.info/%20benefits-high-page-rank-pr.php
http://en.wikipedia.org/wiki/PageRank

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Issue 09

May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 23

[7] K.K.Aggarwal & Yogesh Singh, “Software

Engineering”, New Age International Publishers,

Seventh Edition, 2009

[8] Bob Hughes & Mike Cotterell, “Software

Project Management”, Published by Tata

McGraw-Hill Publishing Company Limited,

Fourth Edition, 2009

[9] Donis Marshall, “Programming Microsoft

Visual C# 2008: The Language”, WP Publishers

& Distributors(P) Limited, Third Edition 2008.

