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Abstract.  
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1. Introduction 

Fixed point theorems have extensive 

applications in proving the existence and uniqueness 

of the solutions of differential equations, integral 

equations, partial differential equations and in other 

related areas. Over since last 50 years, fixed point 

theory has been revealed itself as a very powerful 

and important tool in the study of nonlinear 

phenomena. In particular, fixed point techniques 

have been applied in diverse fields such as in 

biology, chemistry, economics, engineering, game 

theory and physics.  

The point at which the curve y = f (x) and 

the line y = x intersects gives the solution of the 

curve i.e. the point of intersection is the fixed point 

of the curve. The usefulness of the concrete 

applications has increased enormously due to the 

development of accurate techniques for computing 

fixed points. 

          The aim of this paper is to study common 

fixed point of weakly compatible mappings 

satisfying E.A. and CLRf  properties. The following 

definitions and results will be needed in the sequel. 

Definition 1.1. Two self-mappings f and g of a 

metric space (X, d) are said to be weakly commuting 

if 

 

(1.1) d(fgx, gfx) ≤ d(gx, fx) for all x in X. 

Further, Jungck [6] introduced more generalized 

commutativity, so called compatibility, which is 

more general than that of weak commutativity. 

Definition 1.2. Two self-mappings f and g of a 

metric space (X, d) are said to be compatible if 

   
   

               = 0, whenever {xn} is a 

sequence in X such that    
   

    =    
   

    = t for 

some t in X. In 1996, Jungck [7] introduced the 

concept of weakly compatible maps as follows: 

Definition1.3.Two self maps f and g are said to be 

weakly compatible if they commute at coincidence 

points. 

Definition 1.4. A mapping T : X → X, where (X,d) 

is a metric space, is said to be sequentially weakly 

contraction  if 

(1.2)     d(Tx, Ty) ≤ d(x, y) - fn(d(x,y)) 

   (fn:I (interval or subset of R)   R ) 

wherex,y  X and fn(t) is a sequence of function 

which converges uniformly to t, and monotonic 

function such that fn(t) = 0 if and only if t = 0. 

In 2002, Aamriet. al. [1] introduced the notion of 

E.A. property as follows: 

Definition 1.5. Two self-mappings f and g of a 

metric space (X, d) are said to satisfy E.A. property 

if there exists a sequence {xn} in X such that 

   
   

    =    
   

    = t for some t in X. 

Theorem 1.6. Let (X, d) be a metric space and let f 

and g be weakly compatible self-maps of X 

satisfying  the followings: 

(1.3)  f and g satisfy the E.A. property, 

(1.4)  fX is closed subset of X. 

(1.5)   (d(gx,gy))   (d(fx, fy)) – fn(d(fx,fy)),  

(fn: I(interval or subset of R)→R) for all x,y  X  
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where      : [0, ∞) → [0, ∞) is mappings with 

 (0)=0, fn(t)>0 also fn(t) is a uniformly convergent 

sequence which converges to   (t) and   (t) > 0 for 

all t > 0.  

Suppose also that either 

 (1.6)      is continuous and     
   

  = 0, if  

   
   

       ) =  0.   

or 

       is monotonic non-decreasing and     
   

  = 0, 

if {tn} is bounded and 

    
   

       ) =  0.   

Then f and g have a unique common fixed point. 

Proof. Since f and g satisfy the E.A. property, there 

exists a sequence {xn} in X such that     
   

    = 

    
   

    = x0 for some x0  X. Now, fX is closed 

subset of X, therefore, for  

z  X, we have     
   

    = fz. 

We claim that fz = gz.  

From (1.5), we have 

 (d(gxn, gz))   (d(fxn, fz)) – fn((d(fxn, fz)) for all n 

  . 

Letting n → ∞, we have 

 (d(fz, gz))     
   

 (d(fxn, fz)) – 

                               
                     

 fn((d(fxn, fz)) 

                     =  (d(fz, fz)) – fn((d(fz, fz)) 

                     =  (0) – fn((0).   

If (1.6) holds, then 

 (d(fz, gz))    0, implies that d(fz, gz) = 0, that is, fz 

= gz. 

If (1.7) holds, then 

d(fz, gz) ≤ 0, implies that fz = gz. 

Therefore, fz = gz. 

Now, we show that gz is the common fixed point of f 

and g. 

 Suppose that gz ≠ ggz. Since f and g are weakly 

compatible i.e.,gfz = fgz and therefore ffz = ggz. 

[since fz = gz ] 

From (1.5), we have 

 (d(gz, ggz))   (d(fz, fgz)) – fn((d(fz, fgz)) 

                       =  (d(gz, gfz)) –fn((d(gz,gfz)) 

                                                 [since fz = gz ] 

                       =  (d(gz, ggz)) –fn((d(gz, ggz)). 

                                                 [since fz = gz ] 

If (1.6) holds, then 

 (d(gz, ggz)) <  (d(gz, ggz)), a contradiction. 

If (1.7) holds, then 

d(gz, ggz) < d(gz, ggz), a contradiction. 

Hence ggz = gz. Hence gz is the common fixed point 

of f and g. 

Uniqueness : 

Let u and v be two common fixed points of f and g 

such that u ≠ v. 

From (1.5), we have  

 (d(u, v)) =  (d(gu, gv)) 

                 ≤  (d(fu, fv)) – fn((d(fu, fv)) 

                  =  (d(u, v)) – fn((d(u, v)). 

If (1.6) holds, then we have 

 (d(u, v)) <  (d(u, v)), a contradiction. 

If (1.7) holds, then we have 

d(u, v) < d(u, v), a contradiction. 

Therefore, u = v, which proves the uniqueness. 

Theorem 1.7. Let (X, d) be a metric space and let f 

and g be weakly compatible self-maps of X 

satisfying (1.3), (1.4) and the following : 

(1.8)  (d(gx, gy))   (N(fx, fy))  

                                     – fn(N(fx, fy)), 

where  N(fx, fy) = max{d(fx, fy), d(fx, gx), d(fy, gy), 
                  

 
}, 

for all x,y  X , where fn(x) is sequence of function 

which converges uniformly to      and fn(0) = 0 and 

fn(t) > 0 for all t > 0 and         = 0, if {tn} is 

bounded and    
   

          = 0 and   : [0, ∞) → [0, 

∞) is a mapping with      = 0 and   (t) > 0 for all t 

> 0.  

Suppose also that either 

(1.9)       is continuous  

or 

(1.10)       is monotone non-decreasing and for all k 

> 0, fn(k) > (k
+
) -  (k

-
), where  (k

-
) is  

the  left limit of   at k. 

Then f and g have a unique common fixed point. 

Proof. Since f and g satisfy the E.A. property, there 

exists a sequence {xn} in X such that     
   

    = 

    
   

    = x0 for some x0  X. Now, fX is closed 

subset of X, therefore, for  

z  X, we have     
   

    = fz. 

We claim that fz = gz. Suppose that fz ≠ gz. 

From (1.8),we have 

 (d(gxn, gz))   (N(fxn, fz)) – fn((N(fxn, fz)) for all 

n   . 

Letting n → ∞, we have 

 (d(fz, gz))     
   

 (N(fxn, fz))  

                           –     
   

fn((N(fxn, fz)) 

                     =  (d(fz, gz)) – fn((d(fz, gz)), since 

   
   

N(fxn, fz) = d(fz, gz). 

If (1.9) holds, then we have 

 (d(fz, gz)) <  (d(fz, gz)), a contradiction. 

If (1.10) holds, then we have 
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d(fz, gz) < d(fz, gz), a contradiction. 

Therefore, fz = gz. 

Now, we show that gz is the common fixed point of f 

and g. 

 Suppose that gz ≠ ggz. Since f and g are weakly 

compatible i.e., gfz = fgz and therefore ffz = ggz. 

From (1.8), we have 

 (d(gz, ggz))   (N(fz, fgz)) – fn((N(fz, fgz)) 

                       =  (N(gz, gfz)) –fn((N(gz, gfz)) 

                                                   [since fz = gz ] 

                       =  (N(gz, ggz)) –fn((N(gz, ggz)) 

                       = (d(gz, ggz)) – fn((d(gz, ggz)), since 

N(gz, ggz) = d(gz, ggz). 

If (1.9) holds, then we have 

 (d(gz, ggz)) <  (d(gz, ggz)), a contradiction. 

If (1.10) holds, then we have 

d(gz, ggz) < d(gz, ggz), a contradiction. 

Hence ggz = gz. Hence gz is the common fixed point 

of f and g. 

Uniqueness: 

Let u and v be two common fixed points of f and g 

such that u ≠ v. 

From (1.8) , we have 

 (d(u, v)) =   (d(gu, gv)) 

                   (N(fu, fv)) – fn((N(fu, fv))   

                 =   (N(u, v)) – fn((N(u, v)) 

                 =   (d(u, v)) – fn((d(u, v)), .    

since N(u, v) = d(u, v). 

If (1.9) holds, then we have 

 (d(u, v)) <  (d(u, v)), a contradiction. 

If (1.10) holds, then we have 

d(u, v) < d(u, v), a contradiction. 

Therefore, u = v, which proves the uniqueness. 

 

In 2011, Sintunavarat et. al. [12] introduced the 

notion of CLRf  property as follows: 

Definition 1.8. Two self-mappings f and g of a 

metric space (X, d) are said to satisfy CLRf property 

if there exists a sequence {xn} in X such that 

   
   

    =    
   

    = fx for some x in X. 

Theorem 1.9. Let (X, d) be a metric space and let f 

and g be weakly compatible self-mappings of X 

satisfying (1.5), (1.6), (1.7) and the following: 

(1.11) f and g satisfy CLRf  property. 

Then f and g have a unique common fixed point. 

Proof. Since f and g satisfy the CLRf property, there 

exists a sequence {xn} in X such that    
   

     

=    
   

     = fx for some x   X. 

Now, we claim that fx = gx. 

From (1.5), we have 

 (d(gxn, gx))   (d(fxn, fx)) –fn((d(fxn, fx)) for all n 

  . 

Letting n → ∞, we have 

 (d(fx, gx))     
   

 (d(fxn, fx))  

              –    
   

fn((d(fxn, fx)) 

                      =  (d(fx, fx)) - fn((d(fx, fx)) 

                      =  (0) - fn(0). 

If (1.6) holds, then we have 

 (d(fx, gx))   0, implies that d(fx, gx) = 0, that is, 

gx = fx. 

If (1.7) holds, then we have 

d(fx, gx) ≤ 0, that is , gx = fx. 

Therefore fx = gx. 

Let w = fx = gx. 

      Since f and g are weakly compatible i.e., gfx = 

fgx, implies that, fw = fgx = gfx = gw. 

Now, we claim that gw = w. Let, if possible, gw ≠ w. 

If (1.6) holds, then from (1.5), we have 

 (d(gw, w)) = (d(gw, gx))  

                          (d(fw, fx)) – fn((d(fw, fx)) 

                     <  (d(fw, fx))  

                     = (d(gw, w)), a contradiction. 

If (1.7) holds, then we have 

d(gw, w) < d(gw, w), a contradiction. 

Thus, we get gw = w = fw.  

Hence w is the common fixed point of f and g. 

Uniqueness: 

Let u be another common fixed point of f and g such 

that fu = u = gu. 

Now, we claim that w = u.  

Let, if possible, w ≠ u. 

If (1.6) holds, then from (1.5), we have 

 (d(w, u)) =  (d(gw, gu)) 

                       (d(fw, fu)) – fn((d(fw, fu))  

                   =   (d(w, u)) – fn((d(w,u)) 

                   < (d(w, u)), a contradiction. 

If (1.7) holds, then we have 

d(w, u) < d(w, u), a contradiction. 

Thus, we get, w = u.  

Hence w is the unique common fixed point of f and 

g. 

Theorem 1.10. Let (X, d) be a metric space and let f 

and g beweakly compatible self-mappings of X 

satisfying (1.8), (1.9), (1.10) and (1.11), then f and g 

have a unique common fixed point. 

Proof. Since f and g satisfy the CLRf  property, there 

exists a sequence {xn} in X such that     
   

    = 

    
   

    = fx for some x   X. 

Now, we claim that fx = gx. 

From (1.8), we have 
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 (d(gxn, gx))   (N(fxn, fx)) – fn((N(fxn, fx)) for all 

n   . 

Letting n → ∞, we have 

 (d(fx, gx))     
   

 (N(fxn, fx))  

                         –    
   

fn((N(fxn, fx)) 

                     =  (d(fx, fx)) – fn((d(fx, fx)) 

                     =  (0) – fn(0),  

since    
   

N(fxn, fx) = d(fx, fx) = 0. 

If (1.9) holds, then we have 

 (d(fx, gx))    0, implies that d(fx, gx) = 0, 

that is, fx = gx. 

If (1.10) holds, then we have 

d(fx, gx) ≤ 0, that is, fx = gx. 

Thus, we get, gx = fx. 

 Let w = fx = gx. 

Since f and g are weakly compatible gfx = fgx, 

implies that, fw = fgx = gfx = gw. 

Now, we claim that gw = w.  

Let, if possible, gw ≠ w. 

From (1.8), we have 

 (d(gw, w)) =  (d(gw, gx)) 

                          (N(fw, fx)) – fn((N(fw, fx)) 

                      =  (d(fw, fx)) – fn((d(fw, fx)) 

since N(fw, fx) = d(fw, fx). 

                      =   (d(gw, w)) – fn((d(gw, w)) 

If (1.9) holds, then we have 

 (d(gw, w)) <  (d(gw, w)), a contradiction. 

If (1.10) holds, then we have 

d(gw, w) < d(gw, w), a contradiction. 

Thus, we get gw = w = fw.  

Hence w is the common fixed point of f and g. 

Uniqueness : 

Let u be another common fixed point of f and g such 

that fu = u = gu. 

We claim that w = u. Let, if possible, w ≠ u. 

From (1.8), we have 

 (d(w, u)) =  (d(gw, gu))  

                      (N(fw, fu)) –fn((N(fw,fu))  

                  =  (d(fw, fu)) – fn((d(fw, fu)) 

since N(fw, fu) = d(fw, fu). 

                   =   (d(w, u)) – fn((d(w, u))  

If (1.9) holds, then we have 

 (d(w, u)) <  (d(w, u)), a contradiction. 

If (1.10) holds, then we have 

d(w, u) < d(w, u), a contradiction. 

Thus, we get w = u.  

Hence w is the unique common fixed point of f and 

g. 

 

Example1.11. Let X = [0, 1] be endowed with the 

Euclidean metric d(x, y) = |   |  and x≠y also let 

gx = ax and fx = (a+1)x for each x   X. Then 

d(gx, gy) =  |   | 
and d(fx, fy) =      |   |. 
Let  (t) = ct and fn(t) = cnt/(n+t). Then 

 (d(gx, gy)) =  ( |   |) =   |   | 
 (d(fx, fy)) =  (     |   |)  
                    = c     |   | 
fn(d(fx, fy)) = fn(     |   |) 
             n     |   | /(n+     |   |). 
Now 

   (d(fx, fy))  fn(d(fx, fy)) =  

  c     |   |) [ 1 (n/(n+     |   |)] 
Since [1 (n/(n+     |   |)] >0 

So  (d(gx, gy)) <  (d(fx, fy)) - fn(d(fx, fy)). 

From here, we conclude that f, g satisfy the relation 

(1.5).  

Consider the sequence {xn} = {
 

 
} so that     

   
    = 

    
   

    = 0 = f(0), hence the pair (f, g) satisfy the 

CLRf property. Also f and g are weakly compatible 

and 0 is the unique common fixed point of f and g. 

From here, we also deduce that     
   

    =     
   

    

= 0, where 0   X, implies that f and g satisfy E.A. 

property. 
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