
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 09
May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 427

Remote Debugging On Target Devices

Kasturi Rangan R
M. Tech, SJCE Mysuru

Abstract— The main aim is to achieve remote

debugging of multiple target devices connected to

server by the multiple users. This solves the hardware

shipment problem for debugging which is more

economic. ADB is used to debug the android target

device and GUI is created to make debug easy by the

multiple users. This GUI will also act as the manager

to control the multiple users over the devices connected

by allocating, deallocating devices to the user.

Index Terms—VNC (virtual network computing);

ADB; Remote Debugging; Target Devices.

I. INTRODUCTION

In the beginning, there was the debug monitor. Inexpensive

but effective, it still serves handily alongside the most

expensive debugging tools. Yet monitors have their

drawbacks and weaknesses. For instance, they require ROM,

RAM, and a communications channel from the target; they

need to be ported to the target hardware; and they don't let

you set breakpoints in programs running out of ROM.

After the debug monitor came the in-circuit emulator (ICE).

By applying some clever hardware methods (usually based

on special bond-out versions of processors), an ICE provides

capabilities far beyond those of a simple ROM monitor. The

ICE's most powerful features include complex breakpoints

(even in ROM), real-time traces of processor activity, and no

use of target resources. But this extra functionality comes at

a high cost.

To counter these trends, many semiconductor vendors now

integrate dedicated debug circuitry into their chips. Each

vendor generally has its own proprietary name for this

technology, such as BDM, OnCE, and MPSD. Other vendors

simply add software debug capabilities to their existing

JTAG ports. Collectively, we'll call these technologies on-

chip debug.

Remote Debugging: This technique involves running two

debuggers at different locations. The debugger that is

actually doing the debugging is called the Debugging server.

The debugger that is controlling the session from a distance

is called the Debugging client.

Server side:-The target devices are connected or located and

are connected to server for which clients get the access.

Client side:-The user will be present and will be accessing

the target device.

Tunnel / network:-The way the connection is setup is

through this tunnel and the session will be managed by this

network.

In debugging we have two types they are software

debugging process and hardware debugging process. The

hardware debugging is more economic when compared to

software debugging because of hardware shipment. In this

context Hardware shipment is the process of sending the

hardware devices from one location to another for

debugging. For solving the hardware failures or to debug the

hardware/target devices the hardware independent

debugging process is needed which avoids hardware

dependency.

II. LITERATURE SURVEY

 A debugger or debugging tool [1] is a computer program

that is used to test and debug other programs (the "target"

program).

The code to be examined might alternatively be running on

an Instruction set simulator (ISS), a technique that allows

great power in its ability to halt when specific conditions are

encountered but which will typically be somewhat slower

than executing the code directly on the appropriate (or the

same) processor. Some debuggers offer two modes of

operation full or partial simulation to limit this impact.

A "trap" occurs when the program cannot normally continue

because of a programming bug or invalid data. For example,

the program might have tried to use an instruction not

available on the current version of the CPU or attempted to

access unavailable or protected memory. When the program

"traps" or reaches a preset condition, the debugger typically

shows the location in the original code if it is a source-level

debugger or symbolic debugger, commonly now seen

in integrated development environments. If it is a low-level

debugger or a machine-language debugger it shows the

line in the disassembly (unless it also has online access to the

original source code and can display the appropriate section

of code from the assembly or compilation).

Some of the most capable and popular debuggers implement

only a simple command line interface (CLI)—often to

maximize portability and minimize resource consumption.

Developers typically consider debugging via a graphical user

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 09
May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 428

interface (GUI) easier and more productive. This is the

reason for visual front-ends that allow users to monitor and

control subservient CLI-only debuggers via graphical user

interface. Some GUI debugger front-ends are designed to be

compatible with a variety of CLI-only debuggers, while

others are targeted at one specific debugger.

A. ADB (Android debugging bridge)

Android Debug Bridge (ADB) is a versatile command line

tool that lets you communicate with an emulator instance or

connected Android-powered device. It is a client-server

program that includes three components:

 A client, which runs on your development machine. You

can invoke a client from a shell by issuing an ADB

command. Other Android tools such as the ADT plugin

and DDMS also create ADB clients.

 A server, which runs as a background process on your

development machine. The server manages

communication between the client and the ADB daemon

running on an emulator or device.

 A daemon, which runs as a background process on each

emulator or device instance.

B. VNC

Virtual Network Computing (VNC) [2] is a graphical remote

control desktop sharing software which allows you to view

and fully interact with one computer desktop (running a

"VNC server") using a simple program (the "VNC viewer").

The viewer is run from another computer desktop anywhere

on the Internet. The two computers don't even have to be the

same type, i.e. the system is independent of the platform and

operating system, so for example you can use VNC to view a

SUSE-11 desktop at the office from a Linux/windows/mac

computer at home or at another location. Moreover, many

viewers can simultaneously display that same desktop of the

running server session. Keyboard and mouse events are

transmitted between the client and host computers over a

network[3].

In summary, a VNC system consists of a Server (Xvnc)[4], a

Client (vncviewer), and a Communication Protocol:

 The VNC Server (Xvnc, invoke with: vncserver) is the

running service that shares its virtual screen, it is controlled

by a client.

 The VNC Client (vncviewer) is the program that watches,

controls, and interacts with the server.

 The VNC protocol (RFB) is a simple "Thin-Client"

protocol, based on one graphic primitive from server to

client, where it "puts a rectangle of pixel data at the specified

X,Y position", and events the messages from client to server.

III. PROPOSED SOLUTION

The remote debugging on target devices framework mainly

consists of two major components, they are

A. VNC network creation

B. Access control manager

(UBUNTU 14.04) OS

WORKSPACE 1 WORKSPACE 2 WORKSPACE 3

USER 3

SERVER/LINUX MACHINE

ACCESS CONTROL MANAGER

USER 1 USER 2
- - - - - - - - - -

VNC NETWORK

USB CABLE CONNECTION

n- USERS

D1 D2 D3 D4

Fig. 1 Remote debugging on target devices framework which

has major layers like VNC and Access control manager.

A. VNC network creation

It is used to connect and control one computer from other. It

consists of two components they are VNC server and VNC

client (viewer). Remote connection is achieved by using

VNC. Before going to VNC server the workstations are to be

created for different users so that users won‟t get conflict

between them for resources. The steps in achieving the VNC

network with independent users workstation is as follows.

a. VNC server installation

 The dependencies which are required for the VNC

server establishment are installed in the Unix server so

that it helps in VNC network creation.

b. Add user in server

By using unix commands add user, give the details

required to create user and later run vncserver and

modify the xstartup file according to requirement

c. Start-up script for VNC server

This script is written and it should be run for calling the

configuration file with the ports assigning to the users

for their respective workstation. Without running this

script VNC connection cannot be established.

d. Configuring VNCserver_conf file

This file is called by the vncserver start-up script for the

information of the user and the desktop view

configuration. It is must from which user with respect

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 09
May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 429

to the workstation is identified and help in establishing

Vnc n/w.

e. Install VNC viewer at client side

At the client side client should install the VNC viewer

so that they can connect to the VNC server where their

workstation has been created.

B. Access control manager

In implementation of Device handling (Access control

manager) we have two ways

a) command prompt level (running scripts)

b) GUI (Graphical User Interface) with scripts and ADB

commands.

a) Command prompt level:

The Perl scripts are used at the Access control manager

layer in order to control the user access to the device and

the execution of ADB commands. The Perl scripts [6]

takes the input from the GUI and makes the decision for

monitoring the devices.

 There are 3 set of scripts

 a. Server_side script

 b. clientside_allocating script

 c. clientside_deallocation script

 The Sever_side script are mainly concentrating on

the getting the info of the device and provide proper

information to the user at the server end by interacting to

GUI. This is required in order to reset device or handling

device can be done at server end.

 The clientside_allocating script involves in the

allocation process of device to the users who are having

the workspace in the main server.

 The clientside_deallocating script involves in the

deallocation process of device to the users who are

having the devices and working in their workspace in the

main server.

 ALGORITHM

 Server side script :

Steps:

1) Get the devices connected to the server and put into

an array.

2) And by using embedded ADB command fetch the

device name.

3) Later display device id and its name on standard

o/p.

4) Push the device id with the flag initialize to zero to

the file.

 Client side Script :

Steps:

1) Open the device list repository.

2) Indexing the devices and put up the device list with

their index and flag into another repository.

3) Display all device id, index and flag respectively in

the prompt.

4) Get the device index from user which he requires

for debugging.

5) Allocate the device to user under his name.

6) Update the flag of the device in main repository.

 Client side close script :

Steps:

1) Get the device index of the device which the user had

got access.

2) Verify with the user name taken during the allocation

time.

3) Deallocate the device by changing the flag of device

setting to zero.

4) Update the main file too.

b) GUI with scripts and ADB commands:

 Server side GUI :

Features:

 It shows the devices connected to server by its name

and device ID.

 It shows the current status of the device flags.

 It refreshes the flag values to „0‟ so that all devices

are available and it also updates if the new device is

added or any device removed.

 Client side GUI :

I. Welcome Window:

Features:

 Allocation button, which pop up the allocation

window for device allocation.

 ADB windows which are the actual debugging

windows with respect to the device allocated to

the user.

 Deallocation button, which is used to

deallocate the device.

 There is display of the information of the

device allocated to user and not yet deallocated,

which cautions the user not get allocate the new

device before deallocating.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 09
May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 430

II. Allocation Window:

Features:

 It displays the list of devices which are

available means not allocated to any user.

 By selecting the device ID and clicking the

Allocate button makes the device available to

the respective user.

 As soon as this allocate button is clicked the

Perl script makes the flag of the device to high

in main repository.

III. ADB Windows:

Features:

 Droid view which gives the allocated device

display.

 Basic ADB commands are at single click with

respect to allocated device.

 Argument ADB commands by providing

argument get the activity done. Activities like

Install, push, pull, play & removing files can be

done.

 Mainly here we are able to get the bug report of

the device and also the logcat of the allocated

device.

 It provides the services list and the respective

service info of the device allocated to the user.

 ADB shell argument commands which is much

more helper to debug and to understand the

properties and the values set to the device

registers.

IV. Deallocation Window:

 Features:

 Deallocates which means set the device flag to

0 so that it is available for other users.

 This will be updated at main repository too so

it is like resource surrendering.

 ALGORITHM

Generic Steps Followed In GUI:

1) For each button there will be creation of process

2) This process has the Perl script running at back

end.

3) Where these Perl scripts are embedded with the

ADB commands.

4) ADB daemon will be running at the device end and

ADB server will be running at server side.

5) The ADB commands to device gives the output,

which will be displayed in the text box of the GUI.

IV. CONCLUSION

On the basis of the system test results, the tool can be used

for the multiple users handling for the debug of android

devices connected to the server machine. This process of

remote debugging can be extended to other OS devices too

and that is under future scope. So this process mainly

reduces the cost of hardware shipment risks, either it may be

lost of device or cost of shipping etc.

 References

[1] Robert Love, “Debugging,” in Linux Kernel

Development, 3rd ed.,

USA

[2] Otto Carlos M.B. Durate, Guy Pujolle, “Virtual

Networks”, 1
st
 ed, Brazil

[online]:

http://onlinelibrary.wiley.com/book/10.1002/978111857

6946

[3] Handling Multiple VNCsessions

[online]:http://www.golinuxhub.com/2013/02/running-

multiple-vnc-server-sessions.html

[4] XVNC learning

[online]http://www.hep.phy.cam.ac.uk/vnc_docs/xvnc.h

tml(xvnc doc wiki)

[5] ADB learning [online]

http://developer.android.com/tools/help/adb.html

[6] Perl scripting [online] http://www.perlmonks.org

[7] Ubuntu learning [online]:http://ubuntuforums.org

http://onlinelibrary.wiley.com/book/10.1002/9781118576946
http://onlinelibrary.wiley.com/book/10.1002/9781118576946
http://developer.android.com/tools/help/adb.html
http://www.perlmonks.org/

