
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 09
May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 779

Secure Authorized Duplicate Check Scheme for Hybrid
Cloud Using Convergent Key

1 Md Thouheed & 2 M.Eranna
1
M.Tech Dept of CSE, PVKK College, Affiliated to JNTUA, AP, India .

2
Assistant Professor, Dept of CSE, PVKK College, Affiliated to JNTUA, AP, India

Abstract— Recent years have been witnessed the trend of

leveraging cloud-based resources and services for large

scale content storage space, processing, and distribution.

Privacy and security are among top concerns for the public

cloud environments. Towards these security challenges, we

propose and implement, on OpenStack Swift and a new

client-side deduplication method for securely storing and

sharing outsourced data passing through the public cloud.

The creativity of our proposal is twofold. First, it ensures

better privacy towards not permitted users. That is, every

client computes a per data key to encrypt the data that he

intends to accumulate in the cloud. As such, the data right

to use is maintained by the data owner. Second, by

Combining access rights in metadata file, an certified user

can decode an encrypted file only with his private key.

 Keywords –Cloud Storage; Data Security;

Deduplication; Confidentiality; Proof of Ownership.

I. INTRODUCTION

 With the quickly growing amounts of data shaped

worldwide, networked and multi-user storage systems are

flattering very popular. However, concerns over data

security still prevents many users from migrating data to

remote storage. The conventional solution is to encrypt the

data before it leaves the owner’s premises. While sound

from a security standpoint, this approach prevents the

storage provider from effectively applying storage

effectiveness functions, such as compression and

deduplication, which would permit optimal practice of the

resources and accordingly lesser service cost. Client-side

data deduplication in exacting ensures that multiple uploads

of the same content only swig network bandwidth and

storage space of a single upload. Deduplication is

energetically used by a number of cloud support providers

(e.g. Bitcasa) and various cloud services Unfortunately,

encrypted data is pseudorandom and thus cannot be

deduplicated: as a significance, current approaches have to

entirely forgo either security or storage efficiency. In this

paper, we present a scheme that permits a more fine-

grained trade-off. The intuition is that outsourced data may

require different levels of protection, depending on how

popular it is: content shared by many users, such as a

popular song or video, arguably requires less protection

than a personal document, the copy of a payslip or the draft

of an unsubmitted scientific paper. Around this intuition we

build the following contributions: (i) we present Eµ, a

novel threshold cryptosystem (which can be of independent

interest), together with a security model and formal security

proofs, and (ii) we commence a scheme that uses Eµ as a

building block and enable to control popularity to achieve

both security and storage efficiency. Finally, (iii) we talk

about its overall security. But customers may want their

data encrypted, for reasons ranging from personal privacy

to corporate policy to legal regulations. A client could

encrypt its file, under a user’s key, before storing it. But

common encryption modes are randomized, making

deduplication impossible since the SS (Storage Service)

effectively always sees different ciphertexts regardless of

the data. If a client’s encryption is deterministic (so that

the same file will always map to the same ciphertext)

deduplication is possible, but only for that user. Cross-user

deduplication,which allows more storage savings, is not

possible because encryptions of different clients, being

under different keys, are usually different. Sharing a single

key across a group of users makes the system brittle in the

face of client compromise.One approach meant at resolving

this anxiety is message-locked encryption (MLE) . Its the

majority famous instantiation is convergent encryption

(CE), introduced earlier by Douceur et al. [2] and others .

CE is used within a wide variety of commercial and

research SS systems [1, 2, 5, 6, 8, 12, 15, 32,33, 55, 60, 66,

71, 78, 79]. Letting M be a file’s contents, hereafter called

the message, the client first computes a key K ← H(M) by

applying a cryptographic hash function H to the message,

and then computes the ciphertext C ← E(K, M) via a

deterministic symmetric encryption scheme. The short

message-derived key K is stored separately encrypted

under a per-client key or password. A second client B

encrypting the same file M will produce the same C,

enabling deduplication However, CE is subject to an

inherent security limitation, namely susceptibility to offline

brute-force dictionary attacks. Knowing that the target

message M underlying a target ciphertext C is drawn from

a dictionary S = {M1,..., Mn } of size n, the attacker can

recover M in the time for n = |S| off-line encryptions: for

each i = 1,..., n, it simply CE-encrypts Mi to get a

ciphertext denoted Ci and returns the Mi such that C = Ci .

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 09
May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 780

(This works because CE is deterministic and keyless.)

Security is thus only possible when the target message is

drawn from a space too large to exhaust. We say that such

a message is unpredictable. The unpredictability

assumption. The above-mentioned work puts security on a

firm footing in the case messages are unpredictable. In

practice, however, security only for unpredictable data may

be a limitation for, and threat to, user privacy. We suggest

two main reasons for this. The first is simply that data is

often predictable. Parts of a file’s contents may be known,

for example because they contain a header of known

format, or because the adversary has sufficient contextual

information. Some data, such as very short files, are

inherently low entropy. This has long been recognized by

cryptographers [43], who typically aim to achieve security

regardless of the distribution of the data.The other and

perhaps more subtle fear with regard to

the unpredictability assumption is the difficulty of

validating it or testing the extent to which it holds for ―real‖

data. When we do not know how predictable our data is to

an adversary, we do not know what, if any, security we are

getting from an encryption mechanism that is safe only for

unpredictable data. These concerns are not merely

theoretical, for offline dictionary attacks are recognized as

a significant threat to CE in real systems [77] and are

currently hindering deduplication of outsourced storage for

security-critical data.This work. We design and implement

a new system called DupLESS (Duplicateless Encryption

for Simple Storage) that provides a more secure, easily-

deployed solution for encryption that supports

deduplication. In DupLESS, a group of affiliated clients

(e.g., company employees) encrypt their data with the aid

of a key server (KS) that is separate from the SS. Clients

authenticate themselves to the KS, but do not leak any

information about their data to it. As long as the KS

remains inaccessible to attackers, we ensure high security.

(Effectively, semantic security , except that ciphertexts

leak equality of the underlying plaintexts. The latter is

necessary for deduplication.) If both the KS and SS are

compromised, we retain the current MLE guarantee of

security for unpredictable messages.

II. EXISTING SYSTEM

 DupLESS starts with the observation that brute-force

ciphertext recovery in a CE-type scheme can be dealt with

by using a key server (KS) to derive keys, instead of setting

keys to be hashes of messages. Access to the KS is

preceded by authentication, which stops external attackers.

The increased cost slows down brute-force attacks from

compromised clients, and now the KS can function as a

(logically) single point of control for implementing rate-

limiting measures. We can expect that by scrupulous choice

of rate-limiting policies and parameters, brute-force attacks

originating from compromised clients will be rendered less

effective, while normal usage will remain unaffected.

 We start by looking at secret-parameter MLE, an

extension to MLE which endows all clients with a

systemwide secret parameter sk (see Section 4). The

rationale here is that if sk is unknown to the attacker, a high

level of security can be achieved (semantic security, except

for equality), but even if sk is leaked, security falls to that

of regular MLE. A server-aided MLE scheme then is a

transformation where the secret key is restricted to the KS

instead of being available to all clients. One simple

approach to get server-aided MLE is to use a PRF F, with a

secret key K that never leaves the KS. A client would send

a hash H of a file to the KS and receive back a message-

derived key K← F(K, H). The other steps are as in CE.

However, this approach proves unsatisfying 3 from a

security perspective. The KS here becomes a single point of

failure, violating our goal of compromise resilience:n

attacker can obtain hashes of files after gaining access to

the KS, and can recover files with bruteforce attacks.

Instead, DupLESS employs an oblivious PRF (OPRF)

protocol [64] between the KS and clients, which ensures

that the KS learns nothing about the client inputs or the

resulting PRF outputs, and that clients learn nothing about

the key. In Section 4, we propose a new server-aided MLE

scheme DupLESSMLE which combines a CE-type base

with the OPRF protocol based on RSA blind-signatures [20,

29, 30]. Thus, a client, to store a file M, will engage in the

RSA OPRF protocol with the KS to compute a

messagederived key K, then encrypt M with K to produce a

ciphertext Cdata. The client’s secret key will be used to

encrypt K to produce a key encapsulation ciphertext

Ckey.Both Ckey and Cdata are stored on the SS. Should

two

clients encrypt the same file, then the message-derived keys

and, in turn, Cdata will be the same (the key encapsulation

Ckey will differ, but this ciphertext is small). Building a

system around DupLESSMLE requires careful design in

order to achieve high performance. DupLESS uses at most

one or two SS API calls per operation. (As we shall see, SS

API calls can be slow.) Because interacting with the KS is

on the critical path for storing files, DupLESS incorporates

a fast client-toKS protocol that supports various rate-

limiting strategies. When the KS is overloaded or subjected

to denial-ofservice attacks, DupLESS clients fall back to

symmetric encryption, ensuring availability. On the client

side, DupLESS introduces dedup heuristics to determine

whether the file about to be stored on the SS should be

selected for deduplication, or processed with randomized

encryption. For example, very small files or files

considered particularly sensitive can be prevented from

deduplication. We use deterministic authenticated

encryption (DAE) to protect, in a structurepreserving way,

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 09
May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 781

the path and filename associated to stored files. Here we

have several choices along an efficiency/security

continuum. Our approach of preserving folder structure

leaks some information to the SS, but on the other hand,

enables direct use of the SS-provided API for file search

and moving folders.DupLESS is designed for a simple SS

API, but can be adapted to settings in which block-oriented

deduplication is used, and to complex network storage and

backup solutions that use NFS , CIFS and the like, but we

do not consider these further.Several deduplication

schemes have been anticipated by the research community

showing how deduplication allows very appealing

reductions in the usage of storage resources . Most works

do not consider security as a concern for deduplicating

systems; recently however, Harnik et al. [7] have presented

a number of attacks that can lead to data leakage in storage

systems in which client-side deduplication is in place. To

thwart such attacks, the concept of proof of ownership has

been introduced [8, 9]. None of these works, however, can

provide real end-user confi- dentiality in presence of a

malicious or honest-but-curious cloud provider. Convergent

encryption is a cryptographic primitive introduced by

Douceur et al. [1, 2], attempting to combine data

confidentiality with the possibility of data deduplication.

Convergent encryption of a message consists of encrypting

the plaintext using a deterministic (symmetric) encryption

scheme with a key which is deterministically derived solely

from the plaintext. Clearly, when two users independently

attempt to encrypt the same file, they will generate the

same ciphertext which can be easily deduplicated.

Unfortunately, convergent encryption does not provide

semantic security as it is vulnerable to content-guessing

attacks. Later, Bellare et al. formalized convergent

encryption under the name message-locked encryption. As

expected, the security analysis presented in highlights that

message-locked encryption offers confidentiality for

unpredictable messages only, clearly failing to achieve

semantic security. Xu et al. [3] present a PoW scheme

allowing client-side deduplication in a bounded leakage

setting. They provide a security proof in a random oracle

model for their solution, but do not address the problem of

low min-entropy files. Recently, Bellare et al. presented

DupLESS [4], a server-aided encryption for deduplicated

storage. Similarly to ours, their solution uses a modified

convergent encryption scheme with the aid of a secure

component for key generation. While DupLESS offers the

possibility to securely use server-side deduplication, our
scheme targets secure client-side deduplication.

III. PROPOSED SYSTEM

 We implemented a fully functional DupLESS client. The

client was written in Python and supports both Dropbox [3]

and Google Drive [7]. It will be straightforward to extend

the client to work with other services which export an API

s. The client uses two threads during store operations in

order to parallelize the two SS API requests. The client

takes user credentials as inputs during startup and provides

a command line interface for the user to type in commands

and arguments. When using Google Drive, a user changing

directory prompts the client to fetch the file list ID map

asynchronously. We used Python’s SSL and Crypto

libraries for the client-side crypto operations and used the

OPRFv2 KS protocol. We now describe the experiments

we ran to measure the performance and overheads of

DupLESS.We will compare both to direct use of the

underlying SS API (no encryption) as well as when using a

version of DupLESS modified to implement just MLE, in

particular the convergent encryption (CE) scheme, instead

of DupLESSMLE. This variant computes the

messagederived key K by hashing the file contents, thereby

avoiding use of the KS. Otherwise the operations are the

same. Test setting and methodology. We used the same

machine as for the KS tests.Measurements involving the

network were repeated 100 times and other measurements

were repeated 1,000 times. We measured running times

using the timeit Python module. Operations involving files

were repeated using files with random contents of size 2 2i

KB for i ∈ {0, 1,..., 8}, giving us a file size range of 1 KB

to 64 MB. Storage and retrieval latency. We now compare

the time to store and retrieve files using DupLESS, CE, and

the plain SS. Figure 7 (top left chart) reports the median

time for storage using Dropbox. The latency overhead

when storing files with DupLESS starts at about 22% for 1

KB files and reduces to about 11% for 64 MB files. As we

mentioned earlier, Dropbox and Google Drive exhibited

significant variation in overall upload and download times.

To reduce the effect of these variations on the observed

relative performance between DupLESS over the SS, CE

over the SS and plain SS, we ran the tests by cycling

between the three settings to store the same file, in quick

succession, as opposed to, say, running all plain Dropbox

tests first. We adopted a similar

approach with Google Drive.

 We observe that the CE (Convergent Encryption)

store

times are close to DupLESS store times, since the KSReq

step, which is the main overhead of DupLESS w.r.t CE, has

been optimized for low latency. For example, median CE

latency overhead for 1 KB files over Dropbox was 15%.

Put differently, the overhead of moving to DupLESS from

using CE is quite small, compared to that of using CE over

the base system. Relative retrieval latencies for DupLESS

over Dropbox were lower than the store latencies, starting

at about 7% for 1 KB files and reducing to about 6% for 64

MB files. Performance with Google Drive follows a

similar trend, with overhead for DupLESS ranging from

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 09
May 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 782

33% to 8% for storage, and 40% to 10% for retrieval, when

file sizes go from 1 KB to 64 MB.These experiments report

data only for files larger than 1 KB, as smaller files are not

selected for deduplication by canDedup. Such files are

encrypted with non-dedupable, randomized encryption and

latency overheads for storage and retrieval in these cases

are negligible in most cases. The main intuition behind our

scheme is that there are scenarios in which data requires

different degrees of protection that depend on how popular

a datum is. Let us start with an example: imagine that a

storage system is used by multiple users to perform full

backups of their hard drives. The files that undergo backup

can be divided into those uploaded by many users and those

uploaded by one or very few users only. Files falling in the

former category will benefit strongly from deduplication

because of their popularity and may not be particularly

sensitive from a confidentiality standpoint. Files falling in

the latter category, may instead contain user-generated

content which requires confidentiality, and would by

definition not allow reclaiming a lot of space via

deduplication. The same can be said about common blocks

of shared VM images, mail attachments sent to several

recipients, to reused code snippets, etc. This intuition can

be implemented cryptographically using a multi-layered
cryptosystem. All files are initially declared unpopular and

are encrypted with two layers, as illustrated in Figure 1: the

inner layer is applied using a convergent cryptosystem,

whereas the outer layer is applied using a semantically

secure threshold cryptosystem. Uploaders of an unpopular

file attach a decryption share to the ciphertext. In this way,

when sufficient distinct copies of an unpopular

IV. CONCLUSION

This work deals with the inherent tension between well

established storage optimization methods and end-to-end

encryption. Differently from the approach of related works,

that assume all files to be equally security-sensitive, we

vary the security level of a file based on how popular that

file is among the users of the system. We present a novel

encryption scheme that guarantees semantic security for

unpopular data and provides weaker security and better

storage and bandwidth benefits for popular data, so that

data deduplication can be applied for the (less sensitive)

popular data. Files transition from one mode to the other in

a seamless way as soon as they become popular. We show

that our protocols are secure under the SXDH Assumption.

In the future we plan to deploy and test the proposed

solution and evaluate the practicality of the notion of

popularity and whether the strict popular/unpopular

classification can be made more fine-grained. Also, we plan

to remove the assumption of a trusted indexing service and

explore different means of securing the indexes of

unpopular files.

V. REFERENCES

[1] M. Bellare, S. Keelveedhi, and T. Ristenpart. Dupless:

Serveraided encryption for deduplicated storage. In

USENIX Security Symposium, 2013.

[2] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-

locked encryption and secure deduplication. In

EUROCRYPT, pages 296–312, 2013.

[3] M. Bellare, C. Namprempre, and G. Neven. Security

proofs for identity-based identification and signature

schemes. J. Cryptology,22(1):1–61, 2009.

[4] M. Bellare and A. Palacio. Gq and schnorr

identification schemes:Proofs of security against

impersonation under active and concurrent attacks. In

CRYPTO, pages 162–177, 2002.

[5] S. Bugiel, S. Nurnberger, A. Sadeghi, and T. Schneider.

Twin clouds: An architecture for secure cloud computing.

In Workshop on Cryptography and Security in Clouds

(WCSC 2011), 2011.

[6] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and

M. Theimer. Reclaiming space from duplicate files in a

serverless distributed file system. In ICDCS, pages 617–

624, 2002.

[7] D. Ferraiolo and R. Kuhn. Role-based access controls.

In 15th NIST-NCSC National Computer Security Conf.,

1992.

 [8] J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou. Secure

deduplication with efficient and reliable convergent key

management. In IEEE Transactions on Parallel and

Distributed Systems, 2013.

