

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1010

A	Smart	Software	Testing	Tool
M. Rajasekar

Research Scholar, Hindustan University

sekarca07@gmail.com

ABSTRACT:

Software testing is all about finding
defects in applications. It’s nearly
impossible to test software under all of the
conditions it will run in, and even more
difficult to understand how an application
will react if the execution environment
suddenly becomes hostile or catastrophic.
tests the applications in hostile
environment. In that kind of environment
we don’t know the result of following
problems such as network card failure,
memory leak, insufficient memory, library
file corruption or file missing etc. Smart
Software Testing Tool (SSTT) will simulate
every kind of problem that may occur when
application runs. It will have different kind
of add-on modules to test an application in
all applicable scenarios. If software does
not experience any problems during
execution then it cannot behave badly only
when it encounters problems that corrupt
its program state can things go away. The
usefulness in the defect modeling and
building fault tolerant software systems are
not properly preached and/or practiced.
There are various types of fault injection.
In this paper I have discussed about fault
injection to generate environment which a
software tester can’t. It will generate
Database and File related fault injection,
which enhance software tolerance against
the faults. We can improvise the
productivity of software application.

Keywords: Software Testing Tool,
Software Testing, Software Testing Tool
(SSTT), software application

1. INTRODUCTION:

1.1 OVERVIEW OF SOFTWARE
TESTING

Software Testing is the process of
executing a program or system with the
intent of finding errors. Or, it involves any
activity aimed at evaluating an attribute or
capability of a program or system and
determining that it meets its required
results. Software is not unlike other
physical processes where inputs are
received and outputs are produced. Where
software differs is in the manner in which it
fails. Most physical systems fail in a fixed
(and reasonably small) set of ways. By
contrast, software can fail in many bizarre
ways. Detecting all of the different failure
modes for software is generally infeasible.

Unlike most physical systems, most
of the defects in software are design errors,
not manufacturing defects. Software does
not suffer from corrosion, wear and tear
generally it will not change until upgrades,
or until obsolescence. So once the software
is shipped, the design defects or bugs will
be buried in and remain latent until
activation.

Discovering the design defects in
software, is equally difficult, for the same
reason of complexity. Because software
and any digital systems are not continuous,
testing boundary values are not sufficient to
guarantee correctness. All the possible
values need to be tested and verified, but
complete testing is infeasible. Exhaustively
testing a simple program to add only two
integer inputs of 32-bits (yielding 2^64
distinct test cases) would take hundreds of
years, even if tests were performed at a rate
of thousands per second. Obviously, for a

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1011

realistic software module, the complexity
can be far beyond the example mentioned
here. If inputs from the real world are
involved, the problem will get worse,
because timing and unpredictable
environmental effects and human
interactions are all possible input
parameters under consideration.

1.2 TO IMPROVE SOFTWARE
QUALITY

As computers and software are used
in critical applications, the outcome of a
bug can be severe. Bugs can cause huge
losses. Bugs in critical systems have caused
airplane crashes, allowed space shuttle
missions to go awry, halted trading on the
stock market, and worse. Bugs can kill.
Bugs can cause disasters. The so-called
year 2000 (Y2K) bug has given birth to a
cottage industry of consultants and
programming tools dedicated to making
sure the modern world doesn't come to a
screeching halt on the first day of the next
century. In a computerized embedded
world, the quality and reliability of software
is a matter of life and death.

Quality means the conformance to
the specified design requirement. Being
correct, the minimum requirement of
quality, means performing as required
under specified circumstances. Debugging,
a narrow view of software testing, is
performed heavily to find out design
defects by the programmer. The
imperfection of human nature makes it
almost impossible to make a moderately
complex program correct the first time.
Finding the problems and get them fixed, is
the purpose of debugging in programming
phase.

1.2 SMART SOFTWARE TESTING
TOOL (SSTT)

Smart Software Testing Tool
(SSTT) integrates with various features to
simulate scenarios which a tester cannot.
Such as network latency, disk error, disk

latency, dll issues, memory leaks,
insufficient memory, file corrupt etc. IST
tool have the capability to include new
scenario modules.

Expose sensitive data that hackers can
exploit. Crash applications to expose
software failures missed by exception
handlers. Generates the reports based on the
types of scenarios tested. Can avoid
security vulnerabilities and other sensitive
data expose to real world. Component
Based Service provides multi-level testing.

2. LITERATURE REVIEW:

The literature review consolidates
the understanding on fault injection,
associated topics and subsequent studies to
emphasis the need to fault injections in
business software application. It also
crystallizes the need for awareness, tools
and analyzes defect leakage/amplification.
Even after 20 years of existence the
awareness of fault injection and associated
modeling with tools are very rarely used
and understood in the commercial software
industry and used. The usefulness in the
defect modeling and building fault tolerant
software systems are not properly preached
and/or practiced. Added, the availability of
appropriate literature and software tools is
very few and not used in commercial and
business application design and testing.

2.1 RELATED WORKS IN FAULT
INJECTION

In recent years there has been much
interest in the field of software reliability
and fault tolerance of systems and
commercial software. This in turn has
resulted in a wealth of literature being
published around the topic, such as the
Fault Injection in the form of the ‘Marrying
Software Fault Injection Technology
Results with Software Reliability’ by
Jeffrey Voas, Digital Norman
Schneidewind. Many critical business
computer applications require “fault
tolerance," the ability to recover from errors
or exceptional conditions. Error free

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1012

software is very difficult to create and
creating fault tolerant software is an even
greater challenge. Fault tolerant software
must successfully recover from a multitude
of error conditions to prevent harmful
system failures. Software testing cannot
demonstrate that a software system is
completely correct. An enormous number
of possible executions that must be
examined in any real world sized software
system. Fault tolerance expands the number
of states (and thus execution histories) that
must be tested, because inconsistent or
erroneous states must also be tested.
Mailing lists, websites, research and forums
have been created in which all aspects of
this fresh new niche software engineering
area are discussed. People are interested,
partly because it is a new area but also
because the whole field of commercial
software reliability is in itself so interesting;
as it holds so many wide ranging
disciplines, perspectives and logic at its
core. Software reliability engineering is
uniting professionals in disciplines that
previously had little to do with one another,
it is creating more opportunities for
employment in the online environment, and
it is changing the face and structure of all
information that we seek out on the web. In
the era of economic recession, customer
demands reliable, certified and fault
tolerant commercial and business software
applications.

In this research, the focus is on software
testing techniques that use fault injection.
Several potentially powerful existing
systems have drawbacks for practical
application. We first examine existing fault
injection techniques and evaluate their
potential for practical application in
commercial and business software
applications. Available and accessible
literature infrastructure including premium
subscribed IEEE and ACM resources were
studied and summarized for literature
review from 1986 (20 years).

2.3 FAULT INJECTION

2.3.1. Fault Injection Really

The main problem with fault
injection is to know what to do with
it. Upon first glance, it would seem to be a
good tool for debugging a system, and
detecting any flaws within it. Once one
examines the procedures and the
information gained, however, it becomes
apparent that fault injection is good at
testing known sorts of bugs or defects, but
poor at testing novel faults or defects,
which are precisely the sorts of defects we
would want to discover. Therefore, what
emerges is that fault injection is not really
suited for debugging and improving the
system so much as it is suited for testing the
fault tolerant features of the system. A
known fault in injected and the results
examined to see if the system can respond
correctly despite the fault.

2.3.2. Uses of Fault Injection

Along these lines, there are two
proposed uses for fault injection. The first
is for verification of a system. If a system
is designed to tolerate a certain class of
faults, or exhibit certain behavior in the
presence of certain faults, then these faults
can be directly injected into the system to
examine their effects. The system will
either behave appropriately or not, and it's
fault tolerance measured accordingly. For
certain classes of ultra-dependable un-
testable systems in which the occurrence of
errors is too infrequent to effectively test
the system in the field, fault injection can be
a powerful tool for accelerating the
occurrence of faults in the system and
verifying that the system works properly.

The other proposed use for fault
injection is less well understood, because
the problem it addresses is poorly
understood. Robustness is used in regard to
systems these days almost synonymously
with fault tolerance, but robustness actually
embraces more than this. There is no really
good definition of robustness, but it is
something along the lines of "the capability

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1013

of a system to behave correctly in unusual
conditions." The difficulty lies in creating
unusual conditions so as to test the system
for robustness. Fault injection has been
proposed as a method to address this
problem, by including unusual conditions
as well as faults. This would provide us
with a metric for measuring the robustness
of a system.

2.3.3. Difficulties in Fault Injection

There are two difficulties that must
be addressed before this use of fault
injection can be fully applied. The first is
the disparate nature of systems, and the
ways in which they can fail or experience
faults. Unless two systems are set to
accomplish the exact same task,
determining the relative robustness of the
two systems is a difficult task. A good
metric for robustness would be able to
resolve this difference. Secondly, it is not
yet certain how our metric should be
biased. Common practice is to have the test
distribution mirror the real world
distributions of occurrence of faults. If we
are truly testing the system's response to
unusual situations, however, it might be
better to bias the test towards the less
frequently encountered conditions. While
there is agreement that fault injection can
serve as a metric for robustness, the exact
mechanisms of doing so are as of yet poorly
understood.

2.3.4. SOFTWARE FAULT INJECTION

Software fault injection is used to
inject faults into the operation of software
and examine the effects. This is generally
used on code that has communicative or
cooperative functions so that there is
enough interaction to make fault injection
useful. All sorts of faults may be injected,
from register and memory faults, to
dropped or replicated network packets, to
erroneous error conditions and flags. These
faults may be injected into simulations of
complex systems where the interactions are
understood though not the details of

implementation, or they may be injected
into operating systems to examine the
effects.

Software simulations are typically
of high level description of a system, in
which the protocols or interactions are
known, but not the details of
implementation. These faults tend to be
mis-timings, missing messages, replays, or
other faults in communication in a
system. The simulation is then run to
discover the effects of the faults. Because
of the abstract nature of these simulations,
they may be run at a faster speed that the
actual system might, but would not
necessarily capture the timing aspects of the
final system. This sort of testing would be
performed to verify a protocol, or to
examine the resistance of an interaction to
faults.

This would typically be done early
in the design cycle so as to flesh out the
higher level details before attempting the
task of implementation. These simulations
are non-intrusive, as they are simulated, but
they may not capture the exact behavior of
the system.

Software fault injections are more
oriented towards implementation details,
and can address program state as well as
communication and interactions. Faults are
mis-timings, missing messages, replays,
corrupted memory or registers, faulty disk
reads, and almost any other state the
hardware provides access to. The system is
then run with the fault to examine its
behavior. These simulations tend to take
longer because they encapsulate all of the
operation and detail of the system, but they
will more accurately capture the timing
aspects of the system. This testing is
performed to verify the system's reaction to
introduced faults and catalog the faults
successfully dealt with. This is done later
in the design cycle to show performance for
a final or near-final design. These
simulations can be non-intrusive, especially
if timing is not a concern, but if timing is at

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1014

all involved the time required for the
injection mechanism to inject the faults can
disrupt the activity of the system, and cause
timing results that are not representative of
the system without the fault injection
mechanism deployed. This occurs because
the injection mechanism runs on the same
system as the software being tested.

2.3.5. HARDWARE FAULT
INJECTION

Hardware fault injection is used to
inject faults into hardware and examine the
effects. Typically this is performed on
VLSI circuits at the transistor level, because
these circuits are complex enough to
warrant characterization through fault
injection rather than a performance range,
and because these are the best understood
basic faults in such circuits. Transistors are
typically given stuck-at, bridging, or
transient faults, and the results examined in
the operation of the circuit. Such faults
may be injected in software simulations of
the circuits, or into production circuits cut
from the wafer.

Hardware simulations typically
occur in a high level description of the
circuit. This high level description is
turned into a transistor level description of
the circuit, and faults are injected into the
circuit. Typically these are stuck-at or
bridging faults, as software simulation is
most often used to detect the response to
manufacturing defects. The system is then
simulated to evaluate the response of the
circuit to that particular fault. Since this is
a simulation, a new fault can then be easily
injected, and the simulation re-run to gauge
the response to the new fault. This
consumes time to construct the model,
insert the faults, and then simulate the
circuit, but modifications in the circuit are
easier to make than later in the design
cycle. This sort of testing would be used to
check a circuit early in the design
cycle. These simulations are non-intrusive,

since the simulation functions normally
other than the introduction of the fault.

Hardware fault injections occur in
actual examples of the circuit after
fabrication. The circuit is subjected to
some sort of interference to produce the
fault, and the resulting behavior is
examined. So far, this has been done with
transient faults, as the difficulty and
expense of introducing stuck-at and
bridging faults in the circuit has not been
overcome. The circuit is attached to a
testing apparatus which operates it and
examines the behavior after the fault is
injected. This consumes time to prepare the
circuit and test it, but such tests generally
proceed faster than simulation does. It is,
rather obviously, used to test circuit just
before or in production. These simulations
are non-intrusive, since they do not alter the
behavior of the circuit other than to
introduce the fault. Should special circuitry
be included to cause or simulate faults in the
finished circuit, these would most likely
affect the timing or other characteristics of
the circuit, and therefore be intrusive.

2.3.6. FAULT INJECTION
MODELLING

Fault Injection Modeling (FIM)
involves the deliberate insertion of faults or
errors into a computer system in order to
determine its response. It has proven to be
an effective method for measuring and
studying response of defects, validating
fault-tolerant systems, and observing how
systems behave in the presence of faults. In
this study, faults are injected in all phases
of Software Development Life Cycle viz.,
Requirements, Design and Source code.

2.3.7. Objectives of Fault Injection

The objectives of conducting these
experiments are to measure process
efficiencies, statistically study, analyze and
report defect amplification of defects
(Domino’s effect) across software
development phases with a similar system
constructed with technological variation.

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1015

The goal of this research is to understand
the behavior of faults and defects pattern in
commercial and business software
application and defect leakage in each
phase of application development.
Throughout the literature certain questions
reoccur, which one would anticipate when
a new field emerges in commercial
software fault tolerance. People are
interested, and want to understand and
define commercial software reliability and
fault tolerance, so the following questions
which are recurrent throughout the
literature are not surprising:

• Why study Fault Injection Modeling?

• Why study business software fault
tolerance requirements?

• Why are they called ‘Fault Injection &
Error Seeding’?

• Why review Software Implemented Fault
Injection (SWIFI)?

• What work was performed, current status
and work proposed?

These questions will be expanded upon
throughout the research, and seek to bring
clarity to those who want to find the
answers to the above, or to see if there truly
are any answers.

2.3.8. Domino’s effect

Domino’s effect is the cascading
effect of defects from the initial stages of
the project to all the subsequent stages of
the software life cycle. Errors undetected in
one work product are ‘leaked’ to the child
work product and amplifies defects in the
child work product. This chain reaction
causes an exponential defect leakage. E.g.:
undetected errors in requirements leak and
cause a significant number of defects in
design which, in turn, causes more defects
in the source code. The result of this study
is to arrive at an “Amplification Index”
which will characterize the extent of impact
or damage of phase-wise defects in
subsequent Software Development Life
Cycle (SDLC) phases.

3. PROBLEM DESCRIPTION &
SOLUTION:

3.1. OVERVIEW

Fault injection requires the selection
of a fault model [5]. The choice of this
model depends on the nature of faults.
Software errors arising from hardware
faults, for instance, are often modeled via
bits of zeroes and ones written into a data
structure or a portion of the memory [15,
21], while protocol implementation errors
arising from communication are often
modeled via message dropping,
duplication, reordering, delaying etc. [14].
Understanding the nature of security faults
provides a basis for the application of fault
injection. Several studies have been
concerned with the nature of security faults
[1, 3, 6, 16, 20].) However, we are not
aware of any study that classifies security
flaws from the point of view of
environment perturbation. Some general
fault models have also been widely used
[13, 21]. The semantic gap between these
models and the environment faults that lead
to security violations is wide and the
relationship between faults injected and
faults leading to security violations is not
known.

We have developed an
Environment-Application Interaction (EAI)
fault model which serves as the basis the
fault injection technique described here.
The advantage of the EAI model is in its
capability of emulating environment faults
that are likely to cause security violations.
Another issue in fault injection technique is
the location, within the system under test,
where faults are to be injected. In certain
cases, the location is obvious. For example,
in [14], the faults emulated are
communication faults. Hence, the
communication channels between
communicating entities provide the obvious
location for fault injection. In other cases,
where the location is hard to decide,
nondeterministic methods, such as random
selection, selection according to

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1016

distribution, are used to choose the
locations. The selection of location is also a
major issue for us. In the current stage of
our research, we inject environment faults
at the points where the environment and the
application interact. In future work, we plan
to exploit static analysis to further reduce
the number of fault injection locations by
finding the equivalence relationship among
those locations. The motivation for using
static analysis method is that we can reduce
the testing efforts by utilizing static
information from the program. A general
issue about software testing is “what is an
acceptable test adequacy criterion?” [10].
we adopt a two-dimensional coverage
metric (code coverage and fault coverage)
to measure test adequacy.

3.2 SOLUTION

There is a plethora of testing
methods and testing techniques, serving
multiple purposes in different life cycle
phases. Classified by purpose, software
testing can be divided into: correctness
testing, performance testing, reliability
testing and security testing. Classified by
life-cycle phase, software testing can be
classified into the following categories:
requirements phase testing, design phase
testing, program phase testing, evaluating
test results, installation phase testing,
acceptance testing and maintenance testing.
By scope, software testing can be
categorized as follows: unit testing,
component testing, integration testing, and
system testing. But all kind of testing
evaluates the application, no other testing
method used to test the application in
different kind of environments.

To make an impeccable software
quality we need to test the application
according to the hostile environments
which will result in software tolerance and
increase in productivity. For that reason we
have to develop and follow environment
centric software testing procedures.
Plethora of ways to test an application but
testing a software in a hostile environment

will improvise the software quality by
many folds and secures sensitive data safe.

4. ARCHITECTURE:

Smart Software Testing Tool consist
following modules as

shown below,

4.1. DYNAMIC FAULT INJECTION

 Integrated with Dynamic Fault
Injection. It is achieved by Component
Based Software System. Bunch of faults
related to specific category will be created
as Add-on Component.

For instance for network may consist of
following scenarios time-out, error in
connection, network unreachable, network
card- hardware failure, etc. These faulty
scenarios may come into a single Network
Add-on for Dynamic Fault Injection. Using
this every kind of fault scenario we can
simulate and test at once.

4.1.1. EXCEPTION HANDLING:
TYPES OF PROBLEM

• Computational problem

• Hardware problem

• I /O and file problems

• L ibrary function problem

• Data input problem

• Return-value problem: function or
procedure call

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1017

• External user/client problem

• Null pointer and memory problems

4.1.2. PROGRAMMED EXCEPTION
HANDLING

Programmed exception handling
modules are mechanisms built into software
for specific exceptional cases that are
known are likely to occur. Since these
occurrences are relatively well understood,
protection for them can be incorporated into
the system. When a program is executing, if
one of the exceptional conditions is
detected, control is passed from the main
process block to the special exception
handling block. This code will deviate from
normal execution to compensate for the
exceptional condition and will attempt to
mask it to prevent propagating an error
condition to higher levels in the software
hierarchy.

If the condition cannot be recovered, the
exception handler may call check pointing
recovery code to return the system to a
known state before the exception
occurrence and retry the operation.

4.2. FAULT TOLERANCE

Fault tolerance is one of the most
important means to avoid service failure in
the presence of faults, so to guarantee they
will not interrupt the service delivery.
Software testing, instead, is one of the
major fault removal techniques, realized in
order to detect and remove software faults
during software development so that they
will not be present in the final product.

4.2.1 Fault Tolerance Engineering: from
Requirements to Code

In the past, fault tolerance (and
specifically, exception handling) used to be
commonly delayed until late in the design
and implementation phases of the software
life-cycle. More recently, however, the
need for explicit use of exception handling
mechanisms during the entire life cycle has
been advocated by some researchers as one

of the main approaches to ensuring the
overall system dependability.

It has been recognized, in particular,
that different classes of faults, errors and
failures can be identified during different
phases of software development. A number
of studies have been conducted so far to
investigate where and how fault tolerance
can be integrated in the software life-cycle.
In the remaining part of Section 4 we will
show how fault tolerance has been recently
addressed in the different phases of the
software process: requirements, high-level
(architectural) design, and low-level
design.

4.2.2 Requirements Engineering and
Fault Tolerance

Requirements engineering is
concerned with identifying the purpose of a
software system, and the contexts in which
it will be used. Various theories and
methodologies for finding out, modeling,
analyzing, modifying, enhancing and
checking software system requirements
have been proposed.

4.2.3 Software Fault Tolerance

In this section we present fault
tolerance techniques applicable to software.
These techniques are divided into two
groups: single version and multi-version
software techniques. Single version
techniques focus on improving the fault
tolerance of a single piece of software by
adding mechanisms into the design
targeting the detection, containment, and
handling of errors caused by the activation
of design faults. Multi-version fault
tolerance techniques use multiple versions
(or variants) of a piece of software in a
structured way to ensure that design faults
in one version do not cause system failures.
A characteristic of the software fault
tolerance techniques is that they can, in
principle, be applied at any level in a
software system: procedure, process, full
application program, or the whole system
including the operating system. Also, the

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1018

techniques can be applied selectively to
those components deemed most like to have
design faults due to their complexity.

4.2.4 Single-Version Software Fault
Tolerance Techniques

Single-version fault tolerance is
based on the use of redundancy applied to a
single version of a piece of software to
detect and recover from faults. Among
others, single-version software fault
tolerance techniques include considerations
on program structure and actions, error
detection, exception handling, checkpoint
and restart, process pairs, and data
diversity.

4.2.5 Software Structure and Actions

The software architecture provides the
basis for implementation of fault tolerance.
The use of modularizing techniques to
decompose a problem into manageable
components is as important to the efficient
application of fault tolerance as it is to the
design of a system. The modular
decomposition of a design should consider
built-in protections to keep aberrant
component behavior in one module from
propagating to other modules. Control
hierarchy issues like visibility (i.e., the set
of components that may be invoked directly
and indirectly by a particular component
[2]) and connectivity (i.e., the set of
components that may be invoked directly or
used by a given component [2]) should be
considered in the context of error
propagation for their potential to enable
uncontrolled corruption of the system state.

Partitioning is a technique for providing
isolation between functionally independent
modules [3]. Partitioning can be performed
in the horizontal and vertical dimensions of
the modular hierarchy of the software
architecture [2]. Horizontal partitioning
separates the major software functions into
highly independent structural branches
communicating through interfaces to
control modules whose function is to
coordinate communication and execution

of the functions. Vertical partitioning (or
factoring) focuses distributing the control
and processing work in a top-down
hierarchy, where high level modules tend to
focus on control functions and low level
modules do most of the processing.
Advantages of using partitioning in a
design include simplified testing, easier
maintenance, and lower propagation of side
effects [2].

System closure is a fault tolerance
principle stating that no action is
permissible unless explicitly authorized
[4]. Under the guidance of this principle, no
system element is granted any more
capability than is needed to perform its
function, and any restrictions must be
expressly removed before a particular
capability can be used. The rationale for
system closure is that it is easier (and safer)
to handle errors by limiting their chances of
propagating and creating more damage
before being detected. In a closed
environment all the interactions are known
and visible, and this simplifies the task of
positioning and developing error detection
checks. With system closure, any capability
damaged by errors only disables a valid
action. In a system with relaxed control
over allowable capabilities, a damaged
capability can result in the execution of
undesirable actions and unexpected
interference between components.

Temporal structuring of the activity
between interacting structural modules is
also important for fault tolerance. An
atomic action among a group of
components is an activity in which the
components interact exclusively with each
other and there is no interaction with the
rest of the system for the duration of the
activity [12]. Within an atomic action, the
participating components neither import
nor export any type of information from
other non-participating components. From
the perspective of the non-participating
components, all the activity within the
atomic action appears as one and indivisible

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1019

occurring instantaneously at any time
during the duration of the action. The
advantage of using atomic actions in
defining the interaction between system
components is that they provide a
framework for error confinement and
recovery. There are only two possible
outcomes of an atomic action: either it
terminates normally or it is aborted upon
error detection. If an atomic action
terminates normally, its results are
complete and committed. If a failure is
detected during an atomic action, it is
known beforehand that only the
participating components can be affected.
Thus error confinement is defined (and
need not be diagnosed) and recovery is
limited to the participating set of
components.

4.3. Error Detection

Effective application of fault
tolerance techniques in single version
systems requires that the structural modules
have two basic properties: self-protection
and self-checking [1]. The self-protection
property means that a component must be
able to protect itself from external
contamination by detecting errors in the
information passed to it by other interacting
components. Self-checking means that a
component must be able to detect internal
errors and take appropriate actions to
prevent the propagation of those errors to
other components. The degree (and
coverage) to which error detection
mechanisms are used in a design is
determined by the cost of the additional
redundancy and the run-time overhead.
Note that the fault tolerance redundancy is
not intended to contribute to system
functionality but rather to the quality of the
product. Similarly, detection mechanisms
detract from system performance. Actual
usage of fault tolerance in a design is based
on trade-offs of functionality, performance,
complexity, and safety.

Anderson [12] has proposed a classification
of error detection checks, some of which

can be chosen for the implementation of the
module properties mentioned above. The
location of the checks can be within the
modules or at their outputs, as needed. The
checks include replication, timing, reversal,
coding, reasonableness, and structural
checks.

• Replication checks make use of
matching components with error
detection based on comparison of
their outputs. This is applicable to
multi-version software fault tolerance
discussed in section.

• Timing checks are applicable to
systems and modules whose
specifications include timing
constraints, including deadlines.
Based on these constraints, checks
can be developed to look for
deviations from the acceptable module
behavior. Watchdog timers are a type
of timing check with general
applicability that can be used to
monitor for satisfactory behavior and
detect "lost or locked out" components.

• Reversal checks use the output of a
module to compute the corresponding
inputs based on the function of the
module. An error is detected if the
computed inputs do not match the
actual inputs. Reversal checks are
applicable to modules whose inverse
computation is relatively
straightforward.

• Coding checks use redundancy in
the representation of information
with fixed relationships between the
actual and the redundant information.
Error detection is based on checking
those relationships before and after
operations. Checksums are a type of
coding check. Similarly, many
techniques developed for hardware
(e.g., Hamming, M- out-of-N, cyclic
codes) can be used in software,
especially in cases where the
information is supposed to be merely
referenced or transported by a module

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1020

from one point to another without
changing its contents. Many
arithmetic operations preserve some
particular properties between the
actual and redundant information, and
can thus enable the use of this type of
check to detect errors in their
execution.

• Reasonableness checks use
known semantic properties of data
(e.g., range, rate of change, and
sequence) to detect errors. These
properties can be based on the
requirements or the particular design of
a module.

• Structural checks use known
properties of data structures. For
example, lists, queues, and trees can
be inspected for number of elements
in the structure, their links and
pointers, and any other particular
information that could be articulated.
Structural checks could be made more
effective by augmenting data
structures with redundant structural
data like extra pointers, embedded
counts of the number of items on a
particular structure, and individual
identifiers for all the items ([5], [6],
[10], [11]).

Another fault detection tool is run-
time checks [7]. These are provided as
standard error detection mechanisms in
hardware systems (e.g., divide by zero,
overflow, and underflow). Although they
are not application specific, they do
represent an effective means of detecting
design errors.

Error detection strategies can be
developed in an ad-hoc fashion or using
structured methodologies. Ad-hoc
strategies can be used by experienced
designers guided by their judgment to
identify the types of checks and their
location needed to achieve a high degree
of error coverage. A problem with this

approach stems from the nature of
software design faults. It is impossible to
anticipate all the faults (and their
generated errors) in a module. In fact,
according to [1]:

"If one had a list of anticipated
design faults, it makes much more
sense to eliminate those faults
during design reviews than to add
features to the system to tolerate
those faults after deployment. The
problem, of course, is that it is
unanticipated design faults that one
would really like to tolerate."

Fault trees have been proposed as
a design aid in the development of fault
detection strategies [8]. Fault trees can be
used to identify general classes of failures
and conditions that can trigger those
failures. Fault trees represent a top-down
approach which, although not
guaranteeing complete coverage, is very
helpful in documenting assumptions,
simplifying design reviews, identifying
omissions, and allowing the designer to
visualize component interactions and their
consequences through structured
graphical means. Fault trees enable the
designer to perform qualitative analysis of
the complexity and degree of
independence in the error checks of a
proposed fault tolerance strategy. In
general, as a fault tree is elaborated, the
structuring of the tree goes from high-
level functional concepts to more design
dependent elements. Therefore, by means
of a fault tree a designer can "tune" a fault
detection strategy trading-off
independence and requirements emphasis
on the tests (by staying with relatively
shallow and mostly functional fault trees)
versus ease of development of the tests
(by moving deeper down the design
structure and creating tests that target
particular aspects of the design).

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1021

4.4. CONSIDERATIONS ON THE USE
OF THECKPOINTING

We are concerned in this section
with the use of check pointing during
execution of a program. The results
referenced here assume instantaneous
detection of errors from the moment a
fault is activated. In real systems these
detection delays are non-zero and should
be taken into account when selecting a
check pointing strategy. Non-zero
detection delays can invalidate
checkpoints if the time to detect errors is
larger than the interval between
checkpoints.

As mentioned above, there exist
two kinds of check pointing that can be
used with the checkpoint and restart
technique: static and dynamic check
pointing. Static checkpoints take single
snapshots of the state at the beginning of
a program or module execution. With this
approach, the system returns to the
beginning of that module when an error is
detected and restarts execution all over
again. This basic approach to check
pointing provides a generic capability to
recover from errors that appear during
execution. The use of the single static
checkpoint strategy allows the use of error
detection checks placed at the output of
the module without necessarily having to
embed checks in the code. A problem with
this approach is that under the presence of
random faults, the expected time to
complete the execution grows
exponentially with the processing
requirement. Nevertheless, because of the
overhead associated with the use of
checkpoints (e.g., creating the
checkpoints, reloading checkpoints,
restarting), the single checkpoint
approach is the most effective when the
processing requirement is relatively small.

Dynamic check pointing is aimed
at reducing the execution time for large
processing requirements in the presence
of random faults by saving the state

information at intermediate points during
the execution. In general, with dynamic
check pointing it is possible to achieve a
linear increase in actual execution time as
the processing requirements grow.
Because of the overhead associated with
check pointing and restart, there exist an
optimal number of checkpoints that
optimizes a certain performance
measure. Factors that influence the check
pointing performance include the
execution requirement, the fault tolerance
overhead (i.e., error detection checks,
creating checkpoints, recovery, etc.), the
fault activation rate, and the interval
between checkpoints. Because
checkpoints are created dynamically
during processing, the error detection
checks must be embedded in the code and
executed before the checkpoints are
created. This increases the effectiveness
of the checks and the likelihood that the
checkpoints are valid and usable upon
error detection.

[15] presents three basic dynamic check
pointing strategies: equidistant, modular,
and random. Equidistant check pointing
uses a deterministic fixed time between
checkpoints. [15] shows that for an
arbitrary duration between equidistant
checkpoints, the expected execution time
increases linearly as the processing
requirement grows. The optimal time
between checkpoints that minimizes the
total execution time is shown to be directly
dependent on the fault rate and
independent of the processing
requirements.

Modular check-pointing is the
placement of checkpoints at the end of the
sub-modular components of a piece of
software right after the error detection
checks for each sub-module are complete.
Assuming a component with a fixed
number of sub-modules, the expected
execution time is directly related to the
processing distribution of the sub-modules
(i.e., the processing time between

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1022

checkpoints). For a given failure rate, a
linear dependence between the execution
time and the processing requirement is
achieved when the processing
distribution is the same throughout the
modules. For the more general case of a
variable processing requirement and an
exponential distribution in the duration of
the sub-modules, the execution time
becomes a linear function of the
processing requirements when the check
pointing rate is larger than the failure rate.

In random check-pointing the
process of checkpoint creation is
triggered at random without
consideration of the status of the software
execution. Here it is found that the
optimal average check pointing rate is
directly dependent on the failure rate and
independent of the processing
requirements. With this optimal check
pointing rate, the execution time is
linearly dependent on the processing
requirement.

4.5. MULTI-VERSION SOFTWARE
FAULT TOLERANCE TECHNIQUES

Multi-version fault tolerance is
based on the use of two or more versions
(or "variants") of a piece of software,
executed either in sequence or in parallel.
The versions are used as alternatives (with
a separate means of error detection), in
pairs (to implement detection by
replication checks) or in larger groups (to
enable masking through voting). The
rationale for the use of multiple versions
is the expectation that components built
differently (i.e, different designers,
different algorithms, different design
tools, etc) should fail differently [16].
Therefore, if one version fails on a
particular input, at least one of the
alternate versions should be able to
provide an appropriate output. This
section covers some of these "design
diversity" approaches to software
reliability and safety.

4.5.1 Recovery Blocks

The Recovery Blocks technique
([17]) combines the basics of the
checkpoint and restart approach with
multiple versions of a software
component such that a different version is
tried after an error is detected (Figure 9).
Checkpoints are created before a version
executes. Checkpoints are needed to
recover the state after a version fails to
provide a valid operational starting point
for the next version if an error is detected.
The acceptance test need not be an output-
only test and can be implemented by
various embedded checks to increase the
effectiveness of the error detection. Also,
because the primary version will be
executed successfully most of the time,
the alternates could be designed to
provide degraded performance in some
sense (e.g., by computing values to a
lesser accuracy). Like data diversity, the
output of the alternates could be designed
to be equivalent to that of the primary,
with the definition of equivalence being
application dependent. Actual execution
of the multiple versions can be sequential
or in parallel depending on the available
processing capability and performance
requirements. If all the alternates are tried
unsuccessfully, the component must raise
an exception to communicate to the rest of
the system its failure to complete its
function. Note that such a failure
occurrence does not imply a permanent
failure of the component, which may be
reusable after changes in its inputs or
state. The possibility of coincident faults
is the source of much controversy
concerning all the multi-version software
fault tolerance techniques.

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1023

4.5.2 N-Version Programming

N-Version programming [18] is a
multi-version technique in which all the
versions are designed to satisfy the same
basic requirements and the decision of
output correctness is based on the
comparison of all the outputs (Figure 10).
The use of a generic decision algorithm
(usually a voter) to select the correct
output is the fundamental difference of
this approach from the Recovery Blocks
approach, which requires an application
dependent acceptance test. Since all the
versions are built to satisfy the same
requirements, the use of N- version
programming requires considerable
development effort but the complexity
(i.e., development difficulty) is not
necessarily much greater than the inherent
complexity of building a single version.
Design of the voter can be complicated by
the need to perform inexact voting. Much
research has gone into development of
methodologies that increase the
likelihood of achieving effective
diversity in the final product. Actual
execution of the versions can be
sequential or in parallel. Sequential
execution may require the use of
checkpoints to reload the state before an
alternate version is executed.

4.5.3 N Self-Checking Programming

N Self-Checking programming ([19],
[20]) is the use of multiple software
versions combined with structural
variations of the Recovery Blocks and N-
Version Programming. N Self-Checking
programming using acceptance tests is
shown on Figure 11. Here the versions

and the acceptance tests are developed
independently from common
requirements. This use of separate
acceptance tests for each version is the
main difference of this N Self-Checking
model from the Recovery Blocks
approach. Similar to Recovery Blocks,
execution of the versions and their tests
can be done sequentially or in parallel but
the output is taken from the highest-
ranking version that passes its acceptance
test. Sequential execution requires the use
of checkpoints, and parallel execution
requires the use of input and state
consistency algorithms.

4.5.4 Consensus Recovery Blocks

The Consensus Recovery Blocks [21]
approach combines N-Version
Programming and Recovery Blocks to
improve the reliability over that
achievable by using just one of the
approaches. According to [21], the
acceptance tests in the Recovery Blocks
suffer from lack of guidelines for their
development and a general proneness to
design faults due to the inherent difficulty
in creating effective tests. The use of
voters as in N-Version Programming
may not be appropriate in all situations,
especially when multiple correct outputs
are possible. In that case a voter, for
example, would declare a failure in
selecting an appropriate output.

Consensus Recovery Blocks uses a
decision algorithm similar to N-Version
Programming as a first layer of decision.
If this first layer declares a failure, a
second layer using acceptance tests
similar to those used in the Recovery
Blocks approach is invoked. Although

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1024

obviously much more complex than
either of the individual techniques, the
reliability models indicate that this
combined approach has the potential of
producing a more reliable piece of
software [21]. The use of the word
potential is important here because the
added complexity could actually work
against the design and result in a less
reliable system.

5. IMPLEMENTATION:

 Endorses hostile environment
software testing. Software development
involves with large amount of time and
money, if software fails due to an error
which could have avoided would become
awry. It is becoming common for software
engineering standards to enumerate certain
classes of problems that must not occur.
The argument for doing so is that you can't
protect against problems until you know
what the problems might be. Here
problems are usually defined in one of two
ways one is a class of failure that must not
occur or the second is a fault class that can
occur but the fault class must be shown to
only cause acceptable outputs.

In real world there are numerous
infamous examples of software failures
which shook the industry, incidents like
Ariane-5, Therac-25 and so on. The
following facets are considered for the
implementation of ,

• Error Detection -Detects errors through
continuous monitoring,

periodic tests, per-call tests, or other
automatic processes. Software audits are
considered as part of the error detection
capability.

• Error Isolation - Isolates the error to its
source, preferably to a

single or a reasonable subset of
components.

• Error Recovery- Recovers errors by
automatic or manual

actions such as retry, rollback, on-line
masking, restart, reload, or re-
configuration, to minimize the degradation
of service.

• Error Reporting - Sends error messages
to a display device, a

logging device, or an Operations System
(OS), describing the error, the place where
the error is observed, and system reactions
to the error.

In our implementation we use storage,
message and command based fault
injection. Using the storage manipulation
tools (for memory, disk, or tape), errors
can be injected into the system by
changing the value at some location of the
storage hierarchy, which represents some
system state. Using the commands from
the craft interface or remote maintenance
terminal, errors can be injected by
changing the states of the system entities
for operations, administration,
maintenance, and provision.

6. RESULT AND DISCUSSION:

 Smart Software Testing Tool can be
used to improvise the software quality and
fault tolerance. When a failure occurs, the
system must be able to isolate the failure to
the offending component. This requires the
addition of dedicated failure detection
mechanisms that exist only for the purpose
of fault isolation. Recovery from a fault
condition requires classifying the fault or
failing component.

Software fault-tolerance is based more
around nullifying programming errors
using real-time redundancy, or static
"emergency" subprograms to fill in for
programs that crash. There are many ways
to conduct such fault-regulation,
depending on the application and the
available hardware. Software fault
injection methodology may consume more
time than other kinds of testing. But it can
avoid software failures in kind of projects
like nuclear, space research and so on.
These are the areas where Software testing

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1025

can not be done correctly. When we use
fault injection to simulate the environment
of the software application, it will reveal
potential bugs in the application.

The reason why we need software fault
injection and fault tolerance is, it have
great capacity to identify the potential bugs
happened in real world likens of Ariane-5,
Therac-25 and so on. In software
application expected functionality not only
depends on input anomalies, also includes
the external application environments.
Ariane 5's first test flight (Ariane 5 Flight
501) on 4 June 1996 failed, with the rocket
self-destructing 37 seconds after launch
because of a malfunction in the control
software. A data conversion from 64-bit
floating point value to 16-bit signed integer
value to be stored in a variable representing
horizontal bias caused a processor trap
(operand error) because the floating point
value was too large to be represented by a
16-bit signed integer. The software was
originally written for the Ariane 4 where
efficiency considerations (the computer
running the software had an 80%
maximum workload requirement) led to 4
variables being protected with a handler
while 3 others, including the horizontal
bias variable, were left unprotected
because it was thought that they were
"physically limited or that there was a large
margin of error".

An American domestic airlines sold
tickets for $1 because of the software
failure. And the airlines almost bankrupt
due to an bug in software. There are
enormous infamous software glitch those
can be eliminated using software fault
injection and fault tolerance techniques,
which would save great amount of time
and money.

6.1. SCREENSHOTS

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1026

7. CONCLUSION AND FUTURE
WORK

This methodology will provide and
increase the software quality to the next
level. The productivity of the application
will be increased. Component based
service will help to support more
technologies and scenarios related to
different types of environment.

Future work will concentrate on
applying this methodology to more
applications. We are in the progress of
developing and conducting a set of
experiments to evaluate the effectiveness of
this methodology. In the future, we hope to
be able to develop a prototype tool for
security testing based on this methodology.

8. REFERENCES

[1] Russell J. Abbott, Resourceful
Systems for Fault Tolerance,
Reliability, and Safety, ACM
Computing Surveys, Vol. 22, No. 1,
March 1990, pp. 35 – 68.

[2] Roger S. Pressman, Software
Engineering: A practitioner’s Approach,
The McGraw-Hill Companies, Inc., 1997.

 [3] Software Considerations in
Airborne Systems and Equipment
Certification, RTCA/DO-178B,RTCA,
Inc, 1992.

[4] Peter J. Denning, Fault Tolerant
Operating Systems, ACM
Computing Surveys, Vol. 8, No.
4, December 1976, pp. 359 -
389.

[5] David J. Taylor, et al,
Redundancy in Data
Structures: Improving Software
Fault Tolerance, IEEE
Transactions on Software
Engineering, Vol. SE-6, No.

 6,November 1980, pp. 585 - 594.

[6] David J. Taylor, et al, Redundancy
in Data Structures: Some
TheoreticalResults, IEEE
Transactions on Software
Engineering, Vol. SE-6,

 No. 6, November 1980, pp.595 - 602.

[7] Dhiraj K. Pradhan, Fault-Tolerant
Computer System

 Design, Prentice-Hall, Inc.,1996.

[8] Herbert Hecht and Myron Hecht,
Fault-Tolerance in Software, in
Fault-Tolerant Computer System

 Design, Dhiraj K. Pradhan, Prentice
Hall, 1996.

[9] IEEE Transactions on Software
Engineering, Vol. SE- 12, No.
1, January 1986, pp. 51 – 58.

[10] J. P. Black, et al, Introduction
to Robust Data Structures,
Digest of Papers FTCS-10: The

 Eleventh Annual International
Symposium on Fault
Tolerant Computing, October 1
– 3, 1980, pp. 110

 - 112.

[11] J. P. Black, et al, A Compendium
of Robust Data Structures,
Digest of Papers FTCS-11: The

 Eleventh Annual International
Symposium on Fault-

International Journal of Research (IJR) Vol-1, Issue-7, August 2014 ISSN 2348-6848

A SMART SOFTWARE TESTING TOOL M. Rajasekar

P a g e | 1027

Tolerant Computing, June 24 –
26, 1981, pp. 129 – 131.

[12] T. Anderson and P.A. Lee,
Fault Tolerance:
Principles and Practice,
Prentice/Hall, 1981.

[13] Jim Gray, Why Do Computers
Stop and What Can Be Done
About It?, Proceedings of the
Fifth Symposium On Reliability
in Distributed Software and
Database Systems, January 13-
15, 1986, pp. 3 - 12.

[14] Paul E. Ammann and John C.
Knight, Data Diversity: An
Approach to Software Fault
Tolerance, IEEE Transactions
on Computers, Vol. 37, No. 4,
April 1988, pp. 418 - 425.

[15] Victor F. Nicola, Checkpointing
and the Modeling of
Program Execution Time, in
Software Fault Tolerance,
Michael R. Lyu, Ed, Wiley,
1995, pp. 167 – 188.

[16] A. Avizienis and L. Chen, On the
Implementation of N-Version
Programming for Software
Fault Tolerance During
Execution, Proceedings of the
IEEE COMPSAC’77,
November 1977, pp. 149 – 155.

[17] Brian Randell, System
Structure for Software
Fault Tolerance, IEEE
Transactions on Software
Engineering, Vol. SE-1, No. 2,
June 1975, pp. 220 – 232.

 [18] Algirdas Avizienis, The
Methodology of N-Version
Programming, in R. Lyu,
editor, Software Fault
Tolerance, John Wiley & Sons,
1995.

[19] Jean-Claude Laprie, et al,
Hardware- and Software-

Fault Tolerance: Definition and
Analysis of Architectural
Solutions, Digest of Papers
FTCS-17: The Seventeenth
International Symposium on

 Fault-Tolerant Computing, July
1987, pp. 116 - 121.

[20] Jean-Claude Laprie, et al,
Definition and Analysis of
Hardware- and Software- Fault-
Tolerance Architectures, IEEE
Computer, July 1990, pp. 39 -
51.

[21] R. Keith Scott, James W. Gault,
and David F. McAllister,
Fault-Tolerant Software
Reliability Modeling, IEEE
Transactions on Software
Engineering, Vol. SE-13, No. 5,
May 1987, pp. 582 – 592.

