
   International Journal of Research 
 Available at https://edupediapublications.org/journals 

   

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 10 
June 2016 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 467 

  

A Study: Automation Technique Using Selenium Web driver 

Anjaneya Bulla 

Student, PG, Dept. of CSE, Sri Jayachamarajendra College of Engineering, Autonomous under VTU, 

Mysore, Karnataka, India 

Brunda S 
Assistant Professor, Dept. of CSE, Sri Jayachamarajendra College of Engineering, Autonomous under 

VTU, Mysore, Karnataka, India 

Abstract— The automation in the present world of 

technology has seen tremendous progress. This 

has reduced manual efforts and enhanced the 

efficiency of the process in larger quantity. The 

effort needed to automate any process would take 

time but once it is achieved the time and resource 

can be utilized somewhere else without 

intervening into it unless there is a glitch. This 

will automatically bring in the change in 

technology and parallel resource utilization. In 

order to achieve high quality product the selenium 

can also be used to write test cases and validate 

on the same. This is termed as automation testing 

as the same set of test cases is reused and will not 

get affected with the change in actual software 

coding. 

Any website or html content which is needs human 

interaction to get some work done can be 

automated using a technique called as selenium 

web Driver. It could be the work of uploading 

files, downloading certain document, picture 

capturing, drag and drop of files, scroll up- scroll 

down, click, double click, passing some values 

through keyboard and many such events or tasks 

can be performed. In today’s world of automation 

many of the tasks are being automated and human 

being is allowed to intervene only when there is a 

necessary due to the circumstance seen which is 

not proper as expected. Unless and until there is 

too much of tasks to be performed on the html 

based sites, selenium web Driver can bring in 

some automation to increase efficiency and 

reducing dependability. Selenium technique will 

bring about a tremendous change in the field of 

automation. 

Keywords— group communication; access 

privilege; secure; join and leave protocol; group 

key  

I. INTRODUCTION 

The motivation for this paper is automation of the 

document uploading process. Any website which maintains 

the company’s documents are of high importance tool. This 

website is used by many internet coordinators, in varying 

environment. Any small discrepancy found later will have 

tremendous effect on business. Manual approach to upload 

is always a tedious job because of various reasons. So, 

automation is required to reduce manual effort and fasten 

the upload process at the cost of efficient utilization of 

human resource. 

Another motivation is time and efficiency in maintaining 

application. It is usual that requirements change from time 

to time as business process evolves. Because of this change 

in requirements, developer should ensure adding or 

removing a feature, will not have any bad impact on the 

application and the application is operating smoothly as 

intended. Testing improves usability and quality of 

automation application, reduces development time and 

number of bugs. 

The paper aims to show how automation improves 

effective content publishing of the documents to any 

website. 

Automation is something more than mechanization 

because automation is a self-regulated process in which the 

work is completed with minimum human efforts. The self- 

regulated process aims at continuous flow of information 

without minimum human intervention. So in brief the word 

automation denotes the art of recording, processing and 

controlling the information automatically by mechanical and 

electronic machine. 



   International Journal of Research 
 Available at https://edupediapublications.org/journals 

   

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 10 
June 2016 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 468 

  

With an automated workflow, you bypass the expensive 

costs associated with errors and inefficiencies when a 

person is expected to own a business process. Your 

automated business process can show you the current state 

of any item and make sure these careless mistakes don’t 

take place. Automation facilitates efficient and detailed 

information through the use of mechanical aids like 

computers. It ensures speedy recording. Processing and 

presenting of information. Increased volume of work, 

scarcity of time and the slow manual processes necessitate 

the introduction of automation. Automation increases the 

goodwill and reputation of the firm because it adds to the 

prestige and status symbol of the enterprise. It brings about 

a complete change in the organizational structure and 

involves a great deal of additional cost. 

 

II. RELATED CONCEPTS 

Selenium is a portable software testing framework for 

web applications. Selenium provides a record/playback tool 

for authoring tests without learning a test scripting language 

(Selenium IDE). It also provides a test domain-specific 

language (Selenese) to write tests in a number of popular 

programming languages, including Java, C#, Groovy, Perl, 

PHP, Python and Ruby. The tests can then be run against 

most modern web browsers. Selenium deploys on Windows, 

Linux, and Macintosh platforms. It is open-source software, 

released under the Apache 2.0 license, and can be 

downloaded and used without charge. 

Selenium WebDriver accepts commands (sent in 

Selenese, or via a Client API) and sends them to a browser. 

This is implemented through a browser-specific browser 

driver, which sends commands to a browser, and retrieves 

results. Most browser drivers actually launch and access a 

browser application (such as Firefox or Internet Explorer); 

there is also an Html Unit browser driver, which simulates a 

browser using Html Unit. 

Selenium WebDriver does not need a special server to 

execute tests. Instead, the WebDriver directly starts a 

browser instance and controls it. However, Selenium Grid 

can be used with WebDriver to execute tests on remote 

systems (see below). Where possible, WebDriver uses 

native operating system level functionality rather than 

browser-based JavaScript commands to drive the browser. 

This bypasses problems with subtle differences between 

native and JavaScript commands, including security 

restrictions. 

The biggest change in Selenium recently has been the 

inclusion of the WebDriver API. Driving a browser natively 

as a user would either locally or on a remote machine using 

the Selenium Server it marks a leap forward in terms of 

browser automation. Selenium WebDriver fits in the same 

role as RC did, and has incorporated the original 1.x 

bindings. It refers to both the language bindings and the 

implementations of the individual browser controlling code. 

This is commonly referred to as just "WebDriver" or 

sometimes as Selenium 2. 

Selenium 1.0 + WebDriver = Selenium 2.0 

WebDriver is designed in a simpler and more concise 

programming interface along with addressing some 

limitations in the Selenium-RC API. WebDriver is a 

compact Object Oriented API when compared to 

Selenium1.0. It drives the browser much more effectively 

and overcomes the limitations of Selenium 1.x which 

affected our functional test coverage, like the file upload or 

download, pop-ups and dialogs barrier. WebDriver 

overcomes the limitation of Selenium RC's Single Host 

origin policy 

WebDriver is the name of the key interface against which 

tests should be written in Java, the implementing classes one 

should use are listed – AndroidDriver, ChromeDriver, 

EventFiringWebDriver, SafariDriver, PhantomJSDriver,  

HtmlUnitInternetExplorerDriver, RemoteWebDriver, 

FirefoxDriver. Selenium-WebDriver makes direct calls to 

the browser using each browser’s native support for 

automation. How these direct calls are made, and the 

features they support depends on the browser you are using 

The main aspect which has to considered is that the 

webDriver only captures the webelements which are visible 

on the screen i.e., DOM elements.  

III. SELENIUM WEBDRIVER API 

WebDriver is a tool for automating web application testing, 

and in particular to verify that they work as expected. It 

aims to provide a friendly API that’s easy to explore and 

understand, easier to use than the Selenium-RC (1.0) API, 

which will help to make your tests easier to read and 

maintain. It’s not tied to any particular test framework, so it 

can be used equally well in a unit testing project or from a 

plain old ―main‖ method. 

using OpenQA.Selenium; 

using OpenQA.Selenium.Firefox; 

using OpenQA.Selenium.Support.UI; 

Selenium-WebDriver API Commands and Operations 



   International Journal of Research 
 Available at https://edupediapublications.org/journals 

   

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 10 
June 2016 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 469 

  

a) Fetching a Page - Dependent on several factors, including 

the OS/Browser combination, WebDriver may or may not 

wait for the page to load. In some circumstances, 

WebDriver may return control before the page has finished, 

or even started, loading. To ensure robustness, you need to 

wait for the element(s) to exist in the page using Explicit 

and Implicit Waits. 

driver.Url = "http://www.google.com"; 

b) Locating UI Elements (WebElements) - Locating 

elements in WebDriver can be done on the WebDriver 

instance itself or on a WebElement. Each of the language 

bindings exposes a ―Find Element‖ and ―Find Elements‖ 

method. The former returns a WebElement object matching 

the query and throw an exception if such an element cannot 

be found. The latter returns a list of WebElements, possibly 

empty if no DOM elements match the query. 

By ID, By ClassName, By CSS,  By XPath, By TagName, 

By Name,  By LinkText, By PartialLinkText 

c) Getting text values - People often wish to retrieve the 

inner Text value contained within an element. This returns a 

single string value. Note that this will only return the visible 

text displayed on the page. 

IWebElement element = driver.findElement(By.id("elementID")); 
element.Text; 
 

d) Moving Between Windows and Frames - Some web 

applications have many frames or multiple windows. 

WebDriver supports moving between named windows using 

the ―switchTo‖ method: 

 
driver.SwitchTo().Window("windowName"); 

e) Explicit Waits - An explicit wait is code you define to 

wait for a certain condition to occur before proceeding 

further in the code. The worst case of this is Thread.sleep(), 

which sets the condition to an exact time period to wait. 

There are some convenience methods provided that help 

you write code that will wait only as long as required. 

WebDriverWait in combination with ExpectedCondition is 

one way this can be accomplished. 

using (IWebDriver driver = new FirefoxDriver()) 
{ 
    driver.Url = "http://somedomain/url_that_delays_loading"; 
    WebDriverWait wait = new WebDriverWait(driver, 
TimeSpan.FromSeconds(10)); 

    IWebElement myDynamicElement = wait.Until<IWebElement>(d => 
d.FindElement(By.Id("someDynamicElement"))); 
} 

f) Implicit Waits - An implicit wait is to tell WebDriver to 

poll the DOM for a certain amount of time when trying to 

find an element or elements if they are not immediately 

available. The default setting is 0. Once set, the implicit wait 

is set for the life of the WebDriver object instance. 

using (IWebDriver driver = new FirefoxDriver()) 
{ 
    
driver.Manage().Timeouts().ImplicitlyWait(TimeSpan.FromSeconds(10)); 
    driver.Url = "http://somedomain/url_that_delays_loading"; 
    IWebElement myDynamicElement= driver.FindElement(By.Id 
("someDynamicElement")); 
} 

IV. USE CASE 

In general, if we consider the upload operation then we have 

to consider a lot of other operations like - invoking the 

website to which the documents are uploaded. - Crawling 

the control to a specific place in the website - Clicking on a 

specific location/button and if that position is not visible 

then scrolling down using the control and if the location is 

found out - Clicking on that, pops up some kind of user 

interface which allows the user to add the file name - 

Clicking on the continue or finish button to validating the 

right file has entered. Finally clicking on upload button to 

complete the upload operation. 

 

Following structure shows how the above operations be 

achieved. 

 
IWebDriver driver = new InternetExplorerDriver(); 
driver.Navigate().GoToUrl("https://www.google.co.in/");            
driver.Manage().Window.Maximize(); 

 

Giving time to open the explorer and load all the web 

elements is necessary which can be achieved using 

 
driver.Manage().Timeouts().ImplicitlyWait(TimeSpan.FromSeconds(60)); 
System.Threading.Thread.Sleep(20000);  

 

Navigate to the required location using the 

 
var expander = driver.FindElements(By.ClassName("x-tree3-el"))[1]; 
var expander = driver.FindElement(By.LinkText(PL)); 

 

Clicking on the buttons/expander can be achieved using 



   International Journal of Research 
 Available at https://edupediapublications.org/journals 

   

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 10 
June 2016 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 470 

  

 
action.Click(expander).Perform(); 
Various options are provided like DoubleClick, ClickAndHold, Drag 
AndDrop etc 
 

We can even make use of LINQ to locate the web element 

using 

 
Var next_link = driver.FindElements(By.Id("menuFileImportDocument")) 
.FirstOrDefault(o => o.Text.Contains("Document...")); 
 

To achieve the keyboard operations say ctrl + V or to send 

some input value, we make use of 

 
var copy_link = driver.FindElement(By.Id("sami_release_date-input")); 
copy_link.SendKeys(OpenQA.Selenium.Keys.Control + "a"); 
copy_link.SendKeys(OpenQA.Selenium.Keys.Control + "c"); 
 

To make use of the mouse operations say scroll-down and 

scroll-up, we make use of 

 
_currentFrame=driver.SwitchTo();           
_currentFrame.ActiveElement().SendKeys(OpenQA.Selenium.Keys.Page
Down); 
 

Last element in an array of items which are captured using 

class name is taken out using 
 
var lastSelectedproj = driver.FindElements(By.ClassName("grid-fixed")) 
.LastOrDefault(); 
 

Similar operations can be achieved using selenium and even 

we can capture the screenshot automatically and can be sent 

as a mail. 

V. CONCLUSION 

A In this world of automation if there is similar work done 

frequently then it becomes a need to automate the process. 

The selenium webDriver provides an option to achieve the 

automation using the programming language like C#, java. 

Making use of the selenium the resource utilization be 

achieved effectively reducing the manual effort. 

ACKNOWLEDGMENT 

We would like to thank the publication who has reviewed 

this technical paper. We would also like to thank Sri 

Jayachamarajendra College of Engineering for providing 

this opportunity for carrying out this work. Lastly we extend 

our warm thanks to Dr. H C Vijayalakshmi, Head of CS&E 

for her enlightening guidance. 

REFERENCES 

[1] http://docs.seleniumhq.org/  

[2] http://en.wikipedia.org/ 

[3] http://onlineseleniumtraining.com/selenium-web-driver/ 

[4] http://www.mythoughts.co.in/2012/06/handling-drag-and-drop-

actions-using.html#.V1j4SDV96zd 

[5] http://stackoverflow.com/ 

[6] https://msdn.microsoft.com/ 

[7] Vishawjyoti and Sachin Sharma, ―Study And Analysis Of 
Automation Testing Techniques‖, Deptt of Computer Applications, 

Manav Rachna International University, Faridabad, Volume 3, No. 

12, December 2012, JGRCS. 

[8] Rahul joshi, ―Analysis and Design of Selenium WebDriver 

Automation Testing Framework‖, Big Data, Cloud and Computing 

Challenges, Volume 50, 2015, Pages 341-346, ELSVIER 

 

http://en.wikipedia.org/
http://onlineseleniumtraining.com/selenium-web-driver/

