
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 484

Prevention of Sipdas Based Attacks in Cloud Computing
1V. Mohan Deep Reddy& 2M. Dharani Kumar

1
M.Tech Dept of CSE, PVKK College, Affiliated to JNTUA, AP, India .

2
Assistant Professor, Dept of CSE, PVKK College, Affiliated to JNTUA, AP, India

Abstract--Cloud Computing allows customers to access

cloud resources and services. On-demand, self-service and

pay-by-use business model are adapted for the cloud

resource sharing process. Service level agreements (SLA)

regulate the cost for the services that are provided for the

customers. Cloud data centers are employed to share data

values to the users. Denial-of-Service (DoS) attack is an

attempt by attacker to prevent legitimate users from using

resources. Distributed Denial of Service (DDoS) Attacks

are generated in a “many to one” dimension. In DDoS

attack model Large number of compromised host are

gathered to send useless service requests, packets at the

same time .DoS and DDoS attacks initiates the service

degradation, availability and cost problems under cloud

service providers.

Brute-force attacks are raised against through

specific periodic, pulsing and low-rate traffic patterns.

Rate-controlling, time-window, worst-case threshold and

pattern-matching are adapted to discriminate the

legitimate and attacker activities. Stealthy attack patterns

are raised against applications running in the cloud.

Slowly-Increasing- Polymorphic DDoS Attack Strategy

(SIPDAS) can be applied to initiate application

vulnerabilities. SIPDAS degrades the service provided by

the target application server running in the cloud.

Polymorphic attacks changes the message sequence at

every successive infection to avoid signature detection

process. Slowly-increasing polymorphic behavior induces

enough overloads on the target system. XML-based DoS

(XDoS) attacks to the web-based systems are applied as

the testing environment for the attack detection process.

1. INTRODUCTION

Cloud providers offer services to rent computation and

storage capacity, in a way as transparent as possible,

giving the impression of „unlimited resource availability‟.

Such resources are not free.

Therefore, cloud providers allow customers to obtain and

configure suitably the system capacity, as

well as to quickly renegotiate such capacity as their

requirements change, in order that the customers can pay

only for resources that they actually use. Several

cloud providers offer the „load balancing‟ service for

automatically distributing the incoming application service

requests across multiple instances, as well as the „auto

scaling‟ service for enabling consumers to closely follow

the demand curve for their applications. In order to

minimize the customer costs, the auto scaling ensures that

the number of the application instances increases

seamlessly during the demand spikes and decreases

automatically during the demand lulls. For example, by

using Amazon EC2 cloud services, the consumers can set

a condition to add new computational instances when the

average CPU utilization exceeds a fixed threshold.

Moreover, they can configure a cool-down period in order

to allow the application workload to stabilize before the

auto scaling adds or removes the instances. In the

following, we will show how this feature can be

maliciously exploited by a stealthy attack, which may

slowly exhaust the resources provided by the cloud

provider for ensuring the SLA, and enhance the costs

incurred by the cloud customer.

2. RELATED WORK
We briefly outline some masquerade detection

approaches. The uniqueness approach assumes that

commands that have not been seen in the training data

indicate a masquerader. Moreover, the probability that a

masquerader has issued a command is inversely related to

the number of users that use such a command. While

uniqueness has a relatively poor performance, it is one of

the few approaches that target false alarm rate of 1 percent.

Naive Bayes One-step Markov is based upon one-step

transitions from a command to the next. It builds two

transition matrices for each user from, respectively, the

training database and the testing one and it triggers an

alarm when these matrices noticeably differ. The false

alarm rate of this method is not satisfactory.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 485

The Hybrid Multi-Step Markov method is based

on Markov chains. When a Markov model cannot be

adopted because too many commands in the testing data

have not been observed in the training, a simple

independence model with probabilities estimated from a

contingency table of users versus commands may be more

appropriate. Schonlau et al. toggled between a Markov

model and the simple independence one. This approach

achieves the best performance among the considered

methods. The main idea underlying the compression

approach is that new and old data from the same user

should compress at about the same ratio. Instead, data from

a masquerading user will compress at a

different ratio. Among the proposed methods, this results in

the worst performance. Incremental Probabilistic Action

Modeling (IPAM) is based upon one-step command

transition. It estimates the probability of each transition

from the training data set and uses it to predict the sequence

of user commands. Too many false predictions signal a

masquerader. This method is in the lowest-performing

group. Sequence-matching computes a similarity match

between the user profiles and the corresponding sequence

of commands. Any score lower than a threshold signals a

masquerader. Its performance on the SEA data set is not

very high.

Support Vector Machine (SVM) denotes a set of

machine learning algorithms for binary data classification.

It exploits a set of support vectors in the training data that

outlines a hyper plane in feature space. SVM can

potentially learn a large set of patterns but it results in high

false alarm rates and a low detection rate. Furthermore, the

user profile has to be updated to reduce false alarms.

Szymanski and Zhang propose a recursive data mining

approach that discovers frequent patterns in the sequence of

user commands, encodes them with unique symbols, and

rewrites the sequence with the new coding. Then, a one-

class SVM classifier detects masqueraders. This approach

demands mixing user data and may not be ideal or easily

implemented in real-world. It also suffers of some of the

SVM shortcomings. Maxion and Townsend applied a Naive

Bayes classifier widely used in text classification tasks and

that classifies sequences of user-command data into either

legitimate or masquerader. The method has not yet

achieved the level of accuracy for practical deployment.

Dash et al. introduced an episode based Naive Bayes

technique that extracts meaningful episodes from a long

sequence of commands.

The Naive Bayes algorithm identifies these

episodes either as masquerade or normal according to the

number of commands in masquerade blocks. The proposed

technique significantly improves the hit ratio but it still has

high false positive rates and it does not update the user

profile. Alok et al. integrates a Naive Bayes approach with

one based on a weighted radial basis function, WRBF,

similarity. The Naive Bayes algorithm includes information

on the probabilities of commands by one user over the other

users. Instead, the WRBF similarity takes into account the

similarity measure based on the frequency of commands, f,

and the weight associated with the frequency vectors. Here,

f is a similarity score between an input frequency vector

and a frequency vector from the training data set. The

experiments confirm that WRBF-NB significantly

improves the hit ratio but, as the previous approach, it

suffers from the high false positive rates. Furthermore, it

increases the overall overhead by computing both the Naive

Bayes and the WRBF and integrating their results. Lastly, it

does not update the user profile and neglects the low level

representation of user commands. Dash et al. introduced an

adaptive Naive Bayes approach based on the premise that

both the commands of a legitimate user and those of an

attacker may differ from the trained signature but the

deviation of the legitimate user is momentary, whereas the

attacker one persists longer. The improvement in the

performance of detection has been empirically verified

using several data sets. The false positive rate is still high.

Malek and Salvatore have modeled user OS

commands as bag-of-words without timing information.

They used a one-class support vector machine to achieve a

better performance than threshold based comparison with a

distance metric. The ability of sequence alignment

algorithms to find areas of similarity can be exploited to

differentiate legitimate usage from masquerade attacks. To

do so, a signature of the normal user behavior should be

created by collecting sequences of audit data. Then, this

signature is aligned with audit data from monitored sessions

to find areas of similarity. Areas that do not align properly

are assumed to be anomalous, and several anomalous areas

are a strong indicator of masquerade attacks. Among

sequence alignment algorithms such as global, local and

semi-global alignments, the most efficient one is semi-

global alignment. Adesina et al. modified the scoring

function of the semi-global alignment algorithm to improve

the detection efficiency. They used a systematically

generated ASCII coded sequence audit data from Windows

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 486

and UNIX systems as simulations for the intrusion data set.

A real time evaluation using one of the current data sets is

missing.

Coull et al. modified the Smith-Waterman

alignment algorithm a semi-global alignment algorithm that

is described with some evolutions and enhancements.

Different techniques in terms of the Receiver Operator

Characteristic (ROC) curves and the Maxion-Townsend

cost function and it shows that SGA achieves the best

performances. The Maxion-Townsend cost function rates a

masquerade detection algorithm and defines the detection

cost.

3. HANDLING DENIAL OF SERVICE ATTACKS IN

CLOUD
Cloud Computing is an emerging paradigm that

allows customers to obtain cloud resources and services

according to an on-demand, self-service, and pay-by use

business model. Service level agreements (SLA) regulate

the costs that the cloud customers have to pay for the

provided quality of service (QoS). A side effect of such a

model is that, it is prone to Denial of Service (DoS) and

Distributed DoS (DDoS), which aim at reducing the service

availability and performance by exhausting the resources of

the service‟s host system. Such attacks have special effects

in the cloud due to the adopted pay-by-use business model.

Specifically, in cloud computing also partial service

degradation due to an attack has direct effect on the service

costs, and not only on the performance and availability

perceived by the customer. The delay of the cloud service

provider to diagnose the causes of the service degradation

can be considered as security vulnerability. It can be

exploited by attackers that aim at exhausting the cloud

resources and seriously degrading the QoS, as happened to

the BitBucket Cloud, which went down for 19h. Therefore,

the cloud management system has to implement specific

countermeasures in order to avoid paying credits in case of

accidental or deliberate intrusion that cause violations of

QoS guarantees.

Over the past decade, many efforts have been

devoted to the detection of DDoS attacks in distributed

systems. Security prevention mechanisms usually use

approaches based on rate-controlling, time-window, worst-

case threshold, and pattern-matching methods to

discriminate between the nominal system operation and

malicious behaviors. On the other hand, the attackers are

aware of the presence of such protection mechanisms. They

attempt to perform their activities in a “stealthy” fashion in

order to elude the security mechanisms, by orchestrating

and timing attack patterns that leverage specific weaknesses

of target systems. They are carried out by directing flows of

legitimate service requests against a specific system at such

a low-rate that would evade the DDoS detection

mechanisms, and prolong the attack latency, i.e., the

amount of time that the ongoing attack to the system has

been undetected.

This paper presents a sophisticated strategy to
orchestrate stealthy attack patterns against applications
running in the cloud. Instead of aiming at making the
service unavailable, the

proposed strategy aims at exploiting the cloud flexibility,

forcing the application to consume more resources than

needed, affecting the cloud customer more on financial

aspects than on the service availability. The attack pattern is

orchestrated in order to evade, greatly delay the techniques

proposed in the literature to detect low-rate attacks. It does

not exhibit a periodic waveform typical of low-rate

exhausting attacks. In contrast with them, it is an iterative

and incremental process. In particular, the attack potency is

slowly enhanced by a patient attacker, in order to inflict

significant financial losses, even if the attack pattern is

performed in accordance to the maximum job size and

arrival rate of the service requests allowed in the system.

Using a simplified model empirically designed, we derive

an expression for gradually increasing the potency of the

attack, as a function of the reached service degradation. We

show that the features offered by the cloud provider, to

ensure the SLA negotiated with the customer can be

maliciously exploited by the proposed. Stealthy attack,

which slowly exhausts the resources provided by the cloud

provider and increases the costs incurred by the customer.

The proposed attack strategy, namely Slowly-

Increasing-Polymorphic DDoS Attack Strategy (SIPDAS)

can be applied to several kind of attacks, that leverage

known application vulnerabilities, in order to degrade the

service provided by the target application server running in

the cloud. The term polymorphic is inspired to polymorphic

attacks which change message sequence at every successive

infection in order to evade signature detection mechanisms.

Even if the victim detects the SIPDAS attack, the attack

strategy can be reinitiate by using a different application

vulnerability, or a different timing.

In order to validate the stealthy characteristics of

the proposed SIPDAS attack, we explore potential solutions

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 487

proposed in the literature to detect sophisticated low-rate

DDoS attacks. We show that the proposed slowly-

increasing polymorphic behavior induces enough overload

on the target system and evades, or however, delays greatly

the detection methods. In order to explore the attack impact

against an application deployed in a cloud environment,

this paper focuses on one of the most serious threats to

cloud computing, which comes from XML-based DoS

(XDoS) attacks to the web-based systems. The

experimental testbed is based on the mOSAIC framework,

which offers both a „Software Platform‟ that enables the

execution of applications developed using the mOSAIC

API, and a „Cloud Agency‟, that acts as a provisioning

system, brokering resources from a federation of cloud

providers [11].

4. PROBLEM STATEMENT

Brute-force attacks are raised against through

specific periodic, pulsing and low-rate traffic patterns.

Rate-controlling, time-window, worst-case threshold and

pattern-matching are adapted to discriminate the legitimate

and attacker activities. Stealthy attack patterns are raised

against applications running in the cloud. Slowly-

Increasing- Polymorphic DDoS Attack Strategy (SIPDAS)

can be applied to initiate application vulnerabilities.

SIPDAS degrades the service provided by the target

application server running in the cloud. Polymorphic

attacks changes the message sequence at every successive

infection to avoid signature detection process. Slowly-

increasing polymorphic behavior induces enough overloads

on the target system. XML-based DoS (XDoS) attacks to

the web-based systems are applied as the testing

environment for the attack detection process. The following

drawbacks are identified from the existing system.
• SIPDAS based attack detection is not supported
• Polymorphic behavior identification is not adapted
• Application level vulnerability detection is low
• Service degradation and resource consumption

cost analysis is not performed

5. STEALTHY DOS ATTACKS ON CLOUD

SERVICES

5.1. DoS Attacks Against Cloud Applications

In this section are presented several attack

examples, which can be leveraged to implement the

proposed SIPDAS attack pattern against a cloud

application. In particular, we consider DDoS attacks that

exploit application vulnerabilities, including: the Oversize

Payload attack that exploits the high memory consumption

of XML processing; the Oversized Cryptography that

exploits the flexible usability of the security elements

defined by the WS-Security specification the Resource

Exhaustion attacks use flows of messages that are correct

regarding their message structure, but that are not properly

correlated to any existing process instance on the target

server and attacks that exploit the worst-case performance

of the system, for example by achieving the worst case

complexity of Hash table data structure, or by using

complex queries that force to spend much CPU time or disk

access time.

In this paper, we use a Coercive Parsing attack as a

case study, which represents one of the most serious threat

for the cloud applications. It exploits the XML verbosity

and the complex parsing process. In particular, the Deeply-

Nested XML is a resource exhaustion attack, which

exploits the XML message format by inserting a large

number of nested XML tags in the message body. The goal

is to force the XML parser within the application server, to

exhaust the computational resources by processing a large

number of deeply-nested XML tags.

5.2. Stealthy Attack Objectives

The system is aimed to defining the objectives that

a sophisticated attacker would like to achieve, and the

requirements the attack pattern has to satisfy to be stealth.

Recall that, the purpose of the attack against cloud

applications is not to necessarily deny the service, but

rather to inflict significant degradation in some aspect of

the service, namely attack profit PA, in order to maximize

the cloud resource consumption CA to process malicious

requests. In order to elude the attack detection, different

attacks that use low-rate traffic have been presented in the

literature. Therefore, several works have proposed

techniques to detect low-rate DDoS attacks, which monitor

anomalies in the fluctuation of the incoming traffic through

either a time or frequency-domain analysis. They assume

that, the main anomaly can be incurred during a low-rate

attack is that, the incoming service requests fluctuate in a

more extreme manner during an attack. The abnormal

fluctuation is a combined result of two different kinds of

behaviors: (i) a periodic and impulse trend in the attack

pattern, and (ii) the fast decline in the incoming traffic

volume. Therefore, in order to perform the attack in stealthy

fashion with respect to the proposed detection techniques,

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 488

an attacker has to inject low-rate message flows φAj = [φj,1, .

. . , φj,m], that satisfy the following optimization problem:

5.3. Attack Approach
In order to implement SIPDAS-based attacks, the

following components are involved:
• a Master that coordinates the attack;
• π Agents that perform the attack; and
• a Meter that evaluates the attack effects.

The approach implemented by each Agent to

perform a stealthy service degradation in the cloud
computing. It has been specialized for an X-DoS attack.

Specifically, the attack is performed by injecting

polymorphic bursts of length T with an increasing intensity
until the attack is either successful or detected. Each burst

is formatted in such a way as to inflict a certain average
level of load CR. In particular, we assume that CR is

proportional to the attack intensity of the flow ФAj during

the period T. Therefore, denote I0 as the initial intensity of
the attack, and assuming ∆CR = ∆I as the increment of the

attack intensity. For each attack period, fixed the maximum

number of nested tags (tagThreshold), the routine pick
RandomTags(. . .) randomly returns the number of nested

tags nT for each message. Based on nT , the routine
compute Inter arrival Time uses a specific algorithm to

compute the inter-arrival time for injecting the next

message. At the end of the period T, if the condition „attack
Successful‟ is false, the attack intensity is increased. If the

condition „attack Successful‟ is true, the attack intensity is

maintained constant until either the attack is detected or the
auto-scaling mechanism enabled in the cloud adds new

cloud resources. The attack is performed until it is either
detected, or the average message rate of the next burst to be

injected is greater than dT. In this last case, the Agent

notifies to the Master that the maximum average message
rate is reached and continues to inject messages formatted

according to the last level of load CR reached.

6. CONCLUSION
In this paper, we have a tendency to propose a technique to

implement sneaky attack patterns, that exhibit a slowly-

increasing polymorphic behavior that may evade, or

however, greatly delay the techniques planned within the

literature to find low-rate attacks. Exploiting a vulnerability

of the target application, a patient and intelligent assailant

will orchestrate subtle flows of messages, indistinguishable

from legitimate service requests. above all, the planned

attack pattern, rather than aiming at creating the service

inaccessible, it aims at exploiting the cloud flexibility,

forcing the services to rescale and consume additional

resources than required, affecting the cloud client additional

on money aspects than on the service availableness. within

the future work, we have a tendency to aim at extending the

approach to a bigger set of application level vulnerabilities,

likewise as process a classy methodology able to find

SIPDAS based attacks within the cloud computing setting.

REFERENCES

[1] M. C. Mont, K. McCorry, N. Papanikolaou, and
S. Pearson, “Security and privacy governance in cloud
computing via SLAS and a policy orchestration
service,” in Proc. 2nd Int. Conf. Cloud Comput. Serv.
Sci., 2012, pp. 670–674.

[2] S. Malek and S. Salvatore, “Detecting
masqueraders: A comparison of one-class bag-of-
words user behavior modeling techniques,” in Proc.
2nd Int. Workshop Managing Insider Security
Threats, Morioka, Iwate, Japan. Jun. 2010, pp. 3–13.

[3] A. S. Sodiya, O. Folorunso, S. A. Onashoga, and
P. O. Ogundeyi, “An improved semi-global alignment
algorithm for masquerade detection,” Int. J. Netw.
Security, vo1. 12, no. 3, pp. 211– 220, May 2011.

[4] Yongdong Wu, Zhigang Zhao, Feng Bao and

Robert H. Deng, “Software Puzzle: A Countermeasure

to Resource-Inflated Denial-of-Service Attacks”,

IEEE Transactions On Information Forensics And

Security, Vol. 10, No. 1, January 2015

[5] Hisham A. Kholidy, Fabrizio Baiardi and Salim
Hariri, “DDSGA: A Data-Driven Semi-Global
Alignment Approach for Detecting Masquerade
Attacks”, IEEE Transactions On Dependable And
Secure Computing, Vol. 12, No. 2, March/April 2015

[6] Subrat Kumar Dash, K. S. Reddy, and K. A.
Pujari, “Adaptive Naive Bayes method for
masquerade detection”, Security Commun. Netw., vol.
4, no. 4, pp. 410–417, 2011.

[7] Guojun Wang, Felix Musau, Song Guo and

Muhammad Bashir Abdullahi, “Neighbor

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 489

Similarity Trust against Sybil Attack in P2P E-

Commerce”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 26, No. 3, March 2015

[8] X. Xu, X. Guo, and S. Zhu, “A queuing analysis
for low-rate DoS attacks against application servers,”
in Proc. IEEE Int. Conf. Wireless Commun., Netw.
Inf. Security, 2010, pp. 500–504.

[9] L. Wang, Z. Li, Y. Chen, Z. Fu, and X. Li,
“Thwarting zero-day polymorphic worms with
network-level length-based signature generation,”
IEEE/ACM Trans. Netw., vol. 18, no. 1, pp. 53–66,
Feb. 2010.

[10] A. Chonka, Y. Xiang, W. Zhou, and A. Bonti,

“Cloud security defense to protect cloud computing

against HTTP-DOS and XMLDoS attacks,” J. Netw.

Comput. Appl., vol. 34, no. 4, pp. 1097–1107, Jul.

2011.

[11] D. Petcu, C. Craciun, M. Neagul, S. Panica,
B. Di Martino, S. Venticinque, M. Rak, and R.
Aversa, “Architecturing a sky computing platform,” in
Proc. Int. Conf. Towards Serv.-Based Int., 2011, vol.
6569, pp. 1-13.

