
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 538

To Study the Comparison of NOSQL Document, Column
Store Databases & Cassandra Evaluation

AUTHOR NAME: - Sukhdeep Kaur

GUIDE NAME: - Dr. Dinesh Kumar
University College of Computer Applications

EMAIL ID: - sukhmahal48@gmail.com

ABSTRACT

In the last decade, rapid growth in mobile applications, web technologies, and social media generating

unstructured data has led to the advent of various nosql data stores. Demands of web scale are in

increasing trend everyday and nosql databases are evolving to meet up with stern big data requirements.

The purpose of this paper is to explore nosql technologies and present a comparative study of document

and column store nosql databases such as cassandra, MongoDB and Hbase in various attributes of

relational and distributed database system principles. Detailed study and analysis of architecture and

internal working cassandra, Mongo DB and HBase is done theoretically and core concepts are depicted.

This paper also presents evaluation of cassandra for an industry specific use case and results are

published.

 Index Terms — Nosql; distributed database; Cassandra; Mongo DB; Hbase; comparative study of nosql

databases

INTRODUCTION

 1. INTRODUCTION

Web scaling is contributed by millions of

concurrent internet users and biggest web

applications generating huge amount of complex

and unstructured data, posing uncertainty over

traditional relational database management

systems to handle enormous volumes of users

and data coined as Big data. Era dominated by

relational databases has slightly given way to the

emergence of nosql technologies which follow

distributed database system model to make

systems scale easily and to handle large volume

of users and data.

1.1 Distributed databases

In distributed database system models, data is

logically integrated; data storage and processing

is physically distributed across multiple nodes in

a cluster environment. Distributed database is a

collection of multiple nodes connected together

over a computer network and act as a single point

to the user. Advantages of distributed database

system include hardware scalability, replication

of data across nodes in the cluster, concurrent

transactions, availability in case of node failure

database will still be online and performance

improvements because of distributed hardware.

1.2 Nosql Movement

Relational databases are defined by ACID

properties in a system

Atomicity: All of the operations in the

transaction will complete, or none will.

Consistency: Transactions never observe or

result in inconsistent data.

Isolation: The transaction will behave as if it is

the only operation being performed

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 539

Durability: Upon completion of the transaction,

the operation will not be reversed.

The increasing amount of data in the web is a

problem which has to be considered by

successful web pages like the ones of Face book,

Amazon and Google. Besides dealing with tera

and petabytes of data, massive read and write

requests have to be responded without any

noticeable latency. In order to deal with these

requirements, these companies maintain clusters

with thousands of commodity hardware

machines. Due to their normalized data model

and their full ACID support, relational databases

are not suitable in this domain, because joins and

locks influence performance in distributed

systems negatively. In addition to high

performance, high availability is fundamental

requirement of many companies. Therefore,

databases must be easily replicable and have to

provide an integrated failover mechanism to deal

with node or datacenter failures. They also must

be able to balance read requests on multiple

slaves to cope with access peaks which can

exceed the capacity of a single server. Since

replication techniques offered by relational

databases are limited and these databases are

typically based on consistency instead of

availability, these requirements can only be

achieved with additional effort and high

expertise. Due to these requirements, many

companies and organizations developed own

storage systems, which are now classified as

nosql databases.[1]

Nosql is a term often used to describe a class of

non-relational databases that scale horizontally to

very large data sets but do not in general make

ACID guarantees. Nosql data stores vary widely

in their offerings and have some distinct features

on its own. The CAP Theorem coined by Eric

Brewer by 2000 states that it is impossible for a

distributed service to be consistent, available,

and partition-tolerant at the same instant in time.

Consistency means that all copies of data in the

system appear the same to the outside observer at

all times. Availability means that the system as a

whole continues to operate in spite of node

failure. Partition-tolerance requires that the

system continue to operate in spite of arbitrary

message loss. Such an event may be caused by a

crashed router or broken network link which

prevents communication between groups of

nodes. [2]

BASE Basically Available replication and

sharding techniques are used in nosql databases

to reduce the data unavailability, even if subsets

of the data become unavailable for short periods

of time. BASE -- Soft State ACID systems

assume that data consistency is a hard

requirement; Nosql systems allow data to be

inconsistent and provide options for setting

tunable consistency levels. BASE Consistency

when nodes are added to the cluster while scaling

up, need for synchronization arises, if absolute

consistency is required, nodes need to

communicate when operations read/write are

performed on a node Consistency over

availability.

2. BACKGROUND

2.1 Nosql data stores

2.2.1 Key value data stores

The key-value data store is simple but is quiet

efficient and powerful model. Key value data

model stores data in a completely schema free

manner. Mechanism is similar to maps or

dictionaries where data is addressed by a unique

key and since values are uninterrupted byte

arrays, which are completely opaque to the

system, keys are the only way to retrieve stored

data. The data consists of two parts, a string

which represents the key and the actual data

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 540

which is to be referred as value thus creating a

key-value pair. These stores are similar to hash

tables where the keys are used as indexes, thus

making it faster than RDBMS. The modern key

value data stores prefer high scalability over

consistency. Hence ad-hoc querying and

analytics features like joins and aggregate

operations have been omitted. New values of any

kind can be added at runtime without conflicting

any other stored data and without influencing

system availability. The grouping of key value

pairs into collection is the only offered

possibility to add some kind of structure to the

data model. High concurrency, fast lookups and

options for mass storage are provided by key-

value stores. Example key value databases

include Redis, Memcached, Berkeley DB, and

Amazon Dynamo DB. Amazon Dynamo DB

model provides a fast, highly reliable and cost-

effective NOSQL database service designed for

internet scale applications It offers low,

predictable latencies at any scale [3].

2.2.2 Document store databases

A document store database refers to databases

that store their data in the form of documents.

Document stores encapsulate key value pairs

within documents, keys have to be unique. Every

document contains a special key "ID", which is

also unique within a collection of documents and

therefore identifies a document explicitly. In

contrast to key value stores, values are not

opaque to the system and can be queried as well.

Documents inside a document-oriented database

are somewhat similar to records in relational

databases, but they are much more flexible since

they are schema less. The documents are of

standard formats such as XML, PDF, JSON etc.

In relational databases, a record inside the same

database will have same data fields and the

unused data fields are kept empty, but in case of

document stores, each document may have

similar as well as dissimilar data. Documents in

the database are addressed using a unique key

that represents that document. Storing new

documents containing any kind of attributes can

as easily be done as adding new attributes to

existing documents at runtime. The most

prominent document stores are CouchDB,

MongoDB, and Ravendb. CouchDB and

RavenDB do in fact store their data in JSON.

MongoDB uses a twist on JSON called Binary

JSON (BSON) that’s able to perform binary

serialization. Document oriented databases

should be used for applications in which data

need not be stored in a table with uniform sized

fields, but instead the data has to be stored as a

document having special characteristics

document stores should be avoided if the

database will have a lot of relations and

normalization [1][3].

2.2.3 Column family data stores

Column Family Stores are also known as column

oriented stores, extensible record stores and wide

columnar stores. All stores are inspired by

Google's Bigtable which is a distributed storage

system for managing structured data that is

designed to scale to a very large size. Column

stores in nosql are actually hybrid row/column

store unlike pure relational column databases.

Although it shares the concept of column-by-

column storage of columnar databases and

columnar extensions to row-based databases,

column stores do not store data in tables but store

the data in massively distributed architectures. In

column stores, each key is associated with one or

more attributes (columns). A Column store stores

its data in such a manner that it can be

aggregated rapidly with less I/O activity. It offers

high scalability in data storage. The data which is

stored in the database is based on the sort order

of the column family.[3] Columns can be

grouped to column families, which is especially

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 541

important for data organization and partitioning

Columns and rows can be added very flexibly at

runtime but column families have to be

predefined oftentimes, which leads to less

flexibility than key value stores and document

stores offer. Examples of column family data

stores include Hbase, Hyper table, Cassandra.

2.2.4 Graph databases

Graph databases are specialized on efficient

management of heavily linked data. Therefore,

applications based on data with many

relationships are more suited for graph databases,

since cost intensive operations like recursive

joins can be replaced by efficient traversals.

Ne04j and GraphDB are based on directed and

multi relational property graphs. Nodes and

edges consist of objects with embedded key

value pairs. The range of keys and values can be

defined in a schema, whereby the expression of

more complex constraints can be described

easily. The range of keys and values can be

defined in a schema, whereby the expression of

more complex constraints can be described

easily. Therefore it is possible to define that a

specific edge is only applicable between a certain

types of nodes. Twitter stores many relationships

between people in order to provide their tweet

following service. Use cases for graph databases

are location based services, knowledge

representation and path finding problems raised

in navigation systems, recommendation systems

and all other use cases which involve complex

relationships. Property graph databases are more

suitable for large relationships over many nodes,

whereas RDF is used for certain details in a

graph. FlockDB is suitable for handling simple I-

hop-neighbor relationships with huge scaling

requirements. [3]

3. CASSANDRA

Apache Cassandra in a nutshell is an open source, peer to peer distributed database architecture,

decentralized, easily scalable, fault tolerant, highly available, eventually consistent, schema free, column

oriented database. Generally in a master/slave setup, the master node can have far reaching effects if it

goes offline. By contrast, Cassandra has a peer-to-peer distribution model, such that any given node is

structurally identical to any other node—that is, there is no ―master‖ node that acts differently than a

―slave‖ node. The aim of Cassandra's design is overall system availability and ease of scaling. Cassandra

data model comprises of Key space (something like a database in relational databases) and column

families (tables). Cassandra defines a column family to be a logical division that associates similar data.

Basic Cassandra data structures: The column, which is a name/value pair and a client-supplied timestamp

of when it was last, updated, and a column family, which is a container for rows that have similar, but not

identical, column sets. There is no need to store a value for every column every time a new entity is

stored. For example, column family data model looks like figure 1. A cluster is a container for key spaces

typically a single key space. A key space is the outermost container for data in Cassandra, but it’s

perfectly fine to create as many key spaces as the application needs. A column family is a container for

an ordered collection of rows, each of which is itself an ordered collection of columns. [4]

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 542

 FIGURE 1. CASSANDRA DATA MODEL

Replication is set by replication factor which

defines how many copies of each piece of data

will be stored and distributed throughout the

Cassandra cluster. With a replication factor of

one, data will exist only in a single node in the

cluster. Losing that node means that data

becomes unavailable. It also means that

Cassandra will have to do more work as

coordinator among nodes; if all the data for a

given key. Higher replication factor indicates

higher availability of cluster which is ideal, and

replication factor can never be set than a value

greater than the number of nodes present. Simple

Strategy places the first replica on a node

determined by partitioner. Additional replicas are

placed on the next nodes clockwise in the ring

without considering rack or data center location.

Network Topology Strategy is used to have

cluster deployed across multiple data centers.

With replication and peer to peer model

Cassandra is fault tolerant and provides no single

point of failure. Partitioning defines how data

will be distributed across the Cassandra nodes

and allows you to specify how row keys should

be sorted, which has a significant impact on the

options available for querying ranges of rows.

Random partitioner with an MD5 hash applied to

it to determine where to place the keys on the

node ring. This has the advantage of spreading

your keys evenly across your cluster, because the

distribution is random. It has the disadvantage of

causing inefficient range queries. Order

preserving partitioner, the token is a UTF-8

string, based on a key. Rows are therefore stored

by key order, aligning the physical structure of

the data with your sort order.[4]

Cassandra uses a gossip protocol for intra-ring

communication so that each node can have state

information about other nodes. The gossiper runs

every second on a timer. Hinted handoff is

triggered by gossip, when a node notices that it

has hints for a node just came back online. Hints

are recorded when a node in the cluster went

offline all the changes supposed to be on the

offline node will be marked as hints and replayed

once the node is back online. Gossip protocol is

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 543

deployed in distributed systems wherein it acts as

an automatic mechanism for cluster

communication, failure detection and replication.

Gossip protocol sends Heartbeat signals every

one second across the distributed cluster to

maintain list of active and dead nodes. Anti-

Entropy is the replication synchronization

mechanism used in Cassandra to ensure replicas

across the cluster are updated to the latest version

of data.

 FIGURE 2. CASSANDRA CLUSTER COMMUNICATION

 TABLE 1. CASSANDRA CONSISTENCY

Durability in Cassandra is ensured with the help

of commit logs, which a crash recovery

mechanism. Writes will not be considered

successful until data is written to commit logs to

support durability goals. After it’s written to the

commit log, the value is written to a memory

resident data structure called the memtable. When

the number of objects stored in the memtable

reaches a threshold, the contents of the memtable

are flushed to disk in a file called an SSTable. A

new memtable is then created. Once a memtable

is flushed to disk as an SSTable, it is immutable

and cannot be changed by the application. Despite

the fact that SSTables are compacted, this

compaction changes only their on-disk

representation. Writes are very fast in Cassandra,

because its design does not require performing

disk reads or seeks. The memtables and SSTables

save Cassandra from having to perform these

operations on writes, which slow down many

databases. All writes in Cassandra are append-

only. Because of the database commit log and

hinted handoff design, the database is always

writeable, and within a column family, writes are

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 544

always atomic. Cassandra's best feature is tunable

consistency levels which lets user specify

consistency level based on the requirements. A

higher consistency level means that more nodes

need to respond to the query, giving you more

assurance that the values present on each replica

are the same. If two nodes respond with different

timestamps, the newest value wins, and that’s

what will be returned to the client. In the

background, Cassandra will then perform what’s

called a read repair it takes notice of the fact that

one or more replicas responded to a query with an

outdated value, and updates those replicas with

the most current value so that they are all

consistent. Cassandra is often communicated as

being an eventually consistent data store. It does

so by requiring that clients specify a desired

consistency level– zero, one, quorum, all, or any

with each read or write operation. Use of these

consistency levels should be tuned in order to

strike the appropriate balance between

consistency and latency for the application. In

addition to reduced latency, lowering consistency

requirements means that read and write services

remain more highly available in the event of a

network partition. A consistency level of zero

indicates that a write should be processed

completely asynchronously to the client. A

consistency level of one means that the write

request won’t return until at least one server

where the key is stored has written the new data to

its commit log. A consistency level of all means

that a write will fail unless all replicas are updated

durably. Quorum requires that (N/2 + 1) servers

must have durable copies where N is the number

of replicas [2]. A write consistency of any has

special properties that provide for even higher

availability at the expense of consistency. Read

and write consistency levels can be set to different

values based on the requirements. Cassandra

differs from many data stores in that it offers

much faster write performance than read

performance. There are two settings related to

how many threads can perform read and write

operations: concurrent_reads and

concurrent_writes can be configured for

concurrency. Cassandra uses its own CQL

Cassandra query language to interact with its

column family data model. Cassandra unlike

RDBMS has no referential integrity constraint and

no joins indeed. Cassandra performs best when

the data model is denormalized. There is no first-

order concept of an update in Cassandra, meaning

that there is no client query called an ―update.‖

An insert statement for a key that already exists,

Cassandra will overwrite the values for any

matching columns; if your query contains

additional columns that don’t already exist for that

row key, then the additional columns will be

inserted so no duplicate keys are possible.

Cassandra automatically gives you record-level

atomicity on every write operation. In RDBMS,

row-level locking has to be specified. Although

Cassandra offers atomicity at the column family

level, it does not guarantee isolation and no locks.

4. MONGO DB

MongoDB is a flexible and scalable document

oriented data store with dynamic schemas, auto

sharding, built-in replication and high availability,

full and flexible index support, rich queries,

aggregation. It combines the ability to scale out

with many of the most useful features of relational

databases, such as secondary indexes, range

queries, and sorting. Mongo DB follows a

master/slave approach, and it has a automatic

failover feature where if a master server goes

down, MongoDB can automatically failover to a

backup slave and promote the slave to a master.

Mongo DB data model consists of document

which is the basic unit of data for MongoDB

equivalent to a row in a relational database

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 545

management system. Grouping of similar

documents is called a collection can be thought of

as the schema-free equivalent of a table. A single

instance of MongoDB can host multiple

independent databases, each of which can have its

own collections and permissions similar to

relational databases. Every document has a special

key "_id" which is unique across the document's

collection. Mongo DB document store contains

references to store the relationships between data

by including links or references from one

document to another. Applications can resolve

these references to access the related data. These

are normalized data models. Embedded

documents capture relationships between data by

storing related data in a single document structure.

MongoDB documents make it possible to embed

document structures as sub-documents in a field

or array within a document.[6] These

denormalized data models allow applications to

retrieve and manipulate related data in a single

database operation. Mongo DB collection can

consists of simple documents, with some

reference documents embedded documents also as

shown in figure

Master-slave replication is the most general

replication mode supported by MongoDB, very

flexible for backup, failover, read scaling. A

replica set is basically a master-slave cluster with

automatic failover. Major difference between a

master-slave cluster and a replica set is that a

replica set does not have a single master: one is

elected by the cluster and may change to another

 FIGURE 3. MONGO DB DATA MODEL

Node if the current master goes down. However, they look very similar: a replica set always has a single

master node (called a primary) and one or more slaves (called secondaries). If the current primary fails,

the rest of the nodes in the set will attempt to elect a new primary node. This election process will be

initiated by any node that cannot reach the primary. The new primary must be elected by a majority of the

nodes and with the highest priority in the set. The primary node uses a heartbeat to track how many nodes

in the cluster are visible to it. If this falls below a majority, the primary will automatically fall back to

secondary status thus automatic failover happens in Mongo DB. The primary purpose and most common

use case of a MongoDB slave is to function as failover mechanism in the case of data loss or downtime

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 546

on the master node. Other valid use cases for a MongoDB slave can be used as a source for taking

backups and slaves can be used to serve requests to reduce load on master. Sharding is MongoDB’s

approach to scaling out. Sharding allows you to add more machines to handle increasing load and data

size horizontally without affecting your application. Sharding refers to the process of splitting data up

and storing different portions of the data on different machines; the term partitioning is also sometimes

used to describe this concept. By splitting data up across machines, it becomes possible to store more

data and handle more loads without requiring large or powerful machines. MongoDB supports

autosharding, which eliminates some of the administrative headaches of manual sharding. The cluster

handles splitting up data and rebalancing automatically. The basic concept behind MongoDB’s sharding

is to break up collections into smaller chunks. These chunks can be distributed across shards so that each

shard is responsible for a subset of total data set. Mongod is the Mongo DB database instance that should

be initiated and running on the servers that hold data or shard. For range-based sharding, MongoDB

divides the data set into ranges determined by the shard key. For hash based partitioning, MongoDB

computes a hash of a field’s value.

 FIGURE 4. MONGO DB CLUSTER MODELS

Application does not know which shard has what

data, or even that our data is broken up across

multiple shards, so there is a routing process

called mongos in front of the shards. This router

knows where all of the data is located, so

applications can connect to it and issue requests

normally. The router, knowing what data is on

which shard, is able to forward the requests to

the appropriate shard(s). If there are responses to

the request, the router collects them and sends

them back to the application.[5] When sharding

is setup, a key is choosen from a collection and

use that key’s values to split up the data. This

key is called a shard key. Sharding basically

involves three different components working

together: A shard is a container that holds a

subset of a collection’s data. A shard is either a

single mongod server or a replica set. Mongos is

the router process routes requests and aggregates

responses. Config servers store the configuration

of the cluster: which data is on which shard.

Because mongos doesn’t store anything

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 547

permanently, it needs to get the shard

configuration. It syncs this data from the config

servers. The master keeps a record of all

operations that have been performed on it. The

slave periodically polls the master for any new

operations and then performs them on its copy of

the data. The record of operations kept by the

master is called the oplog, short for operation

log. Each document in the oplog represents a

single operation performed on the master server.

The documents contain several keys, including

the following: ts Timestamp for the operation. op

type of operation performed, ns collection name

where the operation was performed, o document

further specifying the operation to perform thus

ensures durability of Mongo DB. MongoDB uses

write ahead logging to an on disk journal to

guarantee durability and to provide crash

resiliency. Before applying a change to the data

files, MongoDB writes the change operation to

the journal. Write concern describes the

guarantee that MongoDB provides when

reporting on the success of a write operation. The

strength of the write concerns determines the

level of guarantee. When inserts, updates and

deletes have a weak write concern, write

operations return quickly. In some failure cases,

write operations issued with weak write concerns

may not persist. With stronger write concerns,

clients wait after sending a write operation for

MongoDB to confirm the write operations.

MongoDB provides different levels of write

concern to better address the specific needs of

applications. For sharded collections in a shared

cluster, mongos directs write operations from

applications to the shards that are responsible for

the specific portion of the data set. The mongos

uses the cluster metadata from config servers to

route the write operation to the appropriate

shards. Read preference describes how

MongoDB clients route read operations to

members of a replica set. By default, an

application directs its read operations to the

primary member in a replica set. Reading from

the primary guarantees that read operations

reflect the latest version of a document.

However, by distributing some or all reads to

secondary members of the replica set, you can

improve read throughput or reduce latency for an

application that does not require fully up-to-date

data. [6]

Indexes support the efficient execution of queries

in MongoDB. Without indexes, MongoDB must

scan every document in a collection to select

those documents that match the query statement.

Indexes in Mongo DB are similar to relational

databases and there are many types of indexes

top support. The disadvantage to creating an

index is that it puts a little bit of overhead on

every insert, update, and remove. This is because

the database not only needs to do the operation

but also needs to make a note of it in any indexes

on the collection. Thus, the absolute minimum

number of indexes should be created. MongoDB

provides a number of aggregation operations that

perform specific aggregation operations on a set

of data such as count, distinct, group. MongoDB

documents are BSON documents. BSON is a

binary representation of JSON with additional

type information. In the documents, the value of

a field can be any of the BSON data types,

including other documents, arrays, and arrays of

documents. Data modification refers to

operations that create, read, update, or delete data

commonly known as CRUD operations. In

MongoDB, these operations modify the data of a

single collection. For the update and delete

operations, criteria can be specified to select the

documents to update or remove. Insert(),

update(), delete() java script methods are used

for data modification operations.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 548

5. Hbase

Apache HBase is an open source, non-relational,

persistent, strictly consistent fault tolerant

distributed database runs on top of HDFS

(Hadoop Distributed File System) modeled after

Google's big table providing the capabilities on

hadoop. Hbase is a Master/Slave approach

comprising of one master server and many region

servers where the master node is responsible for

assigning or load balancing across region servers.

Region servers are slaves like responsible for all

read and write requests for all regions they serve,

and also split regions that have exceeded the

configured region size thresholds. The store files

are typically saved in the Hadoop Distributed

File System (HDFS), which provides a scalable,

persistent, replicated storage layer for HBase. It

guarantees that data is never lost by writing the

changes across a configurable number of

physical servers.

Hbase follows big table data model, a sparse,

distributed, persistent multidimensional sorted

map. The map is indexed by a row key, column

key, and a timestamp; each value in the map is an

uninterrupted array of bytes. Hbase data model is

column oriented storage structure typically

grouped into one or more tables. Row keys in

table are arbitrary strings; Bigtable maintains

data in lexicographic order by row key. The row

range for a table is dynamically partitioned.

Column keys are grouped into sets called column

families, which form the basic unit of access

control. All data stored in a column family is

usually of the same type. A column family must

be created before data can be stored under any

column key in that family;[7] Each cell in a

Bigtable can contain multiple versions of the

same data; these versions are indexed by 64-bit

integers timestamp. Although conceptually a

table is a collection of rows with columns in

HBase, physically they are stored in separate

partitions called regions. Every region is served

by exactly one region server, which in turn

serves the stored values directly to clients.

Architecture consists of three major components

to HBase: the client library, one master server,

and many region servers. The HMaster in the

HBase is responsible for performing

administration, managing and monitoring the

cluster, assigning regions to the region servers

and controlling the load balancing and failover.

The HRegion Server performs hosting and

managing regions, splitting the regions

automatically, handling the read/write requests

and communicating with the clients directly.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 549

 FIGURE 5. HBASE DATA MODEL

The region servers can be added or removed while

the system is up and running to accommodate

changing workloads. The master is responsible for

assigning regions to region servers and uses

Apache ZooKeeper, a reliable, highly available,

persistent and distributed coordination service, to

facilitate the task. ZooKeeper is the comparable

system to Google’s use of Chubby for Bigtable. It

offers file system-like access with directories and

files distributed systems can use to negotiate

ownership, register services, or watch for updates.

Every region server creates its own ephemeral

node in ZooKeeper, which the master, in turn,

uses to discover available servers. They are also

used to track server failures or network partitions.

Ephemeral nodes are bound to the session

between ZooKeeper and the client which created

it. The session has a heartbeat keep alive

mechanism that, once it fails to report, is declared

lost by ZooKeeper and the associated ephemeral

nodes are deleted. HBase uses ZooKeeper also to

ensure that there is only one master running, to

store the bootstrap location for region discovery,

as a registry for region servers, as well as for other

purposes. ZooKeeper is a critical component, and

without it HBase is not operational. [8]

Hbase replication is different from the Cassandra

and Mongo DB, because Hbase is tightly coupled

with Hadoop Distributed file system. HBase

replication enables to have multiple clusters that

ship local updates across the network so that they

are applied to the remote copies. Replication

scope determines enabling and disabling of

replication in Hbase. By default, replication is

disabled and the replication scope is set to 0,

setting replication scope to 1 enables replication

to remote clusters. Default replication factor of

HDFS is 3 hence if you create a HBase table and

put some data on it, the data is written on HDFS

and three copies of that data are created. Hbase is

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 550

built on top of HDFS, which provides replication

for the data blocks that make up the Hbase tables.

All data writes in HDFS go to the local node first,

if possible, another node on the same rack, and

another node on a different rack (given a

replication factor of 3 in HDFS). Hbase supports

auto-sharding feature for scalability and load

balancing in HBase. Regions are essentially

contiguous ranges of rows stored together,

dynamically split by the system when they

become too large. Alternatively, they may also be

merged to reduce their number and required

storage files. HBase regions are equivalent to

range partitions as used in database sharding and

can be spread across many physical servers, thus

distributing the load, and therefore providing

scalability and fault tolerance. Hbase

communication flow is that a client contacts the

ZooKeeper first when trying to access a particular

row. It does so by retrieving the server name and

the metadata information required to access

region servers and fetches the results. Hbase has

two file formats, one for Write ahead Log (WAL)

and other file is actual data storage file. When

there are writes to Hbase Write ahead Log is the

first place where the data is written to. Once the

data is written to the WAL, it is placed in the

memstore and it will check to see if memstore is

full a flush to disk is requested. The store files are

monitored by a background thread to keep them

under control. The flushes of memstores slowly

build up an increasing number of on-disk files. If

there are enough of them, the compaction process

will combine them to a few, larger files. This goes

on until the largest of these files exceeds the

configured maximum store file size and triggers a

region split. Writes are written to Write Ahead

log, and only if the update has succeeded is the

client informed that the operation has succeeded.

The master and region servers need to orchestrate

the handling of log files carefully, especially

when it comes to recovering from server failures.

The WAL is responsible for retaining the edits

safely; replaying the WAL to restore a consistent

state thus Hbase ensures durability. Hbase follows

strict consistency model, writes are written to

single master, on CAP theorem Hbase focuses on

Consistency and partition tolerance, offering strict

consistency model for optimized reads. Hbase

works very well on HDFS platform and map

reduce can be very effective for bulk loading and

read operations.

6. COMPARATIVE STUDY OF CASSANDRA, MONGO DB AND Hbase

PARAMETER CASSANDRA MONGODB HBASE

Nosql

classification

Column family

databases
Document store database

Column family

database on HDFS

Architecture
Peer to peer

architecture model

1.master slave

2.peer to peer via sharding

Master Slave

architecture model

Consistency

Tunable

Consistency. Read

and write

consistency levels

can be set

Tunable consistency.

Write

concern and read

preference

parameters can be

configured.

strict consistency

(focuses mainly on

consistency according

to cap theorem).

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 551

Availability

Very high

availability

(focuses mainly on

availability

according to cap

theorem)

High availability with help

of sharding

Failover clustering to

provide availability in

case of master node

failure.

Partitioning

Supports

partitioning

(random

partitioner,

byte order

partitioner)

Sharding supports

partitioning range and

hash

based. Auto-sharding is

built-in feature

Hbase regions

provides range

Partitioning.

Data Model
Key space -

column family
Collection-document

Regions-column

family

Replication

Replication

strategy can be

defined by setting

Replication Factor

Configurable replica set

for

Mongo DB replication

Hbase has Replication

scope (0- disabled 1-

enabled). HDFS has

replication factor

Fault Tolerance

No single point of

failure with peer

to peer

architecture

No single point of failure

with sharding approach as

we can configure multiple

mongo s instances. Single

point of failure in master

slave approach.

Single point of failure

in master slave

approach. Can be

overcome by failover

clustering.

Cluster

Communication

cassandra uses

gossip protocol for

inter node

communication

Mongos instances are

configured to route

requests

from master to slave

nodes

Apache Zookeeper is

responsible for Hbase

node co-ordination.

Writes Very fast writes Fast when data is in RAM Writes slower than

performance

because of peer to

peer architecture

and cassandra data

model

and latency increases for

huge amount of data, very

fast writes if in memory

writes with allowance for

data loss

cassandra if it uses

pipelined writes

(synchronous).

Asynchronous writes

are configurable

Reads

performance

Performance

based on

consistency level

(decreases in

performance with

In a master/slave setup,

any

changes are written to the

master and then passed on

to slaves. This model is

Follows strict

consistency model and

are optimized for

reads. Very fast reads

in Hbase with Hadoop

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 552

increase in

consistency level)

and replication

Factor.

optimized for reading

data,

as it allows data to be read

from any slave. In

sharding

reads depend on

eventual/strict consistency

level.

support.

Durability
Achieved using a

commit log

Achieved using write

ahead

logging. However, if in

memory writes than

durability is not

guaranteed.

Achieved using Write

Ahead Log (WAL)

Concurrency Row level locking.

No concurrency for write

operations. Database level

(global) locks for each

write.

Row level locking.

Aggregate

Functions

No support for

aggregate and

group by functions

Supports aggregate

functions by default

Supports aggregate

functions via hive.

Indexing

technique
Hash indexes

B tree indexes. Facilitate

better performance for

range queries

LSM trees that are

similar to b trees

Map Reduce

Can support map

reduce integration

With Hadoop.

Has Map reduce by

default.

Very good support for

map reduce because

of HDFS.

 TABLE 2. COMPARATIVE STUDY OF CASSANDRA, MONGO DB, HBASE

7. EVALUATION OF CASSANDRA

Applications generating data has increased in

huge volumes in this internet era. An industry

specific use case for nosql database solution is

discussed here. Tracking the user activity of

applications with relational databases is

becoming tedious, as they generate many GB's of

log data every day. The ultimate need for this

analysis and comparative study was to come up

with a nosql database solution for user Activity

logging in production Environment. Existing

logging mechanism in production environment

uses relational database and has its known

problems in scalability and storing unstructured

data. So the idea was to have an effective logging

solution using nosql data stores which promises

high scalability, high availability and fault

tolerance.

An industry specific effective logging solution

requires minimum performance hit, less storage

space, zero downtime, ability to scale easily,

distributed system supporting parallel operations,

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 553

very high write performance, highly reliable and

concurrent. Based on the above comparative

study Table 2 of various features of Cassandra,

Mongo DB and Hbase with its peer to peer

architecture model, high availability, and tunable

consistency, very fast write performance and

high concurrency Cassandra seems to best fit the

mentioned industrial use case to have an

effective activity logging solution. Evaluation of

Cassandra for performance and concurrency in

comparison with relational databases its test

cases and results are published here.

Hardware specifications for test cases had 3-node

Cassandra cluster for POC with each machine

Memory: 1GB, DiskSpace: 100GB, OS:

Centos5.7, Java version 1.6.0_43 configuration.

Test cases are primarily focused on Cassandra's

write performance and concurrency required for

logging systems. Below are the results for

Cassandra write performance and currency, read

performance in comparison with relational

databases RDBMS.

FIGURE 6. WRITE PERFORMANCE AND

CONCURRENCY

FIGURE 7. READ PERFORMANCE

7.1 TEST CASES AND OBSERVATIONS

1. Write performance of Cassandra 3 node

cluster with test cases of different concurrency

levels are shown in write performance and

currency figure. Write performance of Cassandra

is very fast. 2000 inserts per sec compared to

RDBMS 1500 inserts/sec.

2. Cassandra was tested with 100,500 and 1000

concurrent threads and the cluster write

performance was good. High levels of

concurrency (1000-2000 plus concurrent threads

can hit the Cassandra cluster at the same time

without any failure).

3. However read performance of Cassandra to

RDBMS is hugely in favor of RDBMS and read

performance of Cassandra is slower.

4. Load testing of Cassandra was done with 100

threads inserting continuous data for continuous

20 hours (1 day approx). No issues had seen

passed stress testing.

5. Test cases for replication, fault tolerance,

tunable consistency, and compression were also

satisfactory.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 554

8. CONCLUSION AND FUTURE

WORK

Nosql databases are not "One size fits all". Each

nosql classification addresses a specific data

storage and processing requirements. Cassandra,

Mongo DB and HBase are popular among nosql

databases and a detailed comparative study is

made to understand their features and working.

Cassandra can be used for applications requiring

faster writes and high availability. Mongo DB

fits for use cases with document storage,

document search and where aggregation

functions are mandate. Hbase suits the scenarios

where hadoop map reduce is useful for bulk read

and load operations Hbase offers optimized read

performance with hadoop platform. Currently

working on performance evaluation of

Cassandra, Mongo db and Hbase in the aspects

of read and write performance, consistency levels

and indexing sharding performance with Map

reduce. Future work will encompass the

performance analysis results and comparisons.

REFERENCES

[1] Robin Hecht Stefan Jablonski, University of

Bayreuth " NoSQL Evaluation A Use Case

Oriented Survey" 2011 International Conference

on Cloud and Service Computing

[2] Dietrich Featherston "cassandra: Principles

and Application" Department of Computer

Science University of Illinois at Urbana-

Champaign

[3] Ameya Nayak, Anil Poriya Dept. of

Computer Engineering Thakur College of

Engineering and Technology University of

Mumbai " Type of NOSQL Databases and its

Comparison with Relational Databases"

International Journal of Applied Information

Systems (IJAIS) – ISSN : 2249- 0868

Foundation of Computer Science FCS, New

York, USA Volume 5– No.4, March 2013

[4] Eben Hewitt Apache cassandra project chair

"cassandra the definitive guide" Published by

O’Reilly Media November 2010

[5] Kristina Chodorow and Michael Dirolf

"Mongo DB: the definitive guide" Published by

O’Reilly Media September 2010

[6] http://www.mongodb.org/

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat,

Wilson C. Hsieh, Deborah A. Wallach Mike

Burrows, Tushar Chandra, Andrew Fikes, Robert

E. Gruber "Bigtable: A Distributed Storage

System for Structured Data" Google, Inc.

[8] Lars George "Hbase the definitive guide"

Published by O’Reilly Media September 2011

[9] Pokorny, J." Nosql databases: a step to

database scalability in web environment"

Proceedings of the 13th International Conference

on Information Integration and Web-based

Applications and Services. pp. 278 283. iiWAS

'11, ACM, NewYork, NY, USA (2011)

[10] Elif Dede, Bedri Sendir, Pinar Kuzlu,

Jessica Hartog, Madhusudhan Govindaraju Grid

and Cloud Computing Research Laboratory

SUNY Binghamton, New York, USA "An

Evaluation of Cassandra for Hadoop" IEEE

Cloud 2013

[11] http://www.datastax.com/

[12] http://hbase.apache.org/

http://www.mongodb.org/
http://www.datastax.com/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 10
June 2016

Available online:http://internationaljournalofresearch.org/ P a g e | 555

[13] Philippe Cudr_e-Mauroux1, Iliya Enchev1,

Sever Fundatureanu2, Paul Groth2, Albert

Haque3, Andreas Harth4, Felix Leif Keppmann4,

Daniel Miranker3, Juan Sequeda3, and Marcin

Wylot1,1 University of Fribourg, 2VU

University Amsterdam, 3University of Texas at

Austin, 4 Karlsruhe Institute of Technology "

NoSQL Databases for RDF:An Empirical

Evaluation".

[14] Urbani, J., Kotoulas, S., Maassen, J., Drost,

N., Seinstra, F., Harmelen, F.V.,Bal, H.: H.:

Webpie: A web-scale parallel inference engine.

In: In: Third IEEE International Scalable

Computing Challenge (SCALE2010), held in

conjunction with the 10th IEEE/ACM

International Symposium on Cluster, Cloud and

Grid Computing (CCGrid) (2010)

[15] Morsey, M., Lehmann, J., Auer, S., Ngomo,

A.C.N.: Dbpedia sparql benchmark{

performance assessment with real queries on real

data. In: The Semantic Web{ ISWC 2011, pp.

454{469. Springer (2011)

