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ABSTRACT 

             In this paper an endeavor has been made to 

discover the arrangement of the Navier-Stokes 

mathematical statements for the stream of a th ick 

incompressible liquid between two plates and the 

Navier stokes equations are unable to through light 

on the flow of Newtonian fluids  , in derivation of 

Neiver stokes equation we regarded fluid as 

continuum , the Neiver stokes equation non linear 

in natural and prevent us to get single solution in 

which convective terms interact in a general manner 

with viscous term , the solution of these equations 

are valid only in a particular reg ion in a real 

situation where the p lates one very still and the 

other in uniform movement, with little uniform 

suction at the stationary plate. An answer has been 

gotten under the supposition that the weight 

between the two plates is uniform. It  has been 

demonstrated that because of suction a direct 

transverse speed is superimposed over the 

longitudinal speed. With suction, the longitudinal 

speed conveyance between the plates gets to be 

allegorical and dimin ishes along the length of the 

plate we will discuss different way for that effect 

pressure and without effect of pressure also when 

the two plate as fixed with pressure not zero with 

some application. in This paper also analysis the 

Unsteady flow of v iscous incompressible fluid  

between two plates . 

INTRODUCTION: 

In physics, a fluid is a substance that continually 

deforms (flows) under an applied shear stress. 

Flu ids are a subset of the phases of matter and 

include liquids, gases, plasmas and, to some extent, 

plastic solids. Fluids can be defined as substances 

that have zero shear modulus or in simpler terms a 

flu id is a substance which cannot resist any shear 

force applied to it. A lthough the term "fluid" 

includes both the liquid  and gas phases, in common 

usage, "fluid" is often used as a synonym for 

"liquid", with no implicat ion that gas could also be 

present. For example, "brake fluid" is hydraulic oil 

and will not perform its required incompressible 

function if there is gas in it. This colloquial usage of 

the term is also common in medicine and in 

nutrition. 

Liquids form a free surface (that is, a surface not 

created by the container) while gases do not. The 

distinction between solids and fluid is not entirely 

obvious. The distinction is made by evaluating the 

viscosity of the substance. Silly Putty can be 

considered to behave like a solid  or a fluid, 

depending on the time period over which it is 

observed. It is best described as a viscose elastic 

flu id. There are many examples of substances 

proving difficult to classify (White, F. M., & 

Cornfield, I. (2006)). 

Flu id mechanics is the branch of physics that 

studies the mechanics of flu ids (liquids, gases, and 

plasmas) and the forces on them. Fluid mechanics 

has a wide range of applications, including for 

mechanical engineering, geophysics, astrophysics, 

mathematics and biology. Flu id mechanics can be 

divided into flu id statics, the study of fluids at rest; 

and flu id dynamics, the study of the effect  of forces 

on fluid motion. It is a branch of continuum 

mechanics, a subject which models matter without 

using the information that it is made out of atoms; 

that is, it models matter from a macroscopic view 

point rather than from microscopic. Fluid  

mechanics, especially flu id dynamics, is an act ive 

field of research with many problems  that are partly  

or wholly unsolved. Fluid mechanics can be 

mathematically complex, and can best be solved by 

numerical methods, typically using computers. A 

modern d iscipline, called computational fluid  

dynamics (CFD), is devoted to this approach to 
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solving fluid mechanics problems. Part icle image 

velocimetry, an experimental method for 

visualizing and analyzing fluid flow, also takes 

advantage of the highly visual nature of fluid flow. 

SOME BASIC PROPERTIES OF THE FLUID 

Fluids ( liquids or gases) 

Properties of fluids determine how fluids can be 

used in engineering and technology. They also 

determine the behavior of flu ids in  fluid  mechanics. 

The following are some of the important basic 

properties of fluids. 

Density: 

Density is the mass per unit volume of a fluid. In  

other words, it is the ratio between mass (m) and 

volume (V) of a fluid. 

Density is denoted by the symbol ‘ρ’. Its unit is 
kg/m3. 

 

In general, density of a fluid decreases with 

increase in temperature. It  increases with increase 

in pressure (Hirt, C. W., & Nichols, B. D. (1981)). 

The ideal gas equation is given by: 

 

 

 

The above equation is used to find the density of 

any flu id, if the pressure (P) and temperature (T) 
are known. 

The density of standard liquid (water) is 1000 

kg/m3. 

Viscosity 

Viscosity is the flu id property that determines the 

amount of resistance of the flu id to shear stress. It is 

the property of the flu id due to which  the fluid  

offers resistance to flow of one layer of the fluid  
over another adjacent layer. 

In a liquid, v iscosity decreases with increase in  

temperature. In a gas, viscosity increases with 
increase in temperature. 

Temperature: 

It is the property that determines the degree of 

hotness or coldness or the level of heat intensity of 

a flu id. Temperature is measured by using 

temperature scales There are 3 commonly used 

temperature scales. They are 

1. Celsius (or centigrade) scale 

2. Fahrenheit scale 

3. Kelv in scale (or absolute temperature 

scale) 
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Kelv in scale is widely  used in engineering. This is 

because, this scale is independent of properties of a 

substance.  

Pressure: 

Pressure of a flu id is the force per unit area of the 

flu id. In other words, it is the ratio  of force on a 

flu id to the area of the fluid held perpendicular to 

the direction of the force. 

Pressure is denoted by the letter ‘P’. Its unit is 
N/m2. 

Specific Volume: 

Specific volume is the volume of a fluid  (V) 

occupied per unit mass (m). It is the reciprocal of 

density. 

Specific volume is denoted by the symbol ‘v’. Its 
unit is m3/kg. 

 

Specific Weight: 

Specific weight is the weight possessed by unit 

volume of a flu id. It is denoted by ‘w’. Its unit is 
N/m3. 

Specific weight varies from p lace to place due to 
the change of acceleration due to gravity (g). 

 

LAMINAR FLOW OF VIS COUS  

INCOMPRESSIBLE FLUID  

The main limitations of the Navier-Stokes  

equations : 

                The limitations are unable to throw light 

on flow of non-Newtonian fluids. Derivation of the 

Navier-Stokes equations is based on stokes of 

viscosity which holds for most common fluids 

(known as the Newtonian flu ids). Since Stokes’ law 

is  not  applicable  to  non  Newtonian  fluids (such 

as slurries, drilling muds, oil paints, tooth paste, 

sewage .s1udge, pitch, coal-tar, flour doughs, high 

polymer solutions, colloidal suspensions, clay in  

water, paper pulp  in  water,  lime  in  water etc.), 

the  Navier-Stokes  equations  cannot  be  applied  

to  study  non-Newtonian     fluids. 

In derivation  of the  Navier-Stokes  equations  we  

regarded  flu id  as  a  continuum. The continuum 

hypothesis though simplifies mathematical work, 

but it is unable to exp lain the inner structure of the 

flu id. Hence for the concept of viscosity, we have to 

depend on the empirica1 formulation. 

These equations are non-linear in  nature and hence 

prevent us from getting a single solution  in  which  

connective  terms interact  in a general  manner 

with  viscous  terms.   

Due  to presence of terms in these equations, they  

are non-linear  in nature. Hence the solutions of 

these equations even in the restricted case of flow 

which is incompressible and steady,  is ext remely   

difficult. 

Due to idealizations such as infinite plates, fu lly  

developed parallel flow in  a p ipe, even limited 

number of exact solutions of these equations are 

valid only in particular region  in a  real situation. 

 

COUTTE FLOW  

in fluid dynamics, Couette flow is the laminar 

flow of a viscous fluid in  the space between two 

parallel p lates, one of which is moving relative to 

the other. The flow is driven by virtue of viscous 

drag force acting on the fluid and the applied 

pressure gradient parallel to the plates. This type of 

flow is named in honor ofMaurice Marie A lfred 

Couette, a Professor of Physics at the French 

University of Angers in the late 19th century 
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Mathematical description  

Couette flow is frequently used in undergraduate 

physics and engineering courses to illustrate shear-

driven fluid motion. The simplest conceptual 

configuration finds two infinite, parallel plates 

separated by a distance h. One plate, say the top 

one, translates with a constant velocity u0 in its own 

plane. Neglect ing pressure gradients, the Navier–

Stokes equations simplify to 

 

where y is a spatial coordinate normal to the 

plates and u(y) is the velocity d istribution. This 

equation reflects the assumption that the flow 

is uni-directional. That is, only one of the three 

velocity components   is non-

trivial. If y  originates at the lower plate, the 

boundary conditions are u(0) = 0 and u(h) = u0. 

The exact solution 

 

can be found by integrating twice and solving for 

the constants using the boundary conditions. 

Constant shear 

A notable aspect of this model is that shear stress is 

constant throughout the flow domain. In  particular, 

the first derivative of the velocity, u0/h, is constant. 

(This is implied  by the straight-line profile in the 

figure.) According to Newton's Law of 

Viscosity (Newtonian fluid), the shear stress is the 

product of this expression and the (constant) 

fluid viscosity. 

 

Flow between two parallel plate (Plane coutte 

flow) 

Consider the steady laminar flow of viscous 

incompressible fluid between two infinite parallel 

plates separated by a distance h. Let x be the 

direction of flow, y the direction perpendicular to 

the flow, and the width of the plates parallel to the 

z-direction. 

 

 

 

 

 

 

 

                                  Figre 1 

 

 

 

 

Here the word  ‘infin ite’ implies that the width of 

the 

plates is large compared with h and hence the flow 

may be treated has two-dimensional (i.e.., 

0z  
). 

Let the plates be long enough in the x-direction for 

the flow to be parallel. Here we take the velocity 

components v and w to be zero  

every where. Moreover the flow being steady, the 

flow variables are independent of time (
0t  

). 

Furthermore, the equation of continuity [namely, 

0, 0, 0u x v y w z        
]  reduces to 

0u x  
 so that 

( )u u y
. Thus for the 

present problem. 

( ), 0, 0, 0, 0 (1)u u y v w z t        

 

For the present two dimensional flow in absence of 

body forces, the Navier-Stokes equations for x and 

y-directions 
2

2
0 (2)

0 (3)

p d u

x dx

p y




  


  
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Equation (3) shows that the pressure does not 

depend on y. Hence p is function of x alone and so 

(2) reduces to 
2

2

1
(4)

d u dp

dy dx


 

Differentiating both sides of (4) with respect to ‘x’, 

we find that 
2

2

1
0 0

d p d dp
or

dx dx dx

 
  

   
So that dp/dx = const = P (say)                           (5)  

Then (4) reduces to 
2

2

d u P

dy 


                                       (6) 

Integrating (6), 

du P
y A

dx 
 

                               

(7) 

Integrating (7),

2

2

P
u Ay B y


  

                       

(8) 

Where A and B are arbitrary constants to be 

determined by the boundary conditions of the 

problem under consideration. 

For the plane coquette flow P = 0. Again the plate y  

= 0 is kept at rest and the plate y = h is allowed to 

move with the velocity U. Then the no slip  

condition gives rise to boundary conditions  

0 0; (9)u at y u U at y h   

 

Using (9), (8) yields 

0 = B and U = Ah + B 

 

 

 

 

 

 

 

 

Figure (2) 

 

 

 

 

 

 

 

So that    B = 0 and A = U/h                 (10) 

Using (10) in (8), we obtain 

Thus velocity distribution for the present case is 

given by 

 .y
u U

h


      (11) 

 

Some real world examples of Couette flow: 

a) Wing moving through calm air at speed uo.  

At some distance far away from the wing 

(normal to direction wing is moving), the 

air is mot ionless – think of this point as a 

fixed boundary where the fluid  velocity is 

zero.  At the surface of the wing, the fluid  

velocity is uo if we assume a no-slip 

condition – think of this as the moving 

boundary.  So, looks just like Couette 

flow. 

b) Piston moving up and down in  the cylinder 

of an engine.  Between  the piston and 

cylinder wall is lubrication oil with a 

thickness of d.  The cylinder wall is the 

fixed boundary and the piston wall is the 

moving boundary. 

 

Some viscosity coefficient values : 

Air at standard sea level conditions:  =1.79 x 10-5 

kg/(m s) 
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Water: = 1.005 x 10-3 kg/(m s)   at 20C 

Motor oil: = 1.07 kg/(m s)          at 20C 

Note:  1 centipoises = 10-3 kg/(m s) = 6.72 x 10-4 

lbm/(ft s) 

 

Flow between two parallel plate ( Generlized 

plane cutte flow) 

Consider the steady laminar flow of viscous 

incompressible fluid between two infinite parallel 

plates separated by a distance h. Let x be the 

erection of the flow, and the width of the plates 

parallel to the z-direction Here the word ‘infinite’ 

implies that the width of the plates is  

large compared with h and hence the flow may 

be treated as two-dimensional (i.e. 0z   ). 

Let the plates be long enough in the x-direction 

 for the flow to be parallel. Here we take the 

velocity components v and w to be zero 

everywhere. Moreover the flow being steady, the 

flow variables are independent of time ( 0t   ). 

Further-more, the equation of continuity 

0u x v y w z        reduces to u x 

= 0 so that ( )u u y . Thus for the present problem 

( ), 0, 0, 0, 0u u v v w z t        

                (1) 

For the present two-dimensional flow in absence of 

body forces, the Navier-Stokes equations for x and 

y-directions take the form: 

2

2
0 (2)

0 (3)

p d u

x y

p y




  
 

  

 

Eq. (3) shows that the pressure does not, depend on 

y. Hence p is function of x alone and so (2) 

reducesto 

2 2 (1 )( )d u y dp dx 
  …(4) 

Differentiating both sides of (4) w.r.t. ‘x’we find 

  

 

2

2

1
0 0

d p d dp
or

x dx dx

 
      

 

 

 

 

 

 

 

 

 

 

                                                Figure (3) 
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So that   dp/dx=const. = P(say).  …(5) 

Then (4) reduces to  
2 2d u dy P     …(6) 

Integrating (6),  /     
P

du dy A


     …(7) 

 Integrating (7), 
2       / 2u Ay B Py      …(8) 

Where A and B are arbitrary constants to be determined by the boundary conditions of the flow problem under 

consideration. 

For the so called generalized plane Couette flow, the plate 0y   are kept at rest and the plate y h  is allowed 

to move with velocity U. Then the no slip condition, gives rise to the following boundary conditions: 

u = 0 at y = 0; u =U at y = h …(9)  

Using these, (8) gives 

   O = B and U = Ah  + B + 

2

2

Ph


 

So that               0B   and 
2

U Ph
A

h 
    

Using (9) in (8), we get 

   

2

2 2

Uy Phy Py
u

h  
    

Or   

2

. 1
2

y h P y y
u U

h h h

 
   

 
 

 Or   . 1
u y y y

U h h h


 
   

 
 

Where                          

2

2

h P

U



    

Thus the velocity distribution for the present case is given by  
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   . 1
u y y y

U h h h


 
   

 ………(11)

 

Where                          

2

2

h P

U



 

 

To determine average and maximum velocities 

The average velocity distribution for the present flow is given by  

2 2

0

1 1
( ,

h
y

u dy U U y h y h dy
h h h

 
 

    
 
  Using (11) 

                                    = (1 2 6) ,U  on simplification 

 Thus,                                               (1 6) ( 3) . (13)u U      

The volumetric flow Q  per unit time per unit width of the channel is given by  

(1 6) ( 3) .Q hu hu      

From (11),                                     
2

1 (14)
du U U y

dy h h h

  
   

 
  

For the maximum or minimum velocity,                        0du dy    

That is         
2

1 0
U U y

h h h

  
   

 
                        giving                              

1 1
1 . (15)

2

y

h 

 
  

 
  

From (15), it follows that the maximum velocity for 1   occurs at 1y h   (that is )y h  and the 

minimum velocity for 1    at 0y h   (that is 0).y  This further shows that for 1    the velocity 

gradient at the stationary wall is zero and it becomes negative for some value of 1.   Thus the reverse 

flow takes place when 1.    Equation (15)breaks down when 1 1    because the maximum and 

minimum values of y h  have already been reached at 1   and 1    respectively. Using (15) in (14), 

the maximum and minimum velocities are given by 

 2

max

2

min

(1 ) 4 , 1

{ (1 ) } 4 , 1

U U when

U U when

  

  

   


    

                                                             (16) 

 

To determine shearing stress, skin friction and the coefficient of friction. 

Using (14), the shearing stress distribution in the flow is given by  

                     

2
1 1yx

du U y

dy h h


  

  
     

                                                                 (17) 
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Using (13) and (17), the skin frictions at the plates 0y   and y h  are given by  

0

6 (1 )
(1 ) (18)

(3 )

6 (1 )
(1 ) (19)

(3 )

yx y

yx y h

U
u

h h

U
u

h h





  
 



  
 








      


      

 

The coefficient of friction (or the drag coefficient) corresponding to 0( )yx y   is given by  

0

2

12 (1 )

( ) 2 ( 3)

yx y

fC
u h u 

  

  


   

 


 Using (18) 

If Reynold’s number Re ,
hu hu

v

 


     then    

12(1 )
(20)

Re( 3)
fC









  

Similarly, the coefficient of friction corresponding to ( )yx y h   is given by 

' 12(1 ) Re( 3).fC                                       (21)  

In practical applications, the mean of fC  and ' fC  is employed to estimate the energy losses in channels. 

 

Flow between two parallel plate ( plane poiseuille flow) 

Consider the steady laminar flow of viscous incompressible fluid between two infinite parallel plates 

separated by a distance h. Let axis of x taken in the middle of the channel parallel to the direction of flow, y the 

direction perpendicular to the flow, and the width of the plates parallel to the z-direction. Here the word ‘infinite’ 

implies that the width of the plates is large compared with h and hence the flow may be treated as two-

dimensional (i.e. 0z   ). Let the plates be long enough in the x-direction for the flow to be parallel. Here we 

take the velocity components v and w to be zero everywhere. Moreover the flow being steady, the flow variables 

are independent of time ( 0t   ). Furthermore, the equation of continuity 0u x v y w z       ; 

reduces to u x  =0 so that ( )u u y  . Thus for the present problem 

( ), 0, 0, 0, 0u u y v w z t                         (1) 

For the present two-dimensional flow in absence of body forces, the Navier-Stokes equations for x and y-

directions take the form: 

2

2
0 (2)

0 (3)

p d u

x y

p y




  
 

  

  

Equation (3) shows that the pressure does not, depend on y. Hence p is function of x alone and so (2) reduces to 

2 2 (1 )( )d u y dp dx     … (4) 

 Differentiating both sides of (4) w.r.t. ‘x’ we find 
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2

2

1
0 0

d p d dp
or

x dx dx

 
    

  

So that   dp/dx = const. = P (say).  … (5) 

Then (4) reduces to  
2 2d u dy P      … (6) 

 Integrating (6),  /     
P

du dy A


      … (7) 

 Integrating (7),  
2       / 2u Ay B Py       … (8) 

Where A and B are arbitrary constants to be determined by the boundary conditions of the flow problem under 

consideration. 

For the so called plane Poiseuille flow the plates are kept at rest and the fluid is kept in motion by a pressure 

gradient P. Let the two plates lie situated at y = - h/2 and y = h/2 as shown in the adjoining figure. The axis of x is 

along the centre between two plates. 

Using the no-slip condition, the boundary conditions for the problem are: 

u = 0 at y = -h/2; u = 0 at y = h/2 … (9)  

Using (9), (8) yields  

2 2

0 ,0
2 8 2 8

Ah Ph Ah Ph
B B

 
         

So that               0A  and 

2

8

h P
B


    

With these values, (8) reduces to  

 

 

                     Figure ( 4) 
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22

1 4
8

h P y
u

h

  
    

   

   … (10) 

Showing that the velocity distribution for the flow is parabolic as shown in the figure 4 

 

To determine the maximum and average velocities and shearing stress. 

Eqn. (10) shows that the maximum velocity, umax, for the plane Poiseuille flow can be obtained by writing y = 0. 

Thus 

2

8
maxu

h P


       … (11) 

Using (10), the average velocity distribution for the present flow is given by 

2
2 2 3

2 2

max2 22 2
2

1 1 4 1 4
1

8 2 3

h
h h

h h
h

h p y y y
u u dy dy u

h h h h h


 


   
        

   
   , using (11) 

Thus, ax(2 3) umu u     on simplification                           … (12) 

Combining (11) and (12), we have      
212 ( )P u h     … (13) 

Using (10), the shearing stress distribution in the flow is given by  

2

2

4
2

8
yx

du h P
y yP

dy h
  


                                       … (14) 

Then using (11), (12) and (14), the skin frictions at 2y h  is given by 

max

2

6
4 .

2
yx y h

u uhP

h h


 


                                            … (15) 

Hence using (15), the frictional coefficient for laminar flow between two stationary plates is given by 

2

2 2

6 2 12
12

(1 2) Re

yx y h

f

u
C

u h u hu



  

  

  


  

     


                  … (16) 

Where Reynold’s number = Re = 
hu hu

v

 


  

BOUNDARY LAYER THEORY 
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The Navier-Stokes equations, it was observed that a 

complete solution of these equations has not been 

accomplished to date. This is particularly  true when 

friction and inertia forces are of the same order of 

magnitude in the entire flow system, so that neither 

can be neglected, we discussed some very special 

cases of flow problems for which exact solutions of 

the Navier-Stokes equations are possible. In those 

cases, the equations were made linear by taking a 

simple geometry of flow and assuming the flu id to 

be incompressible. We dealt with a case of the 

approximate solutions of the Navier-Stokes 

equations for very small Reynold’s number. In that 

chapter the frict ion forces far over-shadowed the 

inertia forces, and the equations became linear by 

omitting the convective acceleration. The present 

chapter discusses the opposite, i.e., flow 

characterized by very large Reynold’s numbers. 

 

Prandtl’s boundary layer theory. 

For convenience, consider laminar two-dimensional 

flow of fluid of small viscosity (large Reynold’s 

number) over a fixed semi-infinite plate. It is 

observed that, unlike an ideal (non-viscous) fluid  

flow, the fluid does not slide over the plate, but 

“sticks” to it. Since the plate is at rest, the fluid  in  

contact with it will also be at rest. As we move 

outwards along the normal, the velocity of the fluid 

will gradually increase and at a d istance far from 

the plate the full stream velocity U is attained. 

Strict ly speaking this is approached asymptotically. 

However, it  will be assumed that the transition from 

zero  velocity at the p late to the full magnitude U 

takes place within  a thin  layer of fluid  in  contact 

with the plate. This is known as the boundary layer. 

There is no definite line between the potential flow 

region where frict ion is negligib le and the boundary 

layer. Therefore, in practice, we define the 

boundary layer as that region where the fluid 

velocity, parallel to the surface, is less than 99% of 

the free stream velocity which is described by 

potential flow theory. The thickness of the 

boundary layer,  , grows along a surface (over 

which fluid is flowing) from the leading edge. 

 

 

 

 

 

 

 

 

 

The shape of the velocity profile and the rate of 

increase of the boundary layer thickness, depend on 

the pressure gradient, p x  . Thus, if the pressure 

increases in the direction of flow, the boundary 

layer thickness increases rapidly and the velocity' 

profiles will take the fo rm as shown in Fig. (ii). 

When this adverse pressure gradient is large, then 

separation will occur fo llowed by a region of 

reversed flow. The separation point S is defined as 

the point where 

  0( ) 0yu y     (Separation) 

Where u is the velocity parallel to the wall in the x 

direction and y  is the coordinate normal to the wall. 

Due to the reversal of flow there is a considerable 

thickening of the boundary layer, and associated 

with it, there is a flow of boundary layer fluid into 

Figure (i) 
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the outside region. The exact location of the point 

of separation can be determined only with the help 

of integration of the boundary layer equations. 

The method of dividing the fluid in two regions was 

first proposed by Prandtl in 1904. He suggested that 

the entire field of flow can be divided, for the sake 

of mathemat ical analysis, into the following 

regions: 

(i) A very  thin layer (boundary layer) in the v icin ity 

of the plate in which the velocity grad ient normal to 

the wall (i.e. u y  ) is very  large. Accordingly  the 

viscous stress ( )u y     becomes important even 

when   is small. Thus the viscous and inertial 

forces are of the same order within  the boundary 

layer. 

(ii) In the remaining region (i.e . outside the 

boundary layer) u y   is very small and so the 

viscous forces may be ignored completely. Outside 

the boundary layer, the flow can be regarded non-

viscous and hence the theory of non-viscous fluids 

offers a very good approximation there. 

Remark 1: The above discussion equally holds 

even if a blunt body (i.e., a body with large radius 

of curvature such as aero foil etc.) is considered in 

place of a flat plate. 

Remark 2: The fo llowing three conditions must be 

satisfied by any velocity distribution if boundary 

layer: (i)  At 0, 0v u   and du/dy has some 

finite value 

(ii) At ,y u U    

(iii) At y  , du/dy = 0. 

 

Some basic definitions Boundary layer thicknes: 

In a qualitative manner, the boundary layer 

thickness is defined as the elevation above the 

boundary which covers a region of flow where 

there is a large velocity gradient and consequently 

non-negligible v iscous effects. Since transition 

from velocity in the boundary to that outside it 

takes place asymptotically, there is no obvious 

demarcat ion for permitting the measurement of a 

boundary layer thickness in a simple quantitative 

manner. For mathemat ical convenience, the 

thickness of the boundary layer is generally defined 

as that distance from the solid  boundary where the 

velocity differs by 1 per cent from the external 

velocity U (i.e. free-flow velocity). It is  easily seen 

that the above definition of the boundary layer is to 

a certain extent arbitrary. Because of this arbitrary 

and somewhat ambiguous definition of  , we 

employ following three other types of thicknesses 

which are based on physically meaningful 

measurements. 

Displacement thickness :  

Because of viscosity the velocity on the vicinity of 

the plate is smaller than in  the free -flow region. The 

reduction in total flow rate caused by this action is

0
( )U u dy



 .  

If this integral is equated to a quantity 1 1,U   can 

be considered as the amount by which the potential 

flow has been displaced from the p late. Thus, for 

displacement thickness 1  , we have the definition                                  

1
0

( )U U u dy


     … (1) 

Or                                                 
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1
0

(1 / )u U dy


                                    … 

(2) 

Momentum thickness : 

          It is denned by comparing the loss of 

momentum due to wall-frict ion in the boundary to 

the momentum in the free flow region. Thus, for the 

momentum thickness 2 , we have the definition 

 

 

                                    
2

2U  = 

0
( )u U u dy



                          …(3)  

                                                        

2
0

1
u u

dy
U U




 

  
 

     …(4) 

 

CONCLUSION 

This study evaluates the flow of typical fluid  

between parallel plates driven by capillary action. 

An exact model was developed to understand the 

functional relat ionship between flow d istance, flow 

time, separation distance, surface tension, and 

viscosity for quasi steady laminar flow between 

parallel plates. The model was verified 

experimentally with a typical material. The 

measured values of flow d istance agreed well with 

the exact model. A new material parameter, the 

coefficient of p lanar penetrating, is introduced. This 

parameter measures the penetrating power of a 

liquid  between parallel plates driven by capillary  

action. The effect iveness of gravity and vacuum as 

flow rate enhancements is explored. Th is study has 

analyzed and presents the flow of viscous 

incompressible flu id between two parallel p lates. It 

has steady, unsteady flow and we have evaluated 

some examples of p lan coutte flow is induced either 

by  pressure gradient along the plate or by motion 

of plate walls relatives to one another we observe 

that when the pressure is effect on fluid  flow the 

velocity distribution depends on both U and P   and 

when without effect of pressure only moving upper 

plate  we see that the velocity distribution as linear 

also in plane poiscuille  flow we exp lained that flow 

viscous incompressible flow between two fixed  

plate where the velocity distribution as parabolic 

and we calculate of them, we explained some 

application on flow like temperature distribution , 

This study is and overall analysis of incompressible 

viscous fluid flow. 
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