

Isolation, Identification, Detection of Bacteria from Meat, Fish, Poultry Samples and Detection of *Staphylococcus Aureus* Enterotoxin Gene

Ahmed Wahab Raisan

Master of Science in Microbiology, Department of Microbiology

University College of Science, Osmania University

INTRODUCTION

Meat putrefies , if the meat is untreated, in a matter of hours or days and results in the meat becoming unappetizing, poisonous or infectious. Spoilage is caused by the practically unavoidable infection and subsequent decomposition of meat by bacteria and fungi, which are borne by the animal itself or by the people handling the meat, or by their implements. Meat can be kept edible for a much longer time though not indefinitely – if proper hygiene is observed during production and processing, and if appropriate food safety, food preservation and food storage procedures are applied (Brul, S. and Coote, P. 1999).

Meats are the most perishable foods due to its rich nutrient content. There are several intrinsic and extrinsic parameters affecting the growth of bacteria in meat and meat products.

Owing to its high water content and abundance of important nutrients available

on the surface, meat is recognized as one of the most perishable foods. Spoilage can be defined as any change in a food product that makes it unacceptable to the consumer from a sensory point of view [Gram et al 2002]. Apart from physical damage, oxidation, and color change, the other spoilage symptoms are due to the undesired growth of microorganisms to unacceptable levels. In the case of meat, microbial spoilage leads to the development of off-odors and often slime formation, which make the product undesirable for human consumption (Jackson T. C. et al 1997). The organoleptic changes may vary according to the microbial association contaminating the meat and to the conditions under which the meat is stored. The development of organoleptic spoilage is related to consumption of meat nutrients such as sugars and free amino acids by the bacteria and the release of undesired volatile metabolites. Microbial from $10^7 \text{ CFU} \text{ cm}^{-2}$ are usually loads

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 03 Issue 10 June 2016

associated to occurrence of bad odors such as "cheesy" or "buttery" odors; these may evolve into "fruity" odors when the loads increase and become putrid smells as the result of free amino acid consumption at loads as high as 10^9 CFU cm⁻² (Dainty R. H. *et al* 1985).

In fact, once the glucose present in the aqueous phase has been utilized, other substrates are sequentially consumed until odorous nitrogenous compounds such as ammonia and dimethyl-sulfide are released (Stanbridge L. H., and A. R. Davies. 1998). Different spoilage-related species and strains can colonize the meat surface through different stages involving adsorption to the meat surface (Chung, K.-T., et al. 1989) The development of these phases depends on the intrinsic and extrinsic ecological factors of a particular meat ecosystem such as pH, meat surface morphology, O₂ availability, temperature, and the presence and development of other bacteria (Ellis, D. I., and R. Goodacre. 2001).

Food spoilage and food poisoning are the main causes that led man to preserve food and prevent diseases due to food. The production of bread, alcoholic beverages and a variety of acid-fermented foods, the preservation of meat and fish products by drying or adding salts and the production of other indigenous food s were critical to the development of stable societies. These microbial processes originated in different parts of the world at various times. People began to understand that food s should be kept away from contact with air, light and moisture(Ganzle, 1999). Some foods were preserved in early times by coating them with clay and olive oil. Salt became an especially valuable commodity because it was essential to human and useful for food preservation, the availability of which influenced the course of history.

Figure 1: Spoiled breast fillet showing individual colonies that eventually become a slime layer

Approximately 5 billion chickens are processed in the India. each year, of which 80% are marketed as fresh product. It is estimated that 2% to 4% of this meat is lost as a result of poultry spoilage. Therefore,

spoilage is of great concern to the poultry industry (Lockhead, A. G. and G. B. Landerkin, 1935).

The primary causes of poultry products spoilage are as follows:

- Prolonged distribution or storage time
- Inappropriate storage temperature
- High initial bacterial counts
- High post-rigor meat pH

Dealing with spoilage factors

Companies are able to prevent prolonged storage times by properly rotating their stock. Product that is to be sold in locations far from the processing plant should be transported at temperatures that are below freezing (i.e. 26 F), but the temperature should be such that muscle tissue should not freeze(Kraft, A. A. and J. C. Ayres, 1952). Inappropriate storage temperatures or fluctuations in storage temperature are the most avoidable causes of fluctuations can spoilage. Temperature occur during distribution, storage, retail display or handling of the product by the Processors consumer. can determine whether product has been temperature abused by monitoring temperature or evaluating bacterial populations throughout the distribution system.

Bacteria responsible for spoilage

Research demonstrates that the populations of bacteria high in number on the carcass immediately after processing are not the ones that grow under refrigeration and spoil carcasses. Instead, the bacteria found after carcasses spoil are very difficult to find on carcasses at the time of Just after processing, processing. the spoilage bacteria are present in very low numbers, but they can multiply rapidly to cause spoilage odors and slime (Dainty, R. H., et al, 1985). These spoilage bacteria are called psychrotrophic bacteria (psychro=cold; trophic=able to grow) because they are able to multiply under cold conditions. Fresh poultry products held long enough at refrigerator temperatures will spoil as a result of the growth of psychrotrophic bacteria. In contrast, the bacteria that exist in higher numbers at the time of processing on the skin of chickens and in their intestinal tracts are primarily mesophiles (meso=middle; phile=love). These bacteria do not multiply to an appreciable degree at refrigerator temperatures. Examples of mesophiles are Salmonella, E. coli and other bacteria found on chickens (Kim, A.Y., and Thayer, D.W.

1996). When a company conducts an "Aerobic Plate Count" or "Total Plate Count" on a chicken carcass, it is measuring the mesophiles (Ingraham, J. L. and G. F. Bailey, 1959).

The figure below shows how these populations of bacteria behave on carcasses during refrigeration.

Mesophiles, such as salmonella and *E. coli*, do not grow and produce spoilage defects on poultry.

Figure 2: Mesophiles do not cause spoilage of poultry products Origin of spoilage bacteria

Spoilage bacteria on the carcass
immediately after processing comes from
1. The feathers and feet of the live bird, 2.
The water supply in the processing plant,
3. The chill tanks and 4. Processing
equipment.

These spoilage bacteria are not usually found in the intestines of the live bird. High populations of *Acinetobacter* $(10^{8}CFU/g)$ have been found on the feathers of the bird and may originate from the deep litter. Other spoilage bacteria, such as *Cytophaga* and *Flavobacterium*, are often found in chill tanks but are rarely found on carcasses. The psychrotrophic spoilage bacteria on chicken carcasses immediately after slaughter are generally Acinetobacter and pigmented pseudomonads. Although strains of non-pigmented Pseudomonas produce off-odors and off-flavors on spoiled

poultry, initially, they are difficult to find oncarcassesandPseudomonasputrefaciens (Shewanella putrefaciens)israrely found (Brown, A. D., 1957).

Spoilage species

Rusell et al. (1995) conducted a study to identify the bacterial species responsible for spoilage of poultry from various locations around the U.S (Russell, S., 1992). The bacterial genera most isolated in high numbers on spoiled poultry was *Pseudomonas fluorescens,putida*, or *fragi* or *Shewanella* (formerly a Pseudomonas) *putrefaciens*. Identification of the genus and species most responsible for spoiling poultry is important because, once identified, it is easier to understand the mechanisms by which they produce spoilage (Alford, J. A. and L. E. Elliott, 1960). High numbers (10⁵ CFU/cm²) of psychrotrophic spoilage bacteria are required on poultry surfaces before off-flavors, off-odors and appearance defects are able to be detected organoleptically. Researchers have reported that higher numbers of bacteria $(3.2 \times 10^7 \text{ to})$ 1x10⁹ CFU/cm²) were required to produce slime than were needed for odor to become Pathogenic noticeable. Some of Microorganisms which are responsible for food borne illness are in the table below.

Microorganism	Infective dose (no. of microorganisms	Incubation period	Name of the disease
Clostridium botulinum	< nano grams	12-36 h	botulism
Clostridium perfringens	>10E8	8-22 h	Perfringens food poisoning
Shigella	<10	12–50 h	Shigellosis
Yersinia enterocolitica	unknown	1-3 days	Yersiniosis
Hepatitis A virus	10-100	Unknown	Hepatitis A
Norwalk virus / Norovirus	Unknown but presumed to be low	1-2 days	Viral gastroenteritis, stomach flu, Winter vomiting disease

Table 1: Microorganisms and their infective doses

Materials and methods:

Nutrient media, stains for morphological identification, Microscope, centrifuge, Laminar flow etc

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 03 Issue 10 June 2016

Sample collection

Meat & Chicken samples were collected from butcher shops from areas like Moula Ali, A.S Rao Nagar, Malkajigiri, Tarnaka etc. The collected samples were aseptically processed in the microbiology laboratory.

Chemicals

Grams iodine, ethanol, Crystal violet. safranin, were used for morphological identification. The media and reagents used for the study such as Nutrient Broth, Nutrient agar, Eosin-Methylene Blue agar, Salmonella-Shigella Blood agar. agar, Thiosulfate-Citrate-BileSalt-Sucrose agar, Mannitol Salt agar, MacConkey agar, Methyl red and Voges Proskauer were procured from Himedia, India.

Total Bacterial Count:

The total bacterial count was performed on all the samples by Lazy Susan plating method in triplicate on solid Nutrient agar plates after serial dilution of samples at 1 in 10 concentrations. The seeded plates were sealed and incubated at 37 ^oC. The colony forming units were counted after 24 and expressed in CFU/ml. Meat, fish and poultry samples were procured from various retail outlets of Hyderabad, butchers ,slaughter houses etc and were subjected to microbial analysis. The procedures followed for sampling were as prescribed in the Standard procedures of Section 16(2)(c), of the FSS Act, 2006 which provides for the mechanism for accreditation of certification bodies for Food Safety Management Systems and Section 44 of FSS Act provides for recognition of organization or agency for food safety audit and checking compliance with Food Safety Management System required under the Act or the rules and regulations made there under.

Aerobic Mesophilic Plate count:

Indicates microbial counts for quality assessment of foods

Medium:

1.Plate count agar;

2.Peptone water 0.1%,

Available at https://edupediapublications.org/journals

Figure 3: Sample dilution

Procedure:

rnational Journal of R

Preparation of sample homogenate

Make a 1:10 dilution of the well mixed sample, by aseptically transferring sample to the desired volume of diluent. mix thoroughly with the appropriate volume of diluent (1 ml into 9 ml, or 10 ml into 90 ml or 50 ml into 450 ml).

In most of the meat samples particulate matter floats in the dilution water. In such cases allow the particles to settle for two to three minutes and then draw the diluent from that portion of dilution where particles are minimum and proceed.

Dilution:

If the count is expected to be more

than 2.5 $\times 10^3$ per ml or g, prepare decimal dilutions as follows. Shake each dilution 25times. For each dilution use fresh sterile pipette. Alternately use auto pipette. Pipette 1 ml of homogenate into a tube containing 9 ml of the diluent. From the first dilution transfer 1 ml to second dilution tube containing 9 ml of the diluent.

Repeat using a third, fourth or more tubes until the desired dilution is obtained.

Isolation of bacteria from the meat samples:

About 5 grams of each meat sample was suspended in TSB broth and incubated overnight at 37^{0} c.Next day, the samples were diluted 10 fold and 5th dilution and 6th

dilution samples were plated on LB agar to get isolated colonies. Isolated colonies from each sample was picked and streaked on a fresh nutrient agar plate, the master plate.

Figure 4: Serial Dilutions and plating onto agar plates for colony counts

Figure 5.Diluted sample plated on nutrient agar

Preparation of master plate:

Master plates on LB Agar was made by streaking each pure colony on gridded plates and stored at 4 ^oc.Each time master plate was sub cultured for carrying out various tests.

Figure 6: Master Plate for Poultry

Figure 7: Master plate for Meat

RESULTS Morphological identification

Each of the isolated colony on the master plate was identified by grams staining and motility experiment. The results are compiled in Table below.

Table4 a: morphological, cultural and microscopic characteristics of potential bacteria

		1	[1		1	[1	
Name of the test	S1C1	S1C2	S1C3	S1C4	S1C5	S1C	S1C7	S1C8	S1C9	S1C10
		9	~	<u> </u>	9	0	<u> </u>		<u> </u>	<i></i>
Gram-	Gram	Gram-	Gram	Gram-	Gram	Gra	Gram	Gram	Gram	Gram-
stain	-	negativ	-	positiv	-	m-	-	-	-	positiv
	positi	e	positi	e	positi	posit	positi	positi	positi	e
	ve		ve		ve	ive	ve	ve	ve	
Cell shape	Cocci	Straight -rod	Cocci	cocci	Cocci	cocc i	cocci	cocci	cocci	cocci
Colony	Circu	circular	Circu	circula	Circu	circu	circul	circul	circul	circula
shape	lar		lar	r	lar	lar	ar	ar	ar	r
Margin	Entire	entire	Entire	Entire	Entire	Entir e	Entire	Entire	Entire	Entire
Appearan	Non-	Dull-	Non-	Non-	Non-	Non-	Non-	Non-	shiny	shiny
ce	shinv	non	shin	shinv	shinv	shin	shinv	shinv	5	5
	5	swarmi		- J	- 5	V	- 5	5		
		ng				5				
Elevation	Conv	flat	Conv	conve	Conv	conv	conve	conve	conve	conve
	ex		ex	X	ex	ex	X	X	X	X
Surface	Smoot	smooth	Smoo	smoot	Smoo	smo	smoot	smoot	rough	rough
texture	h		th	h	th	oth	h	h		
Colour	White	colourl	White	white	White	whit	white	white	vello	vellow
		ess				e			W	
	l			l	l					

Table4 b: MORPHOLOGICAL ,CULTURAL AND MICROSCOPICCHARACTERISTICS OF POTENTIAL BACTERIA

Name										
of the	S2C1	S2C1	S2C13	S2C1	S2C15	S2C16	S2C1	S2C18	S2C1	S2C20
tost	1	2		4			/		9	
iest	Creater	Circ	Cuana	Cure	Creates	Cuerte	Current	Creater	Current	Cuerta
Gram-	Gram	Gra	Gram-	Gra	Gram-	Gram-	Gram	Gram-	Gram	Gram-
stain	- nagat	nosit	Ilagativ	nosit	Ilagativ	positiv	- nositi	Hagati	- nagat	Tiagati
	ive	ive	C	ive	C	C	ve	ve	ive	ve
الم	Rod	Cocci	Rod	cocci	Rod	Соссі	cocci	Rod	Rod	Rod
							0000			
shape										
C olon	Point	Circu	Circular	circul	Pointe	Circul	circul	Pointe	Point	Large
v	ed	lar		ar	d	ar	ar	d	ed	Flat
y										
shape										
margi	Entir	Entir	Entire	Entir	entire	Entire	Entir	entire	entir	entire
n	e	е		е			e		е	
Appea	Muco	Non-	translu	Non-	mucoid	Non-	Non-	mucoi	muco	puncti
rance	id	shiny	cent	shiny		shiny	shiny	d	id	form
Elevat	Conv	conv	Convex	conv	convex	conve	conv	conve	conv	raised
ion	ex	ex		ex		х	ex	х	ex	
1011										
S urfa	Smoo	smo	Smooth	smo	Smoot	smoot	smoo	smoot	smoo	smoot
ce	th	oth		oth	h	h	th	h	th	h
textur										
textur										
e							·			
C olou	Yello	Whit	Ceam	whit	yellow	White	whit	yellow	yello	white
r	W	e		e			e		W	

Table4 c: MORPHOLOGICAL ,CULTURAL AND MICROSCOPIC

CHARACTERISTICS OF POTENTIAL BACTERIA

Name of the test	S3C21	S3C22	S3C23	S3C2 4	S3C2 5	S3C2 6	S3C27	S3C2 8	S3C29	S3C30
G ra m- s ta in	Gram- positiv e	Gram- nagativ e	Gram- positiv e	Gram - nagat ive	Gra m- naga tive	Gram - positi ve	Gram - positi ve	Gram - positi ve	Gram- nagativ e	Gram- positive
Cell shape	Cocci	Rod	Cocci	Rod	Rod	cocci	cocci	cocci	Rod	Cocci
Colony shape	circula r	Large flat	Circula r	Point ed	Larg e flat	circul ar	circul ar	Circul ar	Pointed	Circular
Margin	Entire	entire	Entire	entire	entir e	Entire	Entire	Entire	entire	Entire
Appeara nce	Non- shiny	punctif orm	Non- shiny	muco id	punc tifor m	Non- shiny	Non- shiny	Non- shiny	mucoid	Non- shiny
E le va tio n	conve x	raised	conve x	conve x	raise d	conve x	conve x	conve x	convex	convex
Surface texture	smoot h	smooth	smoot h	smoo th	smo oth	smoo th	smoo th	smoo th	smooth	smooth
Colour	White	white	White	yello w	whit e	white	white	Whit e	yellow	White

Table4 d: MORPHOLOGICAL ,CULTURAL AND MICROSCOPICCHARACTERISTICS OF POTENTIAL BACTERIA

Name of	64D1	6400	6402	CADA	SADE	SADE	C4D7	C4D9	5400	S4D10
the test	34D1	3462	3403	3404	3465	3400	3407	3400	3469	34610
G ram-stain	Gram- nagative	Gram- positive	Gram- nagative	Gram- negative	Gram- positive	Gram- nagative	Gram- nagative	Gram- positive	Gram- positive	Gram- nagati <i>v</i> e
Cell shape	Rod	Cocci	Rod	cocci	Cocci	Rod	Rod	cocci	cocci	Rod
C olony shape	Pointed	Circular	Pointed	circular	Circular	Pointed	Pointed	circular	circular	Pointed
Margin	entire									
Appearance	mucoid	Non- shiny	Mucoid	Non- shiny	Non- shiny	Mucoid	mucoid	Non- shiny	Non- shiny	Mucoid
Elevation	convex									
Surface	smooth									
texture										
C olour	yellow	Creany	Yellow	creany	White	Yellow	yellow	white	white	Yellow

Table4 e: MORPHOLOGICAL ,CULTURAL AND MICROSCOPICCHARACTERISTICS OF POTENTIAL BACTERIA

Name of	CEL1	SELO	SEL2	CEL A	SELE	SELC	SEL7	CELO	SELO	SEL10
the test	35LI	3512	3513	3514	3515	3510	35L7	3518	3519	35110
G ram-stain	Gram- nagative	Gram- nagative	Gram- nagative	Gram- nagative	Gram- nagative	Gram- positive	Gram- nagative	Gram- nagative	Gram- positive	Gram- nagative
Cell shape	Rod	Rod	Rod	Rod	Rod	Cocci	Rod	Rod	Cocci	Rod
C olony	Pointed	Pointed	Pointed	large	Pointed	Circular	Pointed	Pointed	Circular	Pointed
shape										
Margin	Entire									
Appearance	mucoid	mucoid	Mucoid	mucoid	mucoid	Non- shiny	mucoid	mucoid	Non- shiny	mucoid
Elevation	convex	convex	Convex	umbonate	convex	Convex	convex	convex	convex	convex
Surface	smooth									
texture										
C olour	Yellow	yellow	Yellow	white	yellow	White	yellow	yellow	White	Yellow

Table4 f : MORPHOLOGICAL ,CULTURAL AND MICROSCOPICCHARACTERISTICS OF POTENTIAL BACTERIA

Name of	S 6F 1	S 6F 2	S 6F 3	S 6F 4	S 6F 5	S 6F 6	S 6F 7	S 6F 8	S 6F 9	S 6F 10
the										
test										
G ram-	G ram-	G ra m	G ram-	G ram-	G ram-	G ram-	G ram-	G ram-	G ram-	G ram-
stain	negativ	-	negativ	positive	posativ	negativ	negati	negativ	negati	positiv
	е	negat	е	е	е	е	ve	е	ve	ee
		ive								
Cell	Rod	cocci	coccob	coccob	Coccob	coccob	Rod	Straight	curved	Cocco
shape			acillus	acillus	acillus	acillus		rod		bacillu
										s
	Large	Point	flat	flat	Flat	flat	large	large	circula	Flat
C olony		ed							r	
Shape										
	Entire	e ntire	e ntire	e ntire	e ntire	e ntire	e ntire	e ntire	irregul	Entire
Margin									ar	
	Mucoid	mucoi	C loudy	C loudy	C loudy	C loudy	mucoi	mucoid	Non	C loudy
Appearan		d					d		swarmi	
ce									ng	
	Umbon	conve	flat	flat	Flat	flat	umbon	convex	convex	Flat
Elevation	ate	x					ate			
	Smoot	smoot	Smooth	smooth	smooth	smooth	smoot	smooth	smoot	Smoot
Surface	h	h					h		h	h
Texture										
	White	yello	Opaque	opaque	opaque	opaque	white	gray	cream	Opaqu
C olour		w							у	е

Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 03 Issue 10 June 2016

Figure 8: E.coli

Figure 9: Klebsiella oxytoca

Figure 10: Enterocoocus faecalis

Biochemical identification result:

IMVIC tests were done as mentioned in methods and the results are compiled in table.

Table 5a-. Results of the Microbial loads in Chicken Samples (Gizzard)

				Bioch	nemical Tes		Gram	Identifecation	
								Reaction &	of bacteria
Isolate	N0.O							Morpholog	
	F	Indo	VP	MR	Citrate	Catalase	TSI	y y	
	colo	le							
	ny								
S1A1	1							Gram +	
								Cocci	Enterococcus
		(+)	(-)	(-)	(+)	(+)	(-)		faecalis
S1A2	2							Gram –	
		((.)				Rod	
<u> </u>		(+)	(-)	(+)	(+)	(-)	(-)		Providencia.sp
SIA3	3							Gram +	
								Cocci	Enterococcus
		(+)	(-)	(-)	(+)	(-)	(-)		faecalis
S1A4	4							Gram +	
								Cocci	Enterococcus
		(+)	(-)	(-)	(+)	(+)	(-)		faecalis
S1A5	5							Gram +	
								Cocci	Enterococcus
		(+)	(-)	(-)	(+)	(+)	(-)		faecalis
S1A6	6							Gram +	Juccuits
~								Cocci	Enterococcus
		(+)	(-)	(-)	(+)	(+)	(-)		faecalis
\$1.47	7	(')	(-)	(-)		(')	(-)	Gram +	juecuiis
SIA									
		(1)	()	()	(1)		()	COULI	Enterococcus
G1 4 9	8	(+)	(-)	(-)	(+)	(+)	(-)		jaecalis
51A8								Gram +	
								Cocci	Enterococcus
	9	(+)	(-)	(-)	(+)	(+)	(-)		faecalis
S1A9								Gram +	
								Cocci	Staphylococcus
		(-)	(+)	(+)	(+)	(+)	(-)		aureus
S1A10	1							Gram +	
								Cocci	Staphylococcus
		(-)	(+)	(+)	(+)	(+)	(-)		aureus
		(-)	(\cdot)	(\cdot)	(\cdot)	(\cdot)	(-)		uureus

Isolate	NO. OF colony		B	ioche	mical To	ests		Gram Reaction & Morphology	Identifecation of bacteria
1501110	colony	Indole	VP	MR	Citrate	Catalase	TSI	-	
S1A11								Gram	
	1							Negative	Klebsiella
		(+)	(+)	(-)	(+)	(+)	(-)	Rods	oxytoca
S1A12								Gram	
	2							Positive	Enterococcus
		(+)	(-)	(-)	(-)	(+)	(-)	Cocci	faecalis
S1A13								Gram	
	3							Negative	Proteus
	-	(-)	(-)	(-)	(+)	(+)	(-)	Rods	maribilis
S1A14								Gram	
	4							Positive	Enterococcus
		(+)	(-)	(-)	(+)	(+)	(-)	Cocci	faecalis
S1A15	_							Gram	
	5							Negative	Klebsiella
	-	(+)	(+)	(-)	(+)	(+)	(-)	Rods	oxytoca
S1A16	6							Gram	
	0							Positive	Enterococcus
	-	(+)	(-)	(-)	(-)	(+)	(-)	Cocci	faecalis
S1A17	7							Gram	
	/							Positive	Enterococcus
	-	(+)	(-)	(-)	(-)	(+)	(-)	Cocci	faecalis
S1A18	0							Gram	X71 1 . 11
	0							Negative	Klebsiella
		(+)		(-)	(+)	(+)	(-)	Rods	oxytoca
S1A19	9							Gram	771 1 . 11
								Negative	Klebsiella
	-	(+)		(-)	(+)	(+)	(-)	Rods	oxytoca
S2A20	10							Gram	
	10		()					Negative	T 1 • 1 • 1
		I (+)	(-)	(+)	(-)	(+)	(-)	Kods	Escherichia coli

Table 5b. Results of Microbial loads in Chicken(breast)

Isolate	No of colony		Bi	ocher	nical Te	sts		Gram Reaction & Morphology	Identifecation of bacteria
		Indole	VP	MR	Citrate	Catalase	TSI		
S3A21	1							Gram	
		(1)	()	()	()	(1)	()	Positive	Enterococcus
\$3,422	2	(+)	(-)	(-)	(-)	(+)	(-)	Gram	Jaecalis
SJAZZ	2							Negative	Fschorichia
		(+)	(-)	(+)	(-)	(+)	(-)	Rods	coli
S3A23	3							Gram	
								Positive	Enterococcus
		(+)	(-)	(-)	(-)	(+)	(-)	Cocci	faecalis
S3A24	4							Gram	X71 1 . 11
			(1)	()	(1)			Negative	Klebsiella
52 4 25	5	(+)	(+)	(-)	(+)	(+)	(-)	Rods	oxytoca
53A23	5							Negative	Fscherichia
		(+)	(-)	(+)	(-)	(+)	(-)	Rods	coli
S3A26	6							Gram	
								Positive	Enterococcus
	_	(+)	(-)	(-)	(+)	(+)	(-)	Cocci	faecalis
S3A27	7							Gram	_
			()					Positive	Enterococcus
52120	8	(+)	(-)	(-)	(-)	(+)	(-)	Cocci	faecalis
53A28	0							Dositive	Enterococcus
		(+)	(-)	(-)	(-)	(+)	(-)	Cocci	faecalis
S3A29	9							Gram	<i>J</i>
								Negative	Klebsiella
	10	(+)	(+)	(-)	(+)	(+)	(-)	Rods	oxytoca
S3A30	10							Gram	
								Positive	Enterococcus
		(+)	(-)	(-)	(-)	(+)	(-)	Cocci	faecalis

Table 5c:. Results of Microbial loads in Chicken (Thigh)

Iolate	No. of colony		E	Bioche	mical T	ests		Gram Reaction & Morphology	Identification of bacteria
Totate		Indole	VP	MR	Citrate	Catalase	TSI		
S4B1	1	(+)	(+)	(-)	(+)	(+)	(-)	Gram Negative Rods	Klebsiella oxytoca
S4B2	2	(+)	(-)	(+)	(+)	(+)	(-)	Gram Negative Rods	U.I
S4B3	3	(+)	(+)	(-)	(+)	(+)	(-)	Gram Negative Rods	Klebsiella oxytoca
S4B4	4	(+)	(-)	(+)	(+)	(+)	(-)	Gram Positive Cocci	UI
S4B5	5	(+)		(-)	(+)	(+)		Gram Positive	Enterococcus faecalis
S4B6	6							Gram Negative	Klebsiella
S4B7	7	(+)		(-)	(+)	(+)	(-)	Gram Negative	Klebsiella
S4B8	8	(+)		(-)	(+)	(+)	(-)	RodsGramPositive	oxytoca Enterococcus
S4B9	9	(+)	(-)	(-)	(+)	(+)	(-)	Cocci Gram Positive	faecalis Enterococcus
S4B1	10	(+)	(-)	(-)	(+)	(+)	(-)	Cocci Gram	faecalis
0		(+)	(+)	(-)	(+)	(+)	(-)	Negative Rods	Klebsiella oxvtoca

Table-5d. Results of Microbial loads in Beef.

Isolate	No of colony		Biochemical Tests						Identifecation of bacteria	
Isolate		Indole	VP	MR	Citrate	Catalase	TSI	monphology		
S5L1								Gram	Vlabsialla	
	1	(+)	(+)	(-)	(+)	(+)	(-)	Rods	oxytoca	
S5L2	2	(+)	(+)	(-)	(+)	(+)	(-)	Gram Negative Rods	Klebsiella oxvtoca	
S5L3	3	(+)		(-)	(+)	(+)	(-)	Gram Negative Rods	Klebsiella oxytoca	
S5L4	4	(+)	(-)	(+)	(+)	(-)	(-)	Gram Positive Cocci	Serratia marcesncs	
S5L5	5	(+)	(+)	(-)	(+)	(+)	(-)	Gram Negative Rods	Klebsiella oxytoca	
S5L6	6	(+)	(-)	(-)	(+)	(+)	(-)	Gram Positive Cocci	Enterococcus faecalis	
S5L7	7	(+)	(+)	(-)	(+)	(+)	(-)	Gram Negative Rods	Klebsiella oxytoca	
S5L8	8	(+)		(-)	(+)	(+)	(-)	Gram Negative Rods	Klebsiella oxytoca	
S5L9	9	(+)	(-)	(-)	(+)	(+)	(-)	Gram Positive Cocci	Enterococcus faecalis	
S5L10	10	(+)	(+)	(-)	(+)	(+)	(-)	Gram Negative Rods	Klebsiella oxvtoca	

Table-5e. Results of Microbial loads in Meat(Lamb).

	No of Biochemical Tests colon					Gram Reaction &	Identifecation of bacteria		
Isolat	У						Morpholog	01 2000000	
e Indole VP MR				Citrate	Citrate Catalase TSI		y y		
S6F1	1							Gram	
								Negative	Serratia
		(+)	(-)	(+)	(+)	(-)	(-)	Rods	marcesncs
S6F2	2							Gram	
								Negative	
		(+)	(+)	(+)	(-)	(-)	(-)	Rods	U.I
S6F3	3							Gram	
								Negative	
		(+)	(-)	(+)	(-)	(+)	(-)	Rods	Morgenella
S6F4	4							Gram	
				(Positive	
0(1)	-	(+)	(-)	(+)	(+)	(-)	(-)	Cocci	U.I
S6F5	5							Gram	
		(1)	()	()	()	()	()	Regative	TTT
S 6E6	6	(+)	(-)	(-)	(-)	(-)	(-)	Crom	0.1
5010	0							Positive	
		(+)	(-)	(+)	(-)	(-)	(-)	Cocci	Morgenella
S6F7	7	()					()	Gram	inorgenena
0								Negative	Serratia
ō		(+)	(-)	(+)	(+)	(-)	(-)	Rods	marcesans
S6F8	8							Gram	
								Negative	
		(-)	(-)	(+)	(+)	(-)	(-)	Rods	Citrobacter
S6F9	9							Gram	
								Negative	Clostridium
		(-)	(-)	(-)	(-)	(-)	(-)	Rods	perfringens
S6F10	10							Gram	
								Negative	
		(+)	(-)	(-)	(-)	(+)	(-)	Rods	U.I

Table 5f: Microbial Loads in Fish.

Table 6:. VII Key for the Biochemical identification of microorganisms adopted from(FDA – Bacteriological Analytical Manual, 7th Ed.AOAC Intnl.)

Indole	Methyl red	Voges	Citrate	Suspected
		Proskauer		Pathogenic
				organism
+	_	+	+	Klebsiella
				oxytoca
+	+	_	_	E.coli
+	_	_	+	E.faecalis
-	_	_	+	P.Mirabilis
+	+	-	_	Morganella
				morganii
-	+	_	_	Yersinia
-	+	_	+	Citrobacter
-	+	_	+	Salmonella

*Out of the examined 60 samples 30 of chicken ,10 of beef,10 of lamb,and 10 of fish were shown a percentage as following in the table

Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 03 Issue 10 June 2016

Figure 11: Biochemical Tests for characterization -Utilization of carbohydrates, sugars, urea etc

Figure 12: Methyl Red test positive.

Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 03 Issue 10 June 2016

Figure 13:Citrate Test Positiv

Figure 14: Simon citrate test in tube slants

Available at https://edupediapublications.org/journals

Figure 15: Indole test positive

Tuble . / . Requerey distribution of the bolated bucteria	Table .7	. frequency	distribution	of the isolated	bacteria
---	----------	-------------	--------------	-----------------	----------

Bacteria	Chicken	Beef	Lamb	Fish	Percentage
isolates	meat	Meat	meat	meat	of
					occurrence
Enterococcus	17	3	2		36.6%
faecalis					
Klebsiella oxytoca	6	5	7		30%
Serratia			1	2	5%
marcesans					
Escherichia coli	3				5%
Morgenella				2	3.3%
Staphylococcus	2				3.3%
aureus					
Citrobacter				1	1.6%
Clostridium				1	1.6%
perfringens					
Proteus maribilis	1				1.6%
Providencia.sps	1				1.6%
non-identified					
		2		4	10%

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 03 Issue 10 June 2016

PCR Results:

Figure 34: PCR amplification of Staphylococcus aureus enterotoxin A

Using 100 bp ladder the size of enterotoxin A gene was found to be 270 bp

PCR amplification of enterotoxin sea is useful for detection of *S. aureus* carrying *sea* in food samples in the food industry and outbreak investigation. We detected the presence of staphylococcus aureus in chicken by PCR method.

CONCLUSION:

Microbial content present in different samples (meat, poultry, fish) obtained from Buchner house, slaughter houses, cold freezer in super market etc was enumerated. A systematic morphological,and bicochemical identification was carried out once isolated colonies were isolated from each sample. From the results obtained it is observed that enterococci faecalis ranked as number one organism contaminating the meat products followed by Klebsiella oxvtoca.A Few counts of Serratia marcesens. Morganella ,Staphylococcus aureus, providentia were also observed. Since Staphylococcus is known а enteropathogen,PCR was used to detect the presence of staphylococcus. The presence of these microorganisms indicate the importance of high pressure cooking at consumer end and a regular auditing by health safety inspectors at these slaughter houses to monitor hygiene and cleanliness at these sites.

REFRENCES

- Alford, J. A. and L. E. Elliott, 1960. Lipolytic activity of microorganisms at low and intermediate temperatures. I. Action of Pseudomonas fluorescens on lard. Food Res. 25:296-303.
- Ayres, J. C., W. S. Ogilvy, and G. F. Stewart, 1950. Post mortem changes in stored meats. I. Micro-organisms associated with development of slime on eviscerated cut-up poultry. Food Technol. 4:199-205.
- Ayres, J. C., 1960. Temperature relationships and some other characteristics of the microbial flora developing on refrigerated beef. Food Res. 25(6):1-18.
- A'lvarez, I,. Man as, P., Condo N.S. and Raso, J. (2003a). Resistance variation of salmonella enterica serovars to pulsed electric field treatments. J. Food Sci. 68: 2316-2320.
- Aba bouch, L.H., Grimit, L. Eddafry, R., and Busta, F.F. (1995) Thermal inactivation kinetics of Bacillus subtilis spores suspended in buffer and in oils. L.Appl. Bacteriol. 78: 669-676.
- Abee, T. and Wouters, J.A. (9199). Microbial stress response in minimal processing. Int.J. Food microbial. 50:65-91.
- 7. Acott, K., Sloan, A.E. and Labuza, T.P. (1976). Evaluation of

antimicrobial agents in a microbial challenge study for an intermediate moisture dog food. J. Food Sci. 41: 541-546.

- Allison, D.G., D'Emmanuele, A. Egington, P. and Williams, A.R. (1996). The effect of ultrasound on Escherichia coli viability. J. Basic Microbiol. 36: 3-11.
- Alpas, H., Kalchayanand, N., Bozughu, F. and Ray, B (1998). Interaction of pressure, time and temperature of pressurization on viability loss of Listeria innocua. World J. Microbiol. Biotech. 14: 251-253.
- Barnes, E. M., 1960. Bacteriological problems in broiler preparations and storage. R. Soc. Health J. 80:145-148.
- Barnes, E. M. and C. S. Impey, 1968. Psychrophilic spoilage bacteria of poultry. J. Appl. Bacteriol. 31:97-107.
- Barnes, E. M. and M. J. Thornley, 1966. The spoilage flora of eviscerated chickens stored at different temperatures. J. Food Technol. 1:113-119.