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Abstract:  

Social network analysis is used to extract 

features of human communities and proves 

to be very instrumental in a variety of 

scientific domains. The dataset of a social 

network is often so large that a cloud data 

analysis service, in which the computation is 

performed on a parallel platform in the 

cloud, becomes a good choice for 

researchers not experienced in parallel 

programming. In the cloud, a primary 

challenge to efficient data analysis is the 

computation and communication skew (i.e., 

load imbalance) among computers caused 

by humanity’s group behaviour (e.g., 

bandwagon effect). Traditional load 

balancing techniques either require 

significant effort to rebalance loads on the 

nodes, or cannot well cope with stragglers. 

In this paper, we propose a general 

straggler-aware execution approach, SAE, to 

support the analysis service in the cloud. It 

offers a novel computational decomposition 

method that factors straggling feature 

extraction processes into more fine-grained 

sub processes, which are then distributed 

over clusters of computers for parallel 

execution. Experimental results show that 

SAE can speed up the analysis by up to 1.77 

times compared with state-of-the-art 

solutions. 
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I.INTRODUCTION 

 Social network analysis is used to extract 

features, such as neighbors and ranking 

scores, from social network datasets, which 

help understand human societies. With the 

emergence and rapid development of social 

applications and models, such as disease 

modeling, marketing, recommender systems, 

search engines and propagation of influence 

in social network,social network analysis is 

becoming an increasingly important service 

in the cloud. For example, k-NN algorithm , 

Katz Metric, Page Rank are used for 

proximity search, statistical classification, 

indexing etc. These algorithms often need to 

repeat the same process round by round until 

the computing satisfies a convergence or 

stopping condition. In order to accelerate the 

execution, the data objects are distributed 

over clusters to achieve parallelism. The key 

routine of social network analysis namely, 

the Feature Extraction Process(FEP) suffers 

from serious computational and 
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communication skew. The data dependency 

graph of FEPs may be known only at 

execution time and changes dynamically. It 

not only makes it hard to evaluate each 

task’s load, but also leaves some computers 

underutilized after the convergence of most 

features in early iterations.Many computers 

may become idle in a few iterations, while 

others are left as stragglers burdened with 

heavy work loads. One solution to reduce 

this skew is by decomposition of all the 

running processes. Current load balancing 

solutions try to mitigate the load skew either 

at task level or at worker level.Both do not 

support the decomposition of straggling 

processes. In practice, we observe that a 

straggling FEP is largely decomposable, 

because each feature is an aggregated result 

from individual data objects. As such, it can 

be factored into several subprocesses which 

perform calculation on the data objects in 

parallel. Based on this observation, we 

propose a general straggler-aware 

computational partition and distribution 

approach, named SAE , for social net-work 

analysis. It not only parallelizes the major 

part of straggling FEPs to accelerate the 

convergence of feature calculation, but also 

effectively uses the idle time of computers 

when available. Meanwhile, the remaining 

non-decomposable part of a straggling FEP 

is negligible which minimizes the straggling 

effect 

 II.RELATED WORK  

Social network analysis is used to analyze 

the behavior of human communities. 

However, because of human’s group 

behavior, some FEPs may need large 

amounts of computation and communication 

in each iteration, and may take many more 

iterations to converge than others. This may 

generate stragglers which slow down the 

entire analysis process . The skew resistant 

parallel processing technique uses scientific 

user defined data for categorizing load 

imbalance among several processes. This 

however adds to large space and time 

complexity thereby reducing the overall 

efficiency of the above technique. Another 

method used is the Skew Reduce technique. 

This methodology of Skew Reduce has two 

components. The first component is an API 

for expressing spatial featureextraction 

algorithms. The second component of Skew 

Reduce is a static optimizer that partitions 

the data to ensure skew-resistant processing 

if possible. The data partitioning is guided 

by a user-defined cost function that 

estimates processing times. However the 

most widely used existing technique was 

proposed by katz and is named as Katz 

Metric algorithm. The existing system can 

dynamically balance loads at the task level 

rather than the work level using the previous 

iterations. It is `an often used link prediction 

approach via measuring the proximity 

between two nodes in a graph and is 

computed as the sum over the collection of 

paths between two nodes.in a graph and is 

computed as the sum over the collection of 

paths between two nodes, exponentially 

damped by the path length. With this 

algorithm, we can predict links in the social 

network, understand the mechanisms by 

which the social networks evolve and so on. 
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But the major drawback is even this concept 

cannot decompose straggling (or) idle 

processes that contribute to computational 

skew. Current solutions for this problem 

either focus on task level load balancing or 

on worker-level balancing. Task-level load 

balancing. Skew reduce is a state-of-the-art 

solution for reducing load imbalance among 

tasks, in view that in some scientific 

applications, different partitions of the data 

object set take vastly different amounts of 

time to run even if they have an equal size. 

It proposes to employ user defined cost 

function to guide the division of the data 

object set into equallyloaded, rather than 

equally-sized, data partitions. However, in 

order to ensure low load imbalance for 

social network analysis, it has to pay 

significant overhead to periodically profile 

load cost for each data object and to divide 

the whole data set in iterations. Take the 

widely used data set of Twitter web graph as 

an example, less than one percent of the 

vertices are adjacent to nearly half of all 

edges. It means that tasks hosting this small 

fraction of vertices may require many times 

more computation and communication than 

an average task does. In the PageRank 

algorithm running on a Twitter web graph, 

for example, the majority of the vertices 

require only a single update to get their 

ranking scores, while about 20% of the 

vertices require more than 10 updates to 

converge. This implies that many computers 

may become idle in a few iterations, while 

others are left as stragglers burdened with 

heavy workloads. At the task level, these 

solutions partition the data set according to 

profiled load cost , or use Power Graph for 

static graph, which partitions edges of each 

vertex to get balance among tasks. The 

former method is quite expensive, as it has 

to periodically profile load cost of each data 

object. PowerGraph can only statically 

partition computation for graphs with fixed 

dependencies and therefore cannot 

adaptively redistribute sub-processes over 

nodes to maxi mize the utilization of 

computation resources. At the worker level, 

the state-of-the-art solutions, namely 

persistence-based load balancers (PLB) and 

retentive work stealing (RWS), can 

dynamically balance load via tasks 

redistribution/stealing according to the 

profiled load from the previous iterations.  

III.PROPOSED METHODOLOGY  

Usually, a major part, called the 

decomposable part, of the computation task 

in an FEP is decomposable, because each 

feature can be seen as a total contribution 

from several data objects. Thus, each FEP 

can be factored into several subprocesses 

which calculate the value of each data object 

separately. This allows us to design a 

general approach to avoid the impact of load 

skew via a straggler-aware execution 

method.The remaining non-decomposable 

part of a straggling FEP is negligible and has 

little impact on the overall performance. To 

parallelize the decomposable part of a 

straggling FEP and speed up the 

convergence of the feature calculation, the 

straggling FEP can be factored into several 

sub-processes.To ensure the correctness of 

this decomposition, the decomposable part 
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should satisfy the accumulative property and 

the independence property. The former 

property means that the results of this part 

can be calculated based on results of its sub-

processes; the latter suggests that execution 

can be done in any required order. 

 IV.ALGORITHM 

 The proposed Feature Extraction algorithm 

uses two algorithms .One for the Master and 

another for the Worker. A master can be a 

high priority process and a worker can be its 

feature extracted sub process.  

A) Redistribution and Migration 

Algorithm  

Whenever a Straggling feature is identified 

its value set is divided in to equally spaced 

blocks corresponding to the nonstraggling 

processes. After the decomposition, some 

workers may be more heavily loaded than 

others. For example, most FEPs have 

converged during the first several iterations. 

Then, the workers assigned with these 

converged FEPs may become idle. 

Consequently, it needs to identify whether it 

should redistribute blocks among workers 

based on the previous load distribution to 

make the load cost of all workers balanced 

and to accelerate the convergence of the 

remaining FEPs. Now, we show the details 

of deciding when to redistribute blocks 

according to a given cluster’s condition. In 

reality, whenever the periodically profiled 

remaining load of workers is received, or a 

worker becomes idle, it determines whether 

a block redistribution is needed. It 

redistributes blocks only when the intuition 

is as follows. If it decides to redistribute 

blocks, its gained benefits should be more 

than its caused cost. In other words, the 

redistribution makes sense only if the spared 

processing timeTs is greater than the cost 

overhead. The processing timeTb and Ta 

can be approximately evaluated via the 

straggling worker before and after block 

redistribution at the previous iteration, 

respectively. Specifically, Tb can be directly 

evaluated by the finish time of the slowest 

worker at the previous iteration. The 

approximate value of Ta is the average 

completion time of all workers at the 

previous iterations. The redistribution time 

C is mainly determined by the number of 

redistributed blocks, we can approximately 

evaluate the redistribution time C as 

follows:C=A1+A2*N; where constants A1 

and A2 can be obtained from the block 

redistribution of the previous iteration. 

incrementally redistributes blocks based on 

the block distribution of the previous 

iteration. It always migrates the load of the 

slowest worker to the idle worker or the 

fastest worker via directly migrating blocks. 

The migration algorithm always trend to 

migrate the nonstraggling features and only 

distributes straggling features blocks over 

workers when there is no choice. Because 

the load of straggling workers maybe several 

times more than the average, redistribution 

algorithm may need several times to migrate 

its load to a set of idle workers or fastest 

workers in an asynchronous way . 

 b) SAE  
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To efficiently support the distribution and 

execution of subprocesses, a system, namely 

SAE, is realized. It contains a master and 

multiple workers. The master monitors 

status of workers and detects the termination 

condition for applications. Each worker 

receives messages, triggers related Extra 

operations to process these messages and 

calculates new value for features as well. In 

order to reduce communicationcost, SAE 

also aggregates these messages that are sent 

to the same node. Each worker loads a 

subset of data objects into memory for 

processing. All data objects on a worker are 

maintained in a local in-memory key-value 

store, namely state table. Each table entry 

corresponds to a data object indexed by its 

key and contains three fields. The first field 

stores the key value of a data object, the 

second its value; and the third the index 

corresponding to its feature recorded in the 

table.To store the value of features, a feature 

table is also needed, which is indexed by the 

key of features. Each table entry of this table 

contains four fields. The first field stores the 

key value of a feature, the second its 

iteration number, the third its value in the 

current iteration and the fourth the attribute 

list. At the first iteration, SAE only divides 

all data objects into equally-sized partitions. 

Then it can get the load of each FEP from 

the finished iteration. With this information, 

in the subsequent iterations, each worker can 

identify straggling features and partition 

their related value set into a proper number 

of blocks according to the ability of each 

worker. It can create more chances for the 

straggling FEPs to be executed and achieve 

rough load balance among tasks. At the 

same time, the master detects whether there 

is necessity to redistribute blocks according 

to its gained benefits and the related cost, 

after receiving the profiled remaining load 

of each worker, or when some workers 

become idle. Note that the remaining load of 

each worker can be easily obtained by 

scanning number of unprocessed blocks and 

the number of values in these blocks in an 

approximate way. 

 

Figure 1: SAE Architecture 
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While the new iteration proceeds as follows 

in an asynchronously way without the finish 

of block redistribution, because only the 

unprocessed blocks are migrated. When a 

diffused message is received by a worker, it 

triggers an Extra() operation and makes it 

process a block of values contained in this 

message. After the completion of each 

Extra(), it sends its results to the worker w, 

where the feature’s original information is 

recorded on this worker’s feature table. 

After receiving this message, worker w 

records the availability of this block on its 

synchronization table and stores the results, 

where these records will be used by 

Barrier() in SysBarrier() to determine 

whether all needed attributes are available 

for related features. Then SysBarrier() is 

triggered on this worker. When all needed 

attributes are available for a specified 

feature, the related Acc() contained in 

SysBarrier() is triggered and used to 

accumulate all calculated results of 

distributed decomposable parts for this 

feature.Then Acc() is employed to calculate 

a new value of this feature for the next 

iteration. After the end of this iteration, this 

feature’s new value is diffused to specified 

other features for the next iteration to 

process. At the same time, to eliminate the 

communication skew occurred at the value 

diffusion stage, these new values are 

diffused in a hierarchical way. In this way, 

the communication cost is also evenly 

distributed over clusters at the value 

diffusion stage. 

 

V.EXPERIMENTAL RESULTS  

In order to evaluate this approach against 

current solutions, four benchmarks are 

implemented:  

1)Adsorption : It is a graph-based label 

propagation algorithm, which provides 

personalized recommendation for contents 

and is often employed in the 

recommendation systems.  

2)PageRank : It is a popular link analysis 

algorithm, that assigns a numerical 

weighting to each element, aiming to 

measure its relative importance within the 

set.  
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3)KatzMetric : It is a often used link 

prediction approach via measuring the 

proximity between two nodes in a graph and 

is computed as the sum over the collection 

of paths between two nodes.  

4)ConnectedComponents : It is often 

employed to find connected components in a 

graph by letting each node propagate its 

component ID to its neighbours. The 

following graph indicates the relative 

computational and communication skew 

comparison of SAE with other algorithms 

taking a twitter graph as an example . 

 

Figure 2:Computational Skew 

Comparison 

 

Figure 3: Communicational Skew 

Comparison 

VI. CONCLUSION  

For social network analysis, the convergence 

of straggling FEP may need to experience 

significant numbers of iterations and also 

needs very large amounts of computation 

and communication in each iteration, 

inducing serious load imbalance. However, 

for this problem, current solutions either 

require significant overhead, or cannot 

exploit underutilized computers when some 

features converged in early iterations, or 

perform poorly because of the high load 

imbalance among initial tasks. This paper 

identifies that the most computational part of 

straggling FEP is decomposable. Based on 

this observation, it proposes a general 

approach to factor straggling FEP into 

several sub-processes along with a method 

to adaptively distribute these sub-processes 

over workers.  
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