
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 10

June 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 782

Achieving Efficiency in Cloud Data Analysis for Global

Social Networks

Meerakori Vijay1, H. Ateeq Ahmed2

1 M.Tech Student,Department of CSE, Dr.K.V.Subba Reddy Institute of Technology

2 Assistant Professor, Department of CSE, Dr.K.V.Subba Reddy Institute of Technology

Abstract:

Social network analysis is used to extract

features of human communities and proves

to be very instrumental in a variety of

scientific domains. The dataset of a social

network is often so large that a cloud data

analysis service, in which the computation is

performed on a parallel platform in the

cloud, becomes a good choice for

researchers not experienced in parallel

programming. In the cloud, a primary

challenge to efficient data analysis is the

computation and communication skew (i.e.,

load imbalance) among computers caused

by humanity’s group behaviour (e.g.,

bandwagon effect). Traditional load

balancing techniques either require

significant effort to rebalance loads on the

nodes, or cannot well cope with stragglers.

In this paper, we propose a general

straggler-aware execution approach, SAE, to

support the analysis service in the cloud. It

offers a novel computational decomposition

method that factors straggling feature

extraction processes into more fine-grained

sub processes, which are then distributed

over clusters of computers for parallel

execution. Experimental results show that

SAE can speed up the analysis by up to 1.77

times compared with state-of-the-art

solutions.

Keywords: Feature Extraction Process,

Straggler, Parallel Execution, Cloud

Storage, Load Balancing

I.INTRODUCTION

 Social network analysis is used to extract

features, such as neighbors and ranking

scores, from social network datasets, which

help understand human societies. With the

emergence and rapid development of social

applications and models, such as disease

modeling, marketing, recommender systems,

search engines and propagation of influence

in social network,social network analysis is

becoming an increasingly important service

in the cloud. For example, k-NN algorithm ,

Katz Metric, Page Rank are used for

proximity search, statistical classification,

indexing etc. These algorithms often need to

repeat the same process round by round until

the computing satisfies a convergence or

stopping condition. In order to accelerate the

execution, the data objects are distributed

over clusters to achieve parallelism. The key

routine of social network analysis namely,

the Feature Extraction Process(FEP) suffers

from serious computational and

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 10

June 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 783

communication skew. The data dependency

graph of FEPs may be known only at

execution time and changes dynamically. It

not only makes it hard to evaluate each

task’s load, but also leaves some computers

underutilized after the convergence of most

features in early iterations.Many computers

may become idle in a few iterations, while

others are left as stragglers burdened with

heavy work loads. One solution to reduce

this skew is by decomposition of all the

running processes. Current load balancing

solutions try to mitigate the load skew either

at task level or at worker level.Both do not

support the decomposition of straggling

processes. In practice, we observe that a

straggling FEP is largely decomposable,

because each feature is an aggregated result

from individual data objects. As such, it can

be factored into several subprocesses which

perform calculation on the data objects in

parallel. Based on this observation, we

propose a general straggler-aware

computational partition and distribution

approach, named SAE , for social net-work

analysis. It not only parallelizes the major

part of straggling FEPs to accelerate the

convergence of feature calculation, but also

effectively uses the idle time of computers

when available. Meanwhile, the remaining

non-decomposable part of a straggling FEP

is negligible which minimizes the straggling

effect

 II.RELATED WORK

Social network analysis is used to analyze

the behavior of human communities.

However, because of human’s group

behavior, some FEPs may need large

amounts of computation and communication

in each iteration, and may take many more

iterations to converge than others. This may

generate stragglers which slow down the

entire analysis process . The skew resistant

parallel processing technique uses scientific

user defined data for categorizing load

imbalance among several processes. This

however adds to large space and time

complexity thereby reducing the overall

efficiency of the above technique. Another

method used is the Skew Reduce technique.

This methodology of Skew Reduce has two

components. The first component is an API

for expressing spatial featureextraction

algorithms. The second component of Skew

Reduce is a static optimizer that partitions

the data to ensure skew-resistant processing

if possible. The data partitioning is guided

by a user-defined cost function that

estimates processing times. However the

most widely used existing technique was

proposed by katz and is named as Katz

Metric algorithm. The existing system can

dynamically balance loads at the task level

rather than the work level using the previous

iterations. It is `an often used link prediction

approach via measuring the proximity

between two nodes in a graph and is

computed as the sum over the collection of

paths between two nodes.in a graph and is

computed as the sum over the collection of

paths between two nodes, exponentially

damped by the path length. With this

algorithm, we can predict links in the social

network, understand the mechanisms by

which the social networks evolve and so on.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 10

June 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 784

But the major drawback is even this concept

cannot decompose straggling (or) idle

processes that contribute to computational

skew. Current solutions for this problem

either focus on task level load balancing or

on worker-level balancing. Task-level load

balancing. Skew reduce is a state-of-the-art

solution for reducing load imbalance among

tasks, in view that in some scientific

applications, different partitions of the data

object set take vastly different amounts of

time to run even if they have an equal size.

It proposes to employ user defined cost

function to guide the division of the data

object set into equallyloaded, rather than

equally-sized, data partitions. However, in

order to ensure low load imbalance for

social network analysis, it has to pay

significant overhead to periodically profile

load cost for each data object and to divide

the whole data set in iterations. Take the

widely used data set of Twitter web graph as

an example, less than one percent of the

vertices are adjacent to nearly half of all

edges. It means that tasks hosting this small

fraction of vertices may require many times

more computation and communication than

an average task does. In the PageRank

algorithm running on a Twitter web graph,

for example, the majority of the vertices

require only a single update to get their

ranking scores, while about 20% of the

vertices require more than 10 updates to

converge. This implies that many computers

may become idle in a few iterations, while

others are left as stragglers burdened with

heavy workloads. At the task level, these

solutions partition the data set according to

profiled load cost , or use Power Graph for

static graph, which partitions edges of each

vertex to get balance among tasks. The

former method is quite expensive, as it has

to periodically profile load cost of each data

object. PowerGraph can only statically

partition computation for graphs with fixed

dependencies and therefore cannot

adaptively redistribute sub-processes over

nodes to maxi mize the utilization of

computation resources. At the worker level,

the state-of-the-art solutions, namely

persistence-based load balancers (PLB) and

retentive work stealing (RWS), can

dynamically balance load via tasks

redistribution/stealing according to the

profiled load from the previous iterations.

III.PROPOSED METHODOLOGY

Usually, a major part, called the

decomposable part, of the computation task

in an FEP is decomposable, because each

feature can be seen as a total contribution

from several data objects. Thus, each FEP

can be factored into several subprocesses

which calculate the value of each data object

separately. This allows us to design a

general approach to avoid the impact of load

skew via a straggler-aware execution

method.The remaining non-decomposable

part of a straggling FEP is negligible and has

little impact on the overall performance. To

parallelize the decomposable part of a

straggling FEP and speed up the

convergence of the feature calculation, the

straggling FEP can be factored into several

sub-processes.To ensure the correctness of

this decomposition, the decomposable part

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 10

June 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 785

should satisfy the accumulative property and

the independence property. The former

property means that the results of this part

can be calculated based on results of its sub-

processes; the latter suggests that execution

can be done in any required order.

 IV.ALGORITHM

 The proposed Feature Extraction algorithm

uses two algorithms .One for the Master and

another for the Worker. A master can be a

high priority process and a worker can be its

feature extracted sub process.

A) Redistribution and Migration

Algorithm

Whenever a Straggling feature is identified

its value set is divided in to equally spaced

blocks corresponding to the nonstraggling

processes. After the decomposition, some

workers may be more heavily loaded than

others. For example, most FEPs have

converged during the first several iterations.

Then, the workers assigned with these

converged FEPs may become idle.

Consequently, it needs to identify whether it

should redistribute blocks among workers

based on the previous load distribution to

make the load cost of all workers balanced

and to accelerate the convergence of the

remaining FEPs. Now, we show the details

of deciding when to redistribute blocks

according to a given cluster’s condition. In

reality, whenever the periodically profiled

remaining load of workers is received, or a

worker becomes idle, it determines whether

a block redistribution is needed. It

redistributes blocks only when the intuition

is as follows. If it decides to redistribute

blocks, its gained benefits should be more

than its caused cost. In other words, the

redistribution makes sense only if the spared

processing timeTs is greater than the cost

overhead. The processing timeTb and Ta

can be approximately evaluated via the

straggling worker before and after block

redistribution at the previous iteration,

respectively. Specifically, Tb can be directly

evaluated by the finish time of the slowest

worker at the previous iteration. The

approximate value of Ta is the average

completion time of all workers at the

previous iterations. The redistribution time

C is mainly determined by the number of

redistributed blocks, we can approximately

evaluate the redistribution time C as

follows:C=A1+A2*N; where constants A1

and A2 can be obtained from the block

redistribution of the previous iteration.

incrementally redistributes blocks based on

the block distribution of the previous

iteration. It always migrates the load of the

slowest worker to the idle worker or the

fastest worker via directly migrating blocks.

The migration algorithm always trend to

migrate the nonstraggling features and only

distributes straggling features blocks over

workers when there is no choice. Because

the load of straggling workers maybe several

times more than the average, redistribution

algorithm may need several times to migrate

its load to a set of idle workers or fastest

workers in an asynchronous way .

 b) SAE

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 10

June 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 786

To efficiently support the distribution and

execution of subprocesses, a system, namely

SAE, is realized. It contains a master and

multiple workers. The master monitors

status of workers and detects the termination

condition for applications. Each worker

receives messages, triggers related Extra

operations to process these messages and

calculates new value for features as well. In

order to reduce communicationcost, SAE

also aggregates these messages that are sent

to the same node. Each worker loads a

subset of data objects into memory for

processing. All data objects on a worker are

maintained in a local in-memory key-value

store, namely state table. Each table entry

corresponds to a data object indexed by its

key and contains three fields. The first field

stores the key value of a data object, the

second its value; and the third the index

corresponding to its feature recorded in the

table.To store the value of features, a feature

table is also needed, which is indexed by the

key of features. Each table entry of this table

contains four fields. The first field stores the

key value of a feature, the second its

iteration number, the third its value in the

current iteration and the fourth the attribute

list. At the first iteration, SAE only divides

all data objects into equally-sized partitions.

Then it can get the load of each FEP from

the finished iteration. With this information,

in the subsequent iterations, each worker can

identify straggling features and partition

their related value set into a proper number

of blocks according to the ability of each

worker. It can create more chances for the

straggling FEPs to be executed and achieve

rough load balance among tasks. At the

same time, the master detects whether there

is necessity to redistribute blocks according

to its gained benefits and the related cost,

after receiving the profiled remaining load

of each worker, or when some workers

become idle. Note that the remaining load of

each worker can be easily obtained by

scanning number of unprocessed blocks and

the number of values in these blocks in an

approximate way.

Figure 1: SAE Architecture

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 10

June 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 787

While the new iteration proceeds as follows

in an asynchronously way without the finish

of block redistribution, because only the

unprocessed blocks are migrated. When a

diffused message is received by a worker, it

triggers an Extra() operation and makes it

process a block of values contained in this

message. After the completion of each

Extra(), it sends its results to the worker w,

where the feature’s original information is

recorded on this worker’s feature table.

After receiving this message, worker w

records the availability of this block on its

synchronization table and stores the results,

where these records will be used by

Barrier() in SysBarrier() to determine

whether all needed attributes are available

for related features. Then SysBarrier() is

triggered on this worker. When all needed

attributes are available for a specified

feature, the related Acc() contained in

SysBarrier() is triggered and used to

accumulate all calculated results of

distributed decomposable parts for this

feature.Then Acc() is employed to calculate

a new value of this feature for the next

iteration. After the end of this iteration, this

feature’s new value is diffused to specified

other features for the next iteration to

process. At the same time, to eliminate the

communication skew occurred at the value

diffusion stage, these new values are

diffused in a hierarchical way. In this way,

the communication cost is also evenly

distributed over clusters at the value

diffusion stage.

V.EXPERIMENTAL RESULTS

In order to evaluate this approach against

current solutions, four benchmarks are

implemented:

1)Adsorption : It is a graph-based label

propagation algorithm, which provides

personalized recommendation for contents

and is often employed in the

recommendation systems.

2)PageRank : It is a popular link analysis

algorithm, that assigns a numerical

weighting to each element, aiming to

measure its relative importance within the

set.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 10

June 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 788

3)KatzMetric : It is a often used link

prediction approach via measuring the

proximity between two nodes in a graph and

is computed as the sum over the collection

of paths between two nodes.

4)ConnectedComponents : It is often

employed to find connected components in a

graph by letting each node propagate its

component ID to its neighbours. The

following graph indicates the relative

computational and communication skew

comparison of SAE with other algorithms

taking a twitter graph as an example .

Figure 2:Computational Skew

Comparison

Figure 3: Communicational Skew

Comparison

VI. CONCLUSION

For social network analysis, the convergence

of straggling FEP may need to experience

significant numbers of iterations and also

needs very large amounts of computation

and communication in each iteration,

inducing serious load imbalance. However,

for this problem, current solutions either

require significant overhead, or cannot

exploit underutilized computers when some

features converged in early iterations, or

perform poorly because of the high load

imbalance among initial tasks. This paper

identifies that the most computational part of

straggling FEP is decomposable. Based on

this observation, it proposes a general

approach to factor straggling FEP into

several sub-processes along with a method

to adaptively distribute these sub-processes

over workers.

VII.REFERENCES

 [1] Z. Song and N. Roussopoulos, “K-

nearest neighbor search formoving query

point,” Lecture Notes in Computer Science,

vol.2121, pp. 79–96, July 2001.

 [2] X. Yu, K. Q. Pu, and N. Koudas,

“Monitoring k-nearest neighbour queries

over moving objects,” in Proceedings of the

21st International Conference on Data

Engineering. IEEE, 2005, pp.631–642.

[3] T. Kanungo, D. M. Mount, N. S.

Netanyahu, C. D. Piatko,R. Silverman, and

A. Y. Wu, “An efficient k-means clustering

algorithm: Analysis and implementation,”

IEEE Transactions on Pattern Analysis and

Machine Intelligence , vol. 24, no. 7,

pp.881–892, July 2002.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 10

June 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 789

[4] L. Di Stefano and A. Bulgarelli, “A

simple and efficient connected components

labelling algorithm,” in Proceedings of the

International Conference on Image Analysis

and Processing. IEEE,1999, pp. 322–327.

[5] E. Deelman, G. Singh, M.-H. Su, J.

Blythe, Y. Gil, C. Kesselman, G. Mehta, K.

Vahi, G. B. Berriman, J. Goodet

al.“Pegasus: A framework for mapping

complex scientific workflows onto

distributed systems,” Scientific

Programming, vol. 13, no. 3, pp. 219–237,

January 2006.

[6] L. Katz, “A new status index derived

from sociometric analysis,”Psychometrika,

vol. 18, no. 1, pp. 39–43, March 1953.

 [7] D. Liben-Nowell and J. Kleinberg, “The

link prediction problem for social

networks,” in Proceedings of the 12th

international conference on Information and

knowledge management. ACM, 2003, pp.

556–559.

 [8] S. Baluja, R. Seth, D. Sivakumar, Y.

Jing, J. Yagnik, S. Kumar,D. Ravichandran,

and M. Aly, “Video suggestion and

discovery for youtube: taking random walks

through the view graph,” in Proceedings of

the 17th international conference on World

Wide Web. ACM, 2008, pp. 895–904.

[9] S. Brin and L. Page, “The anatomy of a

large scale hypertextual web search engine,”

Computer networks and ISDN systems, vol.

30, no. 1, pp. 107–117, April 1998.

[10] S. Baluja, R. Seth, D. Sivakumar, Y.

Jing, J. Yagnik, S. Kumar, D. Ravichandran,

and M. Aly, “Video suggestion and

discovery for youtube: taking random walks

through the view graph,” in Proceedings of

the 17th international conference on World

Wide Web . ACM, 2008, pp. 895–904

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

