
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 11

July2016

Available online:http://internationaljournalofresearch.org/ P a g e | 416

Predictive Migration for Application High Availability

Prashanth Chillabatte
M.Tech, 4th Semester, Computer Engineering

Sri Jayachamarajendra College of Engineering, Mysuru
prashanthchillabatte@gmail.com

Abstract— Customer applications and workloads are
increasingly become complex today as business environments
they serve are very dynamic, competitive and require IT systems
and applications that are highly flexible to serve the changing
needs of businesses. One such need is high availability of
applications and services customer uses, to keep the continuity of
business.

Clustering of machines is one of the approaches used to
achieve high availability. Traditional high availability clustering
solutions involve restarting of business critical applications on
the standby machines in the cluster when the primary machine
goes down. The services rendered by the application would not be
available causing the service downtime proportional to the
complexity of the application.

The crux of the innovation is to use the log messages generated
by the machine and techniques of machine learning such as
xgboost to predict failure and time to failure of the machine, and
before failure impacts application availability take action such as
migration of applications to an healthier machine in the cluster.
Migration doesn’t require restart of applications and services,
which drastically brings down the downtime of the application
and the services rendered by them or completely eliminate it.

Index Terms—Business Continuity, Failure Prediction, High
Availability (HA), Migration, Prediction, Predictive Migration

I. INTRODUCTION
A common problem for high-end server systems or any IT

infrastructure is that customers demand systems that never
fail, but hardware components are inherently prone to failure
causing software’s running on them to fail as well. These
failures have high costs for customers who may experience
loss of service, in some situations, can mean millions of
dollars in revenue loss.

The unplanned downtime even to a tune of few minutes or
few occurrences with sub-minute level downtime in a year is
unacceptable as it causes business disruption, loss of
reputation and regulatory penalties. As Smartphone based e-

commerce is emerging, the demand for highly available IT

services is only increasing and any unplanned or unexpected
downtimes will reduce the competitiveness of business

which in turn may force to windup the business operations.
Similarly with emergence of consuming IT services in a new
way such as Cloud, the cloud service provides and also private
cloud

administrators has to ensure the IT infrastructure they
provide are highly available.

Many IT firms like HP Enterprise, IBM etc., providing IT
infrastructure with foundation layers such as Servers, Storage
and Network have very efficiently proposed and implemented
the idea of clustering as a solution for providing Highly
Available IT infrastructure.

High availability clusters (also known as HA clusters) are
groups of computers that support server applications that can
be reliably utilized with a minimum of down time. They
operate by using high availability software to harness
redundant computers in cluster that provide continued service
when system components fail. Without clustering, if a server
running a particular application crashes, service rendered by
application becomes unavailable until the crashed server is
fixed. HA clusters handle this situation by immediately
restarting the application on another system without requiring
administrative intervention, a process known as failover.

One of the major problems with this classic HA clusters
approach to handle an application or infrastructure failure is
failover. Failover is a process initiated after the occurrence of
the failure in the machine. Failover involves restarting of the
application/service on standby machine in the cluster, which is
a time consuming process and the time required for process
grows exponentially with the complexity of the application
under failover. As far business is concerned the restart time is
considered to be downtime as application will not be able to
render the service.

With ever-growing complexity and dynamicity of IT
infrastructure, proactive failure management is an effective
approach to enhance system dependability. Failure prediction
is the key to such techniques. Failure prediction forecasts

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 11

July2016

Available online:http://internationaljournalofresearch.org/ P a g e | 417

future failure occurrences in the IT infrastructure using
runtime execution states of the system and the history
information of observed failures.

Current work aims at building a prototype for predicting the
failure of a machine by predicting time to failure, which may
be caused due to the failure of any hardware components,
based on the analysis of events log generated by hardware
resources and built-in error analysis engine of the machine.
The event log messages generated are lifeline for predictive
analytics engine which will be part of any clustering solution.
Once a failure is predicted, the cluster would initiate live
migration of an application context to an alternate machine in
the cluster.

Live migration is a process which checkpoints the
applications on the primary machine, finds a healthier machine
in the cluster and transfer the application’s active memory and
current execution state to another machine in real time and
restores the application on the migrated machine from the
point it was check pointed, which brings down the downtime
of the application and services rendered by them to near zero
or completely eliminate it. Figure 1 depicts how overall
system looks like.

Figure 1: Cluster with Predictive Migration Capability

II. RELATED CONCEPTS & WORK

A. High Availability
High availability [17] refers to a system or component that

is continuously operational for a desirably long length of
time. Availability can be measured relative to "100%
operational" or "never failing." A widely-held but difficult-to-
achieve standard of availability for a system or product is
known as "five 9s" (99.999 percent) availability. [15] In 1998,
HP management committed to a new vision for HA in open
systems: 99.999% availability, with no more than five minutes
of downtime per year.

It is [1] paradoxical that the larger a system is, the more

critical is its availability, and the more difficult it is to make it
highly-available. Process control, production control, and
transaction processing applications are the principal
consumers of high-availability systems. Telephone networks,
airports, hospitals, factories, and stock exchanges cannot
afford to stop because of a computer outage. Any loss of
service, whether planned or unplanned, is known as an outage.
Down time is the duration of an outage measured in units of
time (e.g., minutes or hours).

High Availability as Requirement: In the current business
climate, HA computing is a requirement, not a luxury. HA is a
form of insurance against the loss of business due to computer
downtime.

High Availability as Opportunity: Highly available
computing provides a business opportunity, since there is an
increasing demand for “around-the-clock” computerized
services in areas as diverse as banking, financial market
operations, communications, resource management, e-
commerce and etc.

B. System Log Files
System log files are important for managing computer

systems since they provide a history or audit trail of events
[16]. Any change in system status is termed as an event. Given
the log file information it may be possible to determine causes
of events that have occurred. It is also possible to use the
information contained in system log files for predicting events.

System log files are typically text files that consist of
messages sent by applications to the logging service. Syslog is
the configurable general purpose logging application available
for different Unix platforms [16]. Applications send
information to the syslog process, which stores this
information in a text file in the order that they arrive.

Syslog is primarily responsible for managing the log file
while the message content is largely created by the
application.

C. Failure Prediction & Migration
Failure Prediction is about getting information in advance

on any abnormal behavior of a system parameter and
component which can lead to the failure of the entire system.
Predictive analytics techniques enable to do so.

Predictive Analytics is a practice of extracting information
from existing raw data to determine the patterns and predict
future outcomes and trends. Predictive analytics does not tell
what will happen in the future; It forecasts what might happen
in the future with an acceptable level of reliability and
includes what-if scenarios & risk assessment.

Failure: Each module has an ideal specified behavior and
an observed actual behavior. A failure occurs when the actual
behavior deviates from the specified behavior. The failure
occurred because of an error - a defect in the module. The
cause of the error is a fault. The time between the occurrence
of the error and the resulting failure is the error latency. When

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 11

July2016

Available online:http://internationaljournalofresearch.org/ P a g e | 418

the error causes a failure, it becomes effective. Error latency is
also termed as time to failure (TTF) or time to live (TTL).
Figure 2 depicts the relationship between fault, error and
failure.

Figure 2: Relations between Faults, Error and Failure

Predicting the near term future is more clever and
frequently more successful than attempting long term
predictions [2]. Short term predictions are especially helpful to
prevent potential disasters or to limit the damage caused by
computer system failures. Online failure prediction
incorporates measurements of actual system parameters during
runtime in order to assess the probability of failure occurrence
in the near future in terms of seconds or minutes.

Migration [18] refers to the process of moving an
application between different physical machines without
disconnecting the client or application. Memory, storage, and
network connectivity of the application are transferred from
the original guest machine to the destination.

D. XGBoost
XGBoost is short for “Extreme Gradient Boosting”, where

the term “Gradient Boosting” is proposed in the paper Greedy
Function Approximation: A Gradient Boosting Machine, by
Friedman [3]. XGBoost is based on this [3] model. It’s a
supervised learning model. This model is often described as a
blackbox, meaning it works well but it is not trivial to
understand how [19].

XGBoost is known for its fast speed and accurate predictive
power; it also has various functions to help you understand the
model, like assessing the importance of each feature used in
building the model, displaying the trees built to understand the
splits and the interactions between features. Xgboost
implicitly have features like cross validation.

XGBoost has both linear model solver and tree learning
algorithms. Its capacity to do parallel computation on a single
machine makes xgboost at least 10 times faster than existing
gradient boosting implementations. It supports various
objective functions, including regression, classification and
ranking [20].

E. Related Work
A significant body of work has been published in the area of

failure prediction research. Gordon Hughes and Joseph
Murray analyze failure in hard disk drives [4] [5]. Their
general framework is to detect anomalies, or variations from
“normal” behavior, using a rank-sum nullhypothesistest. This
work is limited only to one component of the system. Greg
Hamerly and Charles Elkan also examine failures in disk
drives [6], but use different statistical tests based on naive
Bayesian classifiers.

Erinn Fulp [7] et.al describes new spectrum-kernel support
vector machine approach to predict failure events based on
system log files. There have been several approaches for
predicting system failure using system log files [8-12]. System
log files consist of messages created by the different processes
executing on the system. The information recorded varies
from general messages concerning user logins to more critical
warnings about program failures. Prediction methods include
standard machine learning techniques such as Bayes networks,
Hidden Markov Models (HMM), and Partially Observable
Markov Decision Process (POMDP) [11].

The use of time-series analysis is common among these
methods since a system message in isolation has been shown
to be insufficient for predicting failure [12, 13]. We also
believe that certain sequences of log messages may provide
sufficient information to predict failure. But the large amount
of information available in system log files makes finding the
right pattern(s) difficult.

Significant amount of research is already done in the field
of predicting failure of system. However providing accurate
with sufficient lead time remains a challenging problem. A
piece of information that is lacking in machine predictive
maintenance is a good estimation of Time to Failure [14].

III. PREDICTION MODULE
Prediction module makes the machine learn about normal

functioning conditions of the system and the conditions
leading to the failure of the machine. This module
continuously monitors the machine and detects the conditions
which may lead to the failure of the machine.

Prediction model has 2 parts, first is to build a prediction
model called training the model and second is evaluating the
model called testing. Figure 3 shows the various steps
involved in building prediction model.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 11

July2016

Available online:http://internationaljournalofresearch.org/ P a g e | 419

Figure 3: Prediction Model

Building failure prediction model is not a one-shot process
of building a data set and running a learner, but rather an
iterative process of running the learner, analyzing the results,
modifying the data and/or the learner, and repeating.

A. Labeling Data Set
All machine learning models are based on general principal

of learning from the past experiences. Failure data should be
gathered for training a prediction model. In this process
extracting of instances i.e. data items from software archives
and labeling (TRUE or FALSE) is done. Our prediction model
learns from the log files of various different server machines,
of different types. Log files contain the records for event
resulting in system state change. This log files have records of
events or chain of events that has led to the failure of
machines in the past along with the timing of the events.

Log records do have a specific format as seen in figure 4
consisting of the four fields. First field in the log file is time
object, the time field is the time the message was recorded by
the syslog facility. Second field is the hostname of the
machine sending the message. Third field is the source of the
message, for example kernel or user space and last field are
the actual messages. Message is the text portion of the entry
that describes the event that has occurred.

Log files are searched for entries causing shutdown of the
system. Shutdown entries in the log files might be the results
of planned or unplanned machine shutdown. Log entries
before the shutdown are parsed for containing negative
sentiments indicating critical future events. All matched
shutdown entries are labeled as planned or unplanned based on
the previous messages that have occurred 30 minutes before
the machine shutdown.

Figure 4: Sample HPE Server Log File

Figure 5 shows the shutdown log entry along with entries
containing negative sentiments marked in red box. We label it
as unplanned shutdown.

Figure 5: Labeled Unplanned System Shutdown Log Entry

B. Feature Extraction
Feature extraction is the most important factor in building

any prediction model. This is typically where most of the
effort in a project goes.

Labeled log files generated in the previous step becomes
input for feature selection and extraction. Our prediction
model generates 3 features from every log message entry.

 Sequence Number
 Time to Live/ Time to Failure
 Message

Sequence number is a numerical value assigned to each
message based on its order of entry in the labeled log file. For
each file numbering starts from 1 and incremented with unit of
1 till the last message in the log file is numbered. Sequence
number is unique for each message only within the respective
labeled log file.

Time to Live or Time to Failure is calculated for every
message entry in the log file. TTL or TTF is the time
difference calculated between the shutdown log time and the
message log entry time. TTL or TTF is expressed in units of
seconds.

Message is the plain text portion of the log entry, describing
the event that has occurred due to which system state has
changed.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 11

July2016

Available online:http://internationaljournalofresearch.org/ P a g e | 420

Extracted features are transformed into a CSV file format,
which are used to build the prediction model using XGBoost.

C. Training Prediction Model: XGBoost Lerner
A black box machine learner “XGBoost” is used to build

prediction model using training data set generated in previous
step.

Model of xgboost: Tree Ensembles. Tree ensemble is a set
of classification and regression trees (CART). Usually, a
single tree is not strong enough to be used; xgboost constructs
n numbers of trees with an “Additive Training” strategy i.e.
fix what is learned and add one new tree at a time such that
adding new tree results in better prediction accuracy. Better
prediction accuracy comes with reduction in training loss.
Prediction from multiple trees is added.

Tree boosting i.e. learning tree takes general principal of
defining an objective function and optimizing it. Objective
function consists of two parts: training loss and regularization
as denoted in equation 1.

 푂푏푗(휃) = 퐿(휃) +Ω(휃) (1)

L is training loss function and Ω is regularization term. The
training loss measures how predictive our model is on training
data. Root mean squared error (RMSE) is used as training loss
function. Regularization term controls the complexity of the
model, which helps avoid overfitting of the model. We define
complexity as shown in equation 2.

 Ω(f) = ΥT + (1/2)λ ∑ ω (2)

T is the number of leaves in the tree, f denotes tree, ω is the
vector of scores on leaves, and ߓ and ߣ are constants.

Xgboost validates the addition of trees using cross
validation. Divides the training data in nfold parts; xgboost
retains the first part to use it as test data and constructs tree
from rest data folds. It reintegrates the first part to the training
dataset and retains the second part, do training and so on.

Xgboost only works with numeric data types convert all
categorical features to numeric type. Assign values to default
parameters and run the learner on training data set. Xgboost
returns the trained prediction model along with feature
importance object and tress built.

D. Prediction & Assessment
Training phase builds the prediction model, which is

evaluated by testing with different test data log files. The same
process of feature extraction is done for test log files also.
Extracted feature instance is applied on the built prediction
model. Prediction model gives us the predicted time to
live/time to failure for every message in test data set.

IV. MIGRATION
Migration is responsible for live migration of applications

from one machine to another in the cluster. Whenever
predicted time to failure of the machine for a log message is
less than threshold, migration is triggered.

Migration involves dumping and restoring processes
running on two different machines in the cluster. Dumping
process runs on machine triggering migration called dumping
node, restoring process running on the machine where
applications are migrated to called restoring node.

Migration is a synchronized process between dumping and
restoring nodes. Both the process mounts temporary file
system on the respective nodes.

Dumping process triggers launching a page server on the
restoring node. Page Server accepts pages from dumping node
and puts them into tmpfs mount on restoring node. Dumping
node does not store any images.

Migrating application is identified on dumping node, copy
application running context, memory images to the restoring
node. On successful restore of the migrating application,
temporary file systems are unmounted and applications are
killed.

Restoring process responds to the dumping process by
launching page server to accept application images. After
copying images files, applications migrated are restored and
temporary file systems are unmounted.

On successful completion of restore process,
application/packages on dumping node are stopped. Figure 6
gives the pictorial representation of the migration module.

Figure 6: Steps Involved in Migration Process

CRIU an open community tool is used for migration of
application in user-space. Checkpoint/Restore In User-space is
a software tool for Linux operating system. Using this tool,
running application can be migrated in user-space.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 11

July2016

Available online:http://internationaljournalofresearch.org/ P a g e | 421

V. RESULTS
The evaluation of a prediction model requires a testing data

set besides a training data set. The labels of instances in the
testing set are predicted and the prediction model is evaluated
by comparing the prediction and real labels. Labeled log files
obtained in first step is divided into training and testing data
set. 70% of the labeled log files are used as training data set
and remaining 30% is used for testing the built prediction
model. Failure prediction model is tested for different testing
data sets, results of two such data sets is given in figure 7 and
8. Figure shows predicted value of TTL with actual value of
TTL. Predicted TTL deviates not more than 1minute or 60
seconds from actual TTL value.

Figure 7: Test Results of Data Set 1 in Excel Format

Figure 8: Test Results of Data Set 2 in Console

Migration process is tested for migration of a running
application and memory updates by the migrated application
on migrated machine.

Note the process id(PID) of the application before migrating
on source machine. Figure 9 highlights the PID of migrating
application with yellow box and source machine name is
highlighted with maroon box.

After migration, look for PID of the migrated application on
destination machine. Figure 10 highlights the PID of migrated
process on destination machine highlighted with maroon box.

Presence of PID of migrated application on destination
machine marks the successful completion of application

migration.
Current implementation migrates an application that

updates a text file regularly with the system time instance.
Figure 11 shows the file under updation and few entries of the
same on source node before migration. Figure 12 shows the
presence of same file on destination node after migration.

Figure 9: Applications PID on Source Node

Figure 10: Migrated Applications PID on Destination Node

Presence of text file to which time instance are written on
destination node marks the successful migration of application
memory and run time updating to the same text file concludes
the running state of application after migration. Running
application is migrated i.e. live migration.

Figure 11: Application File Write on Source Node before Migration

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 11

July2016

Available online:http://internationaljournalofresearch.org/ P a g e | 422

Figure 12: Application Writes on Destination Node after Migration

VI. CONCLUSION
Large-scale and complex IT infrastructure centers are

susceptible to software and hardware failures, which
significantly affect the system performance and management.
In this work, we present a failure prediction and live migration
mechanism for achieving high availability.

Log files typically contain useful information about system
failures. These files record the history of the system’s state
which provides information to determine the causes of critical
events. Although log file analysis has been primarily
performed after an event has occurred, increasingly this
information is being used to predict events. We propose to use
tree ensemble based XGBoost learner model to build failure
prediction model based on the information contained in log
files.

In this work we implement a prototype of live migration of
applications using open software CRIU in user-space.
Experimental results show that our proposed model can
forecast failure dynamics with high accuracy and migrates
applications in user-space.

Both proposed prototype models need more enhancements
and fine tuning to deploy in complex and large scale IT
infrastructures to achieve HA. We need several ten thousand
or lakhs of failure event logs with system monitoring daemons
running to build more generic and scalable prediction model.

Acknowledgment

Gratitude takes three forms-“A feeling from heart, an
expression in words and a giving in return”. I take this
opportunity to express my heart-felt feelings.

I feel great to express my gratefulness to my guide Dr.
Roopamala T D, Associate Professor, department of CS&E,
for her guidance and for being source of motivation and
support throughout this work.

I feel great to express my gratefulness to Mr.
Bhakthavatsala Naidu, Master Architect, SETL lab, HP
Enterprise, Bangalore, for his guidance and for being source
of motivation and support throughout this work.

I feel great to express my gratefulness to Mr. Arun
Ramachandran, SETL lab, HP Enterprise, Bangalore, for his

guidance and support throughout this work.
I would like to thank all those people who have directly or

indirectly helped me successfully complete this work.

REFERENCES
[1] Jim Gray and Daniel P. Siewiorek. “High Availability

Computer Systems”, High Availability Paper for IEEE
Computer Magazine Draft.

[2] Felix Salfner, Maren Lenk, and Miroslaw Malek. “A Survey of
Online Failure Prediction Methods”, ACM Journal Name, 2005.

[3] Jerome H. Friedman. “Greedy Function Approximation: A
Gradient Boosting Machine”, IMS 1999 Reitz Lecture,
February 24 1999.

[4] Hughes G, Murray J, Kreutz-Delgado K. and Elkan C.
“Improved disk-drive failure warnings”, In IEEE Transactions
on Reliability, vol. 51, no. 3, September 2002.

[5] Murray J, Hughes G, and Kreutz-Delgado K.“Hard drive failure
prediction using non-parametric statistical methods”, In Proc.
ICANN/ICONIP, June 2003.

[6] Hamerly G, and Elkan C. “Bayesian approaches to failure
prediction for disk drives”, In Proceedings of the Eighteenth
International Conference on Machine Learning, 2001.

[7] Errin W. Fulp, Glenn A.Fink and Jereme N.Haack. “Predicting
Computer system Failure using Support Vector Machine”.

[8] FU S, and XU C.-Z. “Exploring event correlation for failure

prediction in coalitions of clusters”, In Proceedings of the
IEEE/ACM International Conference on High Performance
Computing, Networking, Storage and Analysis, 2007.

[9] Liang Y, Zhang Y, Xiong H, and Sahoo R. “Failure prediction

in ibm bluegene/l event logs”, In Proceedings of the IEEE
International Conference on Data Mining, 2007.

[10] Stearley J, and Oliner A. J. “Bad words: Finding faults in

Spirit‘s syslogs”, In Proceedings of the 8th IEEE International
Symposium on Cluster Computing and the Grid, 2008.

[11] Xue Z, Dong X, MA S, and Dong W. “A survey on failure

prediction of large-scale server clusters”, In Proceedings of the
International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing,
2007.

[12] Yamanishi K, and Maruyama Y. “Dynamic syslog mining for

network failure monitoring”, In Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, 2005.

[13] Pinheiro E, Weber W.-D, and Barroso L. A. “Failure trends in a

large disk drive population”, In Proceedings of the USENIX
Conference on File and Storage Technologies, 2007.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 11

July2016

Available online:http://internationaljournalofresearch.org/ P a g e | 423

[14] Stearley J, and Oliner A. J. “Bad words: Finding faults in
Spirit‘s syslogs”, In Proceedings of the 8th IEEE International
Symposium on Cluster Computing and the Grid, 2008.

[15] “Clusters for High Availability”, 2nd edition, Pearson

Education 2001.

[16] Garfinkel, S. “Practical UNIX and Internet Security”, O’Reilly,

2003.

[17] http://searchdatacenter.techtarget.com/definition/high-
availability

[18] https://en.wikipedia.org/wiki/Live_migration

[19] https://www.kaggle.com/tqchen/otto-group-product-

classification-challenge/understanding-xgboost-model-on-otto-
data/notebook

[20] http://www.analyticsvidhya.com/blog/2016/01/xgboost-

algorithm-easy-steps/

