
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Is s ue 11

Ju ly 2016

Availableonline:http://internationaljournalofresearch.org/ P a g e | 468

 A NEW AUTHORIZED SECURE DEDUPLICATION SCHEME IN MULTI -CLOUD ENVIRONMENT

1 J. SREELAKSHMI, 2 C. MADHURI YASHODA

 1M.Tech Dept of CSE, BIT Institute of Technology, Affiliated to JNTUA, AP, India .
2Assistant Professor, Dept of CSE, BIT Institute of Technology, Affiliated to JNTUA, AP, India

Abstract— Recent years have been witnessed the trend of

leveraging cloud-based resources and services for large

scale content storage space, processing, and distribution.

Privacy and security are among top concerns for the public

cloud environments. Towards these security challenges, we

propose and implement, on OpenStack Swift and a new

client-side deduplication method for securely storing and

sharing outsourced data passing through the public cloud.

The creativity of our proposal is twofo ld. First, it ensures

better privacy towards not permitted users. That is, every

client computes a per data key to encrypt the data that he

intends to accumulate in the cloud. As such, the data right to

use is maintained by the data owner. Second, by Combining

access rights in metadata file, an certified user can decode

an encrypted file only with his private key.

 Keywords –Cloud Storage, Data Security, Deduplication,

Confidentiality, Proof of Ownership.

I. INTRODUCTION

 W ith the quickly growing amounts of data shaped

worldwide, networked and multi-user storage systems are

flattering very popular. However, concerns over data

security still prevents many users from migrating data to

remote storage. The conventional solution is to encrypt the

data before it leaves the owner’s premises. While sound

from a security standpoint, this approach prevents the

storage provider from effectively applying storage

effectiveness functions, such as compression and

deduplication, which would permit optimal practice of the

resources and accordingly lesser service cost. Client-side

data deduplication in exacting ensures that mult iple uploads

of the same content only swig network bandwidth and

storage space of a single upload. Deduplication is

energetically used by a number of cloud support providers

(e.g. Bitcasa) and various cloud services Unfortunately,

encrypted data is pseudorandom and thus cannot be

deduplicated: as a significance, current approaches have to

entirely forgo either security or storage efficiency. In this

paper, we present a scheme that permits a more fine-grained

trade-off. The intuition is that outsourced data may require

different levels of protection, depending on how popular it

is: content shared by many users, such as a popular song or

video, arguably requires less protection than a personal

document, the copy of a payslip or the draft of an

unsubmitted scientific paper. Around this intuition we build

the following contributions: (i) we present Eµ, a novel

threshold cryptosystem (which can be of independent

interest), together with a security model and formal security

proofs, and (ii) we commence a scheme that uses Eµ as a

building block and enable to control popularity to achieve

both security and storage efficiency. Finally, (iii) we talk

about its overall security. But customers may want their data

encrypted, for reasons ranging from personal privacy to

corporate policy to legal regulations. A client could encrypt

its file, under a user’s key, before storing it. But common

encryption modes are randomized, making deduplication

impossible since the SS (Storage Service) effectively always

sees different ciphertexts regardless of the data. If a client’s

encryption is deterministic (so that the same file will always

map to the same ciphertext) deduplicat ion is possible, but

only for that user. Cross-user deduplication,which allows

more storage savings, is not possible because encryptions of

different clients, being under different keys, are usually

different. Sharing a single key across a group of users makes

the system brittle in the face of client compromise.One

approach meant at resolving this anxiety is message-locked

encryption (MLE) . Its the majority famous instantiation is

convergent encryption (CE), introduced earlier by Douceur

et al. [2] and others . CE is used within a wide variety of

commercial and research SS systems [1, 2, 5, 6, 8, 12, 15,

32,33, 55, 60, 66, 71, 78, 79]. Letting M be a file’s contents,

hereafter called the message, the client first computes a key

K ← H(M) by applying a cryptographic hash function H to

the message, and then computes the ciphertext C ← E(K, M)

via a deterministic symmetric encryption scheme. The short

message-derived key K is stored separately encrypted under

a per-client key or password. A second client B encrypting

the same file M will produce the same C, enabling

deduplication However, CE is subject to an inherent

security limitation, namely susceptibility to offline b rute-

force dict ionary attacks. Knowing that the target message M

underlying a target ciphertext C is drawn from a d ictionary

S = {M1,..., Mn } of size n, the attacker can recover M in

the time for n = |S| off-line encryptions: for each i = 1,..., n,

it simply CE-encrypts Mi to get a ciphertext denoted Ci and

returns the Mi such that C = Ci . (This works because CE is

deterministic and keyless.) Security is thus only possible

when the target message is drawn from a space too large to

exhaust. We say that such a message is unpredictable. The

https://edupediapublications.org/journals
http://internationaljournalofresearch.org/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Is s ue 11

Ju ly 2016

Availableonline:http://internationaljournalofresearch.org/ P a g e | 469

unpredictability assumption. The above-mentioned work

puts security on a firm footing in the case messages are

unpredictable. In practice, however, security only for

unpredictable data may be a limitation for, and threat to,

user privacy. We suggest two main reasons for this. The

first is simply that data is often predictable. Parts of a file’s

contents may be known, for example because they contain a

header of known format, or because the adversary has

sufficient contextual information. Some data, such as very

short files, are inherently low entropy. This has long been

recognized by cryptographers [43], who typically aim to

achieve security regardless of the distribution of the

data.The other and perhaps more subtle fear with regard to

the unpredictability assumption is the difficu lty of validating

it or testing the extent to which it holds for “real” data.

When we do not know how predictable our data is to an

adversary, we do not know what, if any, security we are

getting from an encryption mechanis m that is safe only for

unpredictable data. These concerns are not merely

theoretical, for offline d ictionary attacks are recognized as a

significant threat to CE in real systems [77] and are

currently hindering deduplication of outsourced storage for

security-critical data.This work. We design and implement a

new system called DupLESS (Duplicateless Encryption for

Simple Storage) that provides a more secure, easily-

deployed solution for encryption that supports

deduplication. In DupLESS, a group of affiliated clients

(e.g., company employees) encrypt their data with the aid of

a key server (KS) that is separate from the SS. Clients

authenticate themselves to the KS, but do not leak any

informat ion about their data to it. As long as the KS remains

inaccessible to attackers, we ensure high security.

(Effectively, semantic security , except that ciphertexts

leak equality of the underlying plaintexts. The latter is

necessary for deduplication.) If both the KS and SS are

compromised, we retain the current MLE guarantee of

security for unpredictable messages.

II. EXISTING SYSTEM

 DupLESS starts with the observation that brute-force

ciphertext recovery in a CE-type scheme can be dealt with

by using a key server (KS) to derive keys, instead of setting

keys to be hashes of messages. Access to the KS is preceded

by authentication, which stops external attackers. The

increased cost slows down brute-force attacks from

compromised clients, and now the KS can function as a

(logically) single point of control for implementing rate-

limit ing measures. We can expect that by scrupulous choice

of rate-limiting policies and parameters, b rute-force attacks

originating from compromised clients will be rendered less

effective, while normal usage will remain unaffected.

 We start by looking at secret-parameter MLE, an

extension to MLE which endows all clients with a

systemwide secret parameter sk (see Section 4). The

rationale here is that if sk is unknown to the attacker, a high

level of security can be achieved (semantic security, except

for equality), but even if sk is leaked, security falls to that of

regular MLE. A server-aided MLE scheme then is a

transformation where the secret key is restricted to the KS

instead of being available to all clients. One simple

approach to get server-aided MLE is to use a PRF F, with a

secret key K that never leaves the KS. A client would send a

hash H of a file to the KS and receive back a message-

derived key K← F(K, H). The other steps are as in CE.

However, th is approach proves unsatisfying 3 from a

security perspective. The KS here becomes a single point of

failure, vio lating our goal of compromise resilience:n

attacker can obtain hashes of files after gain ing access to the

KS, and can recover files with bruteforce attacks. Instead,

DupLESS employs an oblivious PRF (OPRF) protocol [64]

between the KS and clients, which ensures that the KS

learns nothing about the client inputs or the resulting PRF

outputs, and that clients learn nothing about the key. In

Section 4, we propose a new server-aided MLE scheme

DupLESSMLE which combines a CE-type base with the

OPRF protocol based on RSA blind-signatures [20, 29, 30].

Thus, a client, to store a file M, will engage in the RSA

OPRF protocol with the KS to compute a message derived

key K, then encrypt M with K to produce a ciphertext Cdata.

The client’s secret key will be used to encrypt K to produce

a key encapsulation ciphertext Ckey.Both Ckey and Cdata

are stored on the SS. Should two

clients encrypt the same file, then the message-derived keys

and, in turn, Cdata will be the same (the key encapsulation

Ckey will differ, but this ciphertext is small). Building a

system around DupLESSMLE requires careful design in

order to achieve h igh performance. DupLESS uses at most

one or two SS API calls per operation. (As we shall see, SS

API calls can be slow.) Because interacting with the KS is

on the critical path for storing files, Dup LESS incorporates

a fast client to KS protocol that supports various rate-

limit ing strategies. When the KS is overloaded or subjected

to denial of service attacks, DupLESS clients fall back to

symmetric encryption, ensuring availability. On the client

side, DupLESS introduces dedup heuristics to determine

whether the file about to be stored on the SS should be

selected for deduplication, or processed with randomized

encryption. For example, very small files or files considered

particularly sensitive can be prevented from deduplicat ion.

We use determin istic authenticated encryption (DAE) to

protect, in a structure preserving way, the path and filename

associated to stored files. Here we have several choices

along an efficiency/security continuum. Our approach of

preserving folder structure leaks some in formation to the SS,

but on the other hand, enables direct use of the SS-provided

https://edupediapublications.org/journals
http://internationaljournalofresearch.org/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Is s ue 11

Ju ly 2016

Availableonline:http://internationaljournalofresearch.org/ P a g e | 470

API for file search and moving folders.DupLESS is

designed for a simple SS API, but can be adapted to settings

in which block-oriented deduplication is used, and to

complex network storage and backup solutions that use

NFS , CIFS and the like, but we do not consider these

further.Several deduplication schemes have been anticipated

by the research community showing how deduplication

allows very appealing reductions in the usage of storage

resources . Most works do not consider security as a concern

for deduplicating systems; recently however, Harn ik et al. [7]

have presented a number of attacks that can lead to data

leakage in storage systems in which client-side

deduplication is in place. To thwart such attacks, the

concept of proof of ownership has been introduced [8, 9].

None of these works, however, can provide real end-user

confidentiality in presence of a malicious or honest-but-

curious cloud provider. Convergent encryption is a

cryptographic primit ive introduced by Douceur et al. [1, 2],

attempting to combine data confidentiality with the

possibility of data deduplication. Convergent encryption of

a message consists of encrypting the plaintext using a

deterministic (symmetric) encryption scheme with a key

which is deterministically derived solely from the plaintext.

Clearly, when two users independently attempt to encrypt

the same file, they will generate the same ciphertext which

can be easily deduplicated. Unfortunately, convergent

encryption does not provide semantic security as it is

vulnerable to content-guessing attacks. Later, Bellare et al.

formalized convergent encryption under the name message-

locked encryption. As expected, the security analysis

presented in highlights that message-locked encryption

offers confidentiality for unpredictable messages only,

clearly failing to achieve semantic security. Xu et al. [3]

present a PoW scheme allowing client-side deduplication in

a bounded leakage setting. They provide a security proof in

a random oracle model for their solution, but do not address

the problem of low min-entropy files. Recently, Bellare et al.

presented DupLESS [4], a server-aided encryption for

deduplicated storage. Similarly to ours, their solution uses a

modified convergent encryption scheme with the aid o f a

secure component for key generation. While DupLESS

offers the possibility to securely use server-side

deduplication, our scheme targets secure client-side

deduplication.

III. PROPOSED SYSTEM

 We implemented a fully functional DupLESS client. The

client was written in Python and supports both Dropbox [3]

and Google Drive [7]. It will be straightforward to extend

the client to work with other services which export an API s.

The client uses two threads during store operations in order

to parallelize the two SS API requests. The client takes user

credentials as inputs during startup and provides a command

line interface fo r the user to type in commands and

arguments. When using Google Drive, a user changing

directory prompts the client to fetch the file list ID map

asynchronously. We used Python’s SSL and Crypto libraries

for the client-side crypto operations and used the OPRFv2

KS protocol. We now describe the experiments we ran to

measure the performance and overheads of DupLESS.We

will compare both to direct use of the underlying SS API

(no encryption) as well as when using a version of

DupLESS modified to implement just MLE, in part icular

the convergent encryption (CE) scheme, instead of

DupLESSMLE. This variant computes the message derived

key K by hashing the file contents, thereby avoiding use of

the KS. Otherwise the operations are the same. Test setting

and methodology. We used the same machine as for the KS

tests. Measurements involving the network were repeated

100 t imes and other measurements were repeated 1,000

times. We measured running times using the time it Python

module. Operations involving files were repeated using files

with random contents of size 2 2i KB for i ∈ {0, 1,..., 8},

giving us a file size range of 1 KB to 64 MB. Storage and

retrieval latency. We now compare the time to store and

retrieve files using DupLESS, CE, and the plain SS. Figure

7 (top left chart) reports the median t ime for storage using

Dropbox. The latency overhead when storing files with

DupLESS starts at about 22% for 1 KB files and reduces to

about 11% for 64 MB files. As we mentioned earlier,

Dropbox and Google Drive exh ib ited significant variation in

overall upload and download times. To reduce the effect of

these variations on the observed relative performance

between DupLESS over the SS, CE over the SS and plain

SS, we ran the tests by cycling between the three settings to

store the same file, in quick succession, as opposed to, say,

running all plain Dropbox tests first. We adopted a similar

approach with Google Drive.

 We observe that the CE (Convergent Encryption) store

times are close to DupLESS store times, since the KSReq

step, which is the main overhead of DupLESS w.r.t CE, has

been optimized for low latency. For example, median CE

latency overhead for 1 KB files over Dropbox was 15%. Put

differently, the overhead of moving to DupLESS from using

CE is quite small, compared to that of using CE over the

base system. Relat ive retrieval latencies for DupLESS over

Dropbox were lower than the store latencies, starting at

about 7% for 1 KB files and reducing to about 6% for 64

MB files. Performance with Google Drive fo llows a similar

trend, with overhead for DupLESS ranging from 33% to 8%

for storage, and 40% to 10% for retrieval, when file sizes go

from 1 KB to 64 MB.These experiments report data only for

files larger than 1 KB, as smaller files are not selected for

deduplication by canDedup. Such files are encrypted with

non-dedupable, randomized encryption and latency

overheads for storage and retrieval in these cases are

https://edupediapublications.org/journals
http://internationaljournalofresearch.org/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Is s ue 11

Ju ly 2016

Availableonline:http://internationaljournalofresearch.org/ P a g e | 471

negligible in most cases. The main intuition behind our

scheme is that there are scenarios in which data requires

different degrees of protection that depend on how popular a

datum is. Let us start with an example: imagine that a

storage system is used by mult iple users to perform fu ll

backups of their hard drives. The files that undergo backup

can be divided into those uploaded by many users and those

uploaded by one or very few users only. Files falling in the

former category will benefit strongly from deduplication

because of their popularity and may not be particularly

sensitive from a confidentiality standpoint. Files falling in

the latter category, may instead contain user-generated

content which requires confidentiality, and would by

definit ion not allow reclaiming a lot of space via

deduplication. The same can be said about common b locks

of shared VM images, mail attachments sent to several

recipients, to reused code snippets, etc. This intuition can be

implemented cryptographically using a mult i-layered
cryptosystem. A ll files are initially declared unpopular and

are encrypted with two layers, as illustrated in Figure 1: the

inner layer is applied using a convergent cryptosystem,

whereas the outer layer is applied using a semantically

secure threshold cryptosystem. Uploaders of an unpopular

file attach a decryption share to the ciphertext. In this way,

when sufficient distinct copies of an unpopular

IV. CONCLUSION

This work deals with the inherent tension between well

established storage optimizat ion methods and end-to-end

encryption. Differently from the approach of related works,

that assume all files to be equally security-sensitive, we vary

the security level of a file based on how popular that file is

among the users of the system. We present a novel

encryption scheme that guarantees semantic security for

unpopular data and provides weaker security and better

storage and bandwidth benefits for popular data, so that data

deduplication can be applied for the (less sensitive) popular

data. Files transition from one mode to the other in a

seamless way as soon as they become popular. We show

that our protocols are secure under the SXDH Assumption.

In the future we plan to deploy and test the proposed

solution and evaluate the practicality of the notion of

popularity and whether the strict popular/unpopular

classification can be made more fine-grained. Also, we plan

to remove the assumption of a trusted indexing service and

explore d ifferent means of securing the indexes of

unpopular files.

V. REFERENCES

[1] M. Bellare, S. Keelveedhi, and T. Ristenpart. Dupless:

Serveraided encryption for deduplicated storage. In

USENIX Security Symposium, 2013.

[2] M. Bellare, S. Kee lveedhi, and T. Ristenpart. Message-

locked encryption and secure deduplication. In

EUROCRYPT, pages 296–312, 2013.

[3] M. Bellare, C. Namprempre, and G. Neven. Security

proofs for identity-based identification and signature

schemes. J. Cryptology,22(1):1–61, 2009.

[4] M. Bellare and A. Palacio. Gq and schnorr identification

schemes:Proofs of security against impersonation under

active and concurrent attacks. In CRYPTO, pages 162–177,

2002.

[5] S. Bugiel, S. Nurnberger, A. Sadeghi, and T. Schneider.

Twin clouds: An architecture for secure cloud computing. In

Workshop on Cryptography and Security in Clouds (WCSC

2011), 2011.

[6] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and

M. Theimer. Reclaiming space from duplicate files in a

serverless distributed file system. In ICDCS, pages 617–624,

2002.

[7] D. Ferraio lo and R. Kuhn. Role-based access controls. In

15th NIST-NCSC National Computer Security Conf., 1992.

 [8] J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou. Secure

deduplication with efficient and reliab le convergent key

management. In IEEE Transactions on Parallel and

Distributed Systems, 2013.

https://edupediapublications.org/journals
http://internationaljournalofresearch.org/

