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 Abstract: 

 

Finite Impulse Response (FIR) filters are 

widely applied in multi-standard wireless 

communications. A novel efficient 

algorithms and architectures have been 

introduced for the design of low complexity 

bit-parallel multiple constant multiplications 

(MCM) operation which dominates the 

complexity of many digital signal 

processing systems. In digit-serial MCM 

design that offers low complexity MCM 

operations that offers a low delay. In this 

previous design a MCM operations 

performed by CSE algorithm. A new greedy 

CSD adder graph multiplier based algorithm 

based on Canonic Signed Digit (CSD) 

representation of coefficients multipliers for 

implementing low complexity higher order 

FIR filters.  
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Filters, CSD – Canonic Signed-Digit 

Multiplier, CSE- Common Sub-expression 
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I. INTRODUCTION  

Finite impulse response (FIR) filters are of 

great importance in digital signal processing 

(DSP) systems since their characteristics in 

linear-phase and feed-forward 

implementations make them very useful for 

building stablehigh-performance filters. The 

direct and transposed-form FIRfilter 

implementations are illustrated in Fig. 1(a) 

and (b), respectively. Although both 

architectures have similar complexity in 

hardware, the transposed form is generally 

preferred because of its higher 

performance and power efficiency [1]. The 

multiplier block of the digital FIR filter in its 

transposed form [Fig. 1(b)], where the 

multiplication of filter coefficients with the 

filter input is realized, has significant impact 

on the complexity and performance of the 

design because a large number of constant 

multiplications are required. This is 

generally known as the multiple constant 

multiplications(MCM) operation and is also 

a central operation and performance 

bottleneck in many other DSP systems such 

as fast Fourier transforms, discrete cosine 

transforms (DCTs), and error-correcting 

codes. Although area-, delay-, and power-

efficient multiplier architectures, such as 

Wallace [2] and modified Booth [3] 

multipliers, have been proposed, the full 

flexibility of multiplier is not necessary for 

the constant multiplications, since filter 

coefficients are fixed and determined 

beforehand by the DSP algorithms [4]. 

Hence, the multiplication of filter 

coefficients with the input data is generally 

implemented under a shift-adds 

architecture [5], where each constant 

multiplication is realized using 

addition/subtraction and shift operations in 

an MCM operation [Fig. 1(c)]. 
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For the shift-adds implementation of 

constant multiplicat-ions, a straightforward 

method, generally known as digit based 

recoding [6], initially defines the constants 

in binary. Then, for each “1” in the binary 

representation of the constant, according to 

its bit position, it shifts the variable and add 

sup the shifted variables to obtain the result. 

As a simple example, consider the constant 

multiplications 29x and 43x.Their 

decompositions in binary are listed as 

follows: 
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Exact GB algorithm.  

However, the digit-based recoding technique 

does not exploit the sharing of common 

partial products, which allows great 

reductions in the number of operations and, 

consequently, in area and power dissipation 

of the MCM design at the gate level. Hence, 

the fundamental optimization problem, 

called the MCM problem, is defined as 

finding the minimum number of addition 

and subtraction operations that implement 

the constant multiplications. Note that, in 

bit-parallel design of constant 

multiplications, shifts can be realized using 

only wires in hardware without representing 

any area cost. The algorithms designed for 

the MCM problem can be categorized in two 

classes: common sub expression elimination 

(CSE) algorithms [7]–[9] and graph-based 

(GB) techniques[10]–[12]. The CSE 

algorithms initially extract all possible sub 

expressions from the representations of the 

constants when they are defined under 
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binary, canonical signed digit (CSD) [7], or 

minimal signed digit (MSD) [8]. Then, they 

find the “best” sub expression, generally the 

most common, to be shared among the 

constant multiplications. The GB methods 

are not limited to any particular number 

representation and consider a larger number 

of alternative implementations of a constant, 

yielding better solutions than the CSE 

algorithms, as shown in [11] and [12]. 

Returning to our example in Fig. 2, the exact 

CSE algorithm of [9] gives a solution with 

four operations by finding the most common 

partial products 3x = (11)binx and 5x = 

(101) binx when constants are defined under 

binary, as illustrated in Fig.2(b). On the 

other hand, the exact GB algorithm [12] 

finds a solution with the minimum number 

of operations by sharing the common partial 

product 7x in both multiplications, as shown 

in Fig. 2(c). Note that the partial product 7x 

=(111) binx cannot be extracted from the 

binary representation of 43x in the exact 

CSE algorithm [9].However, all these 

algorithms assume that the input data x is 

processed in parallel. On the other hand, in 

digit-serial arithmetic, the data words are 

divided into digit sets, consisting of d bits 

that are processed one at a time [13]. Since 

digit serial operators occupy less area and 

are independent of the data word length, 

digit-serial architectures offer alternative 

low complexity designs when compared to 

bit-parallel architectures. However, the 

shifts require the use of D flip-flops, as 

opposed to the bit-parallel MCM design 

where they are free in terms of hardware. 

Hence, the high- level algorithms should take 

into account the sharing of shift operations 

as well as the sharing of addition/subtraction 

operations in digit-serial MCM design. 

Furthermore, finding the minimum number 

of operations realizing an MCM operation 

does not always yield an MCM design with 

optimal area at the gate level [14]. Hence, 

the high- level algorithms should consider 

the implementation cost of each digit-serial 

operation at the gate level. 

In this paper, we initially determine the gate-

level implementation costs of digit-serial 

addition, subtraction, and left shift 

operations used in the shift-adds design of 

digit-serial MCM operations. Then, we 

introduce the exact CSE algorithm [15] that 

formalizes the gate- level area optimization 

problem as a 0–1 integer linear 

programming (ILP) problem when constants 

are defined under a particular number 

https://edupediapublications.org/journals
http://internationaljournalofresearch.org/


   International Journal of Research 
 Available at https://edupediapublications.org/journals 

p-I SSN: 2348 -6848  
e-I SSN: 23 48-795X 

Vol ume 03  I s s ue 11  
Jul y 2016  

 
 
 

Available online :http://internationaljournalofresearch.org/ P a g e  | 859  

representation. We also present a new 

optimization model that reduces the 0–1 ILP 

problem size significantly and, 

consequently, the runtime of a generic 0–1 

ILP solver. Since there are still instances 

which the exact CSE algorithm cannot 

handle, we describe the approximate GB 

algorithm [16] that iteratively finds the 

“best” partial product which leads to the 

optimal area in digit-serial MCM design at 

the gate level. This paper also introduces a 

computer-aided design (CAD) tool called 

SAFIR which generates the hardware 

descriptions of digit-serial MCM operations 

and FIR filters based on design architecture 

and implements these circuits using a 

commercial logic synthesis tool. In SAFIR, 

the digit-serial  

constant multiplications can be implemented 

under the shift adds architecture, and also 

can be designed using generic digit serial 

constant multipliers [17]. 

In this proposed different graph based 

multipliers types i.e. CSD – canonic signed-

digit multiplier, MSD – minimum signed-

digit multiplier MAG – minimum adder 

graph multiplier, CSDAG – CSD adder 

graph multiplier. They are used for low 

complexity, low power and low 

areaapplications. The section II explains the 

complexity of serial constant multipliers. 

Section III explains graph based multipliers. 

Section IV explains results and analysis. 

II. COMPLEXITYOF SERIALCONSTANT 

MULTIPLIERS  

In this chapter, the possibilities to minimize 

the complexity of bit-serial single-constant 

multipliers are investigated [57]. This is 

done in terms of the required number of 

building blocks, which includes adders and 

shifts. The multipliers are described using a 

graph representation. It is shown that a 

minimum set of graphs, required to obtain 

optimal results given certain restrictions, can 

be found. In the case of single-constant 

multipliers, the number of possible solutions 

can be limited because of the finite number 

of graph topologies. However, if a shift-and-

add network realizing several coefficients is 

required, a multiple-constant multiplication 

(MCM) problem is obtained. Different 

heuristic algorithms can then be used to 

reduce the complexity, by utilizing the 

redundancy between the coefficients. Two 

algorithms suitable to achieve efficient 

realization of MCM using serial arithmetic 

are presented [56],[62],[66]. It is shown that 

the new algorithms reduce the total 
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complexity significantly. Furthermore, we 

study the trade-offs in implementations of 

FIR filters using MCM and digit-serial 

arithmetic. Comparisons considering area, 

speed, and energy consumption, with respect 

to the digit-size, are performed[61],[67]. 

II. GRAPH MULTIPLIERS  

In this section, different types of single-

constant graph multipliers will be defined, 

with respect to constraints on adder cost and 

throughput. Furthermore, the possibilities to 

exclude some graphs from the search space 

are examined. The investigation covers all 

coefficients up to 4095 and all types of 

graph multipliers containing up to four 

adders. All possible graphs, using the 

representation discussed in Section 3.1, for 

adder costs from 1 to 4are presented in Fig.3 

[24].Note that although bit-serial arithmetic 

will be assumed for the multipliers, results 

considering adder and flip-flop costs are 

generally also valid for any digit-serial 

implementation. However, the numbers of 

registers that are required to perform 

pipelining depend on the digit-size. 

Furthermore, the cost difference between 

adders and shifts becomes higher for larger 

digit-sizes, since the number of full adders 

increases linearly while the number of flip-

flops is constant. Hence, such trade-offs are 

mainly of interest for small digit-sizes.  

A. Multiplier Types  

Different multiplier types can be defined 

based on the requirements considering adder 

cost, flip- flop cost, and pipelining. The types 

that will be discussed here are described in 

the following.  

CSD – Canonic Signed-Digit multiplier: 

Multiplier based on the CSD representation, 

as discussed in Section 4.1, withan added 

cost equal to one less than the number of 

nonzero digits.  

MSD – Minimum Signed-Digit multiplier: 

Similar to the CSD multiplier and requires 

the same number of adders, but can in some 

cases decrease the flip-flop cost by using 

other MSD representations, which were 

discussed in Section 3.1.  

MAG – Minimum Adder Graph multiplier: 

Graph multiplier that is based on any of the 

topologies in Fig. 4.1 and, for any given 

coefficient, has the lowest possible adder 

cost.  

CSDAG – CSD Adder Graph multiplier: 

Similar to the MAG multiplier, but may use 

the same number of adders as the 

corresponding CSD/MSD multiplier, and 

can by that reduce the flip- flop cost
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. 

 

To describe the difference between the 

defined multiplier types, corresponding 

realizations of the coefficient 2813, which 

has the CSD representation 1010100000101, 

are shown in Fig.4. There are other possible 

solutions for all types except the CSD 

multiplier. However, note that the values 

corresponding to the nonzero digits in the 

CSD representation can be added in 

different orders, resulting in other structures. 

Since this may eliminate the pipeline 

feature, the basic structure used in Fig.4 (a) 

will be assumed for CSD multipliers. The 

adder costs for the multipliers in figs. 4. (a), 

(b), (c), and (d) are 4, 4, 3, and 4, 

respectively. The flip-flop costs are 12, 11, 

11 and 10. This implies that it is possible to 

save either two shifts, or one adder and one 

Shift compared to the CSD multiplier. Note 

that shifts may be shared as discussed in 

Section 1.5.2, for example, the two 27-edges 

in Fig. 4.(d). Pipelined CSDAG and MAG 

can be obtained from the multipliers. 4.2 (b) 

and (c) with an extra cost of 0 and 1 register, 
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respectively. Note that the flip-flop cost will 

include both shifts and pipelining registers, 

since both correspond to a single flip-flop in 

bit-serial arithmetic. 
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The comparison tables and waveforms show 

the analysis of different algorithms and 

different graph based multipliers. In this BE 

algorithm shows efficient results compare to 

CSE algorithms. Again analyses in graph 

based multipliers i.e. CSD, MSD, and MAG, 

CSDAG. The CSDAG shows good area and 

delay in table 2.  

V.CONCLUSION  

The proposed new approach is CSDAG for 

implementing reconfigurable higher order 

filters with low complexity. The proposed 

CSDAG method make use of architecture 

with fixed number of multiplexers and the 

reduction in complexity is achieved by 

applying the greedy BE algorithm. The 

CSDAG architecture results in high speed 

filters and low area and thus low power filter 

implementations. The CSDAG also provides 

the flexibility of changing the filter 

coefficient word lengths dynamically. The 

proposed reconfigurable architectures can be 

easily modified to employ any graph based 

(BE) method, which results in architectures 

that offers good area and power reductions 
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and speed improvement reconfigurable FIR 

filter implementations.  
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