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Abstract: Even though various approaches developed by 

the many researchers, they may not be optimal while 

predication of faults. In this approach we are introducing 

the fault prediction approach with OO metrics along with 

cyclomatic complexity and nested block depth, in 

acceptance testing, each function specified in the design 

document can be independently tested, that is, a set of test 

cases is developed for each function, not for each 

workflow module or other module/component. Our 

experimental results show the efficient fault prediction 

with our computation parameters.Our approach mainly 

concentrates on the count of faults prior to testing, 

expected number of faults, our classification which 

involves algorithmic and processing, control, logic and 

sequence, typographical Syntax errors i.e. incorrect 

spelling of a variable name, regular iteration of statements, 

incorrect initialization statements per module, this 

proposed classification approach shows optimal results 

while analyzing the metrics with training samples after 

measurement. 
 
Index Terms: Metrics, Cyclomatic complexity, OO 

metrics, Fault prediction 

 
I. INTRODUCTION 
 

Software quality always depends on various 

factors like complexity, quality & size and it is not an end 

mark at customer satisfaction, even though customer 

satisfaction is the ultimate goal, quality of product is 

always basic feature of software development. Main 

developing software products, reusability is the basic 

important feature to use the existing code, it reduces the 

redundancy and complexity while execution of client 

request. 
 

Traditional testing process is time consuming and 

expensive while handling of large projects . The traditional 

approaches are fault prediction works with the basic 

metrics like Lines of code(LOC),Number of errors found, 

Number of errors found with respect to the module, These 

parameters are not sufficient to measure the fault 

prediction and cost effectiveness. Software faults may be 

design faults which are deterministic in nature and are 

identified easily and other type of software faults is 

classified as being temporary internal faults that are 

transient and are difficult to be detected through testing. 

 
It is difficult to analyze the fault prediction by 

simply measuring the software metrics of the project.we 

require a classification tool for the analysis of the predicted 

results.The use of software in high-assurance and mission-

critical systems increases the need to develop and quantify 

measures of software quality. Subsequently, software metrics 

are useful in the timely prediction of high-risk components 

during the software development process such a prediction 

enables software managers to target quality improvement 

efforts to the needed areas. For example, prior to the system 

test, identifying the components that are likely to be faulty 

during operations can improve the effectiveness of testing 

efforts. Various software quality modeling techniques have 

been developed and used in real-life software quality 

predictions.  
Classification-based modeling for software 

quality estimation is a proven technique in achieving better 

software quality. Some classification techniques used for 

software quality estimation include optimal set reduction, 

logistic regression, decision trees and neural networks, and 

case-based reasoning. Software metrics -based quality 

classification models classify software modules into 

groups.  
A two-group classification model is the most 

commonly used, in which program modules are grouped 

into classes such as, fault-prone( fp) and not fault-prone 

(nfp).1 Software analysts interested in predicting whether a 

software component will be fp or nfp, can utilize 

classification models to obtain the needed prediction. 

When associating with such models, two types of 

misclassification errors are encountered: Type I error, that 

is, an fp component is predicted as fp, and Type II error, 

i.e., afp component is misclassified as nfp. Practically 

speaking, Type II errors are more severe in terms of 

software development costs and the organization’s 

reputation. They may involve inspection and correction to 

components after they have been deployed for operations .   
In our previous empirical studies related to software 

quality classification modeling, we have investigated several 

classification techniques, including classification and 

regression trees (CART), tree-based classification with S-

PLUS, the Tree disc algorithm, the C4.5 algorithm , the 

Sprint-Sliq algorithm, logistic regression, and case-based 

reasoning.Classificationmodels
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were calibrated using case studies of different large scale 

software systems, including the one presented in this paper. 

The models are calibrated to classify software modules as 

either fp or nfp, as defined by the system being modeled. 

 

II.RELATED WORK 
 

The target organization is a software purchaser-
side company that provides various types of 

telecommunication services using acquired software 
systems. In the software acquisition processes, the 

company is responsible for requirements analysis, 
architectural design, and acceptance testing, while 

developer-side companies are in charge of detailed design, 
programming unit/integration/ system testing, and 

debugging. As the services grow in the number of 
variations with shorter renewal cycles than ever before, the 

main motivation here is optimization of acceptance testing 
to provide high quality services to customers. From this 

perspective, the primary goal of this paper is reduction of 
acceptance test effort using techniques for predicting fault-

prone modules [7].  
Our study includes metrics collection, building 

predictor models, and assessing the reduction of test effort. 
 
C4.5 Algorithm 
 
The C4.5 algorithm is an inductive supervised learning 

system which employs decision trees to represent a quality 
model. C4.5 is a descendent of another induction program, 

ID3, and it consists of four principal programs: decision 

tree generator, production rule generator, decision tree 
interpreter, and production rule interpreter. The algorithm 

uses these four programs when constructing and 
evaluating classification tree models. Different tree models 

were built by varying parameters: minimum node size 
before splitting and pruning percentage.  

The C4.5 algorithm commands certain pre-

processing of data in order for it to build decision tree 
models. Some of these include attribute value description 

type, predefined discrete classes, and sufficient number of 
observations for supervised learning. The classification 
tree is initially empty and the algorithm begins adding 

decision and leaf nodes, starting with the root node. 
 
Tree disc Algorithm 
 

The Tree disc algorithm is a SAS macro implementation of 

the modified CHi- square Automatic Interaction Detection 

algorithm. It constructs a regression tree from an input data 

set that predicts a specified categorical response variable 

based on one or more predictors. The predictor variable is 

selected to be the variable that is most significantly associated 

with the dependent variable according to a chi-squared test of 

independence in the contingency table. 

 
Regression tree-based models are built by 

varying model parameters in order to achieve the preferred 

balance between the misclassification error rates, and to 
avoid over fitting of classification trees. A generalized 

classification rule is used to label each leaf node after the 

regression tree is built. This classification rule is very 
similar to the approach followed, when using S-PLUS 

regression trees as classification trees[8]. 
 
Sprint-Sliq algorithm 
 

Sprint-Sliq is an abbreviated version of Scalable 
parallelizable induction of decision Trees -Supervised 

Learning In Quest, the algorithm can be used to build 
classification tree models that can analyze both numeric 
and categorical attributes. It is a modified version of the 

classification tree algorithm of CART, and uses a different 
pruning technique based on the minimum description 
length principle. The algorithm has excellent scalability 
and analysis speed. Classification tree modeling using 

Sprint-Sliq is accomplished in two phases: a tree building 
phase and a tree pruning phase. The building phase 
recursively partitions the training data until each partition 

is either ‘‘pure’’ or meets the stop-splitting rules set by the 
user. The IBM Intelligent Data Miner tool, which 
implements the Sprint-Sliq algorithm, was used by our 

research group to build classification trees. Sprint-Sliq 
uses the Gini Index to evaluate the goodness of split of all 
the possible splits. A class assignment rule is needed to 

classify modules as fp and nfp.[9]. 
 
Logistic Regression 
 
Logistic regression is a statistical modeling technique that 

offers good model interpretation. Independent variables in 
logistic regression may be categorical, discrete or 

continuous. However, the categorical variables need to be 

encoded(e.g., 0, 1) to facilitate classification modeling. 
Our research group has used logistic regression to build 

software quality classification models.  
Let xj be the jth independent variable, and let xi be 

the vector of the ith module’s independent variable values. A 

module being fp is designated as an ‘‘event’’. Let q be the 
probability of an event, and thus q=q/1-q is the odds of an 
event. The logistic regression model has the form [10], 

Log(q/1-q)=β0+β1x1+β1x2……….βjxj+βmxm 

Where, log means the natural logarithm, bj is the regression 

coefficient associated with independent variable xj, and m is 

the number of independent variables. Logistic regression suits 

software quality modeling because most software engineering 

measures do have a monotonic relationship with faults that is 

inherent in the underlying processes. Given a list of candidate 

independent variables and a significance level, a, some of the 

estimated coefficients may not be significantly different from 

zero. Such variables should not be included in the final 

model. 
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Fig 1: Proposed Architecture 
 

 

III. PROPOSED WORK 
 

We are proposing an efficient fault prediction with 

efficient parameters or metrics optimal results. The paper 

is concerned with faults due to Object oriented issues and 

measures with the integrated basic metrics of software 

engineering. Our proposed approach measures the metrics 

on the source code and analyzes the Testing samples 

which are measured Algorithmic and processing, Control, 

logic and sequence, Typographical Syntax error etc, then 

forwards these metric measures to the classification rule 

for analysis of testing sample, the below diagram shows 

proposed architecture, initially complexity, cyclomatic and 

object oriented metrics applied over source code blocks 

and measures respective parameters and treat them as 

testing samples and forward those testing s amples to 

training samples to compute posterior probability of 

testing sample. 
 
Basic Complexity metrics 
 

Basic entity for measuring the software quality 

or cost are the metrics we initially computing the 

complexity metrics as Hallstead’s metric, which includes 

program length, program vocabulary which leads to the 

computation of Estimated length and finally computes the 

 
 
 

Sample Dataset 
 
 

 

Naïve Bayesian 
 

Classifier 
 
 
 

 

Prediction Result 
 
 
 

 

purity ration, then computes the program effort in terms of 

volume and density. 

 

n1 = the number of distinct operators 
 
n2 = the number of distinct operands 
 

N1 = the total number of operators 
 

N2 = the total number of operands 
 
From these numbers, several measures can be calculated: 
 

Program vocabulary: n=n1+n2 

Program length: N=N1+N2 
 
Calculated program length:  

N’=  1 log2  1 + 2 log2   2 

 

Volume: V=N+ log2 

 
It is a quantitative measure of logical strength of the 

program. It directly measures the number of linearly 

independent paths through a program's source code, these 

paths can be represented in various formats as sequence, 

while for iteration, if then else for decision making, until 

for iteration and then computes the complexity in terms of 

 

M = E − N + 2P, 

where

vertices or nodes and edges and in terms of number of program, with an edge between two basic blocks if control 

may pass from the first to the second. The complexity M 

is then defined as 
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E = the number of edges of the graph. 
 

N = the number of nodes of the graph. 
 

P = the number of connected components. 
 
 
 
 
 
Object oriented metrics 
 

Objected oriented metrics are also one type of metrics 

for measure the quality and cost of the project in terms of 

 
Weighted methods per class 

Depth of the inheritance tree 

Coupling between classes 
 

Response for a class  
  Class size and finally computes the polymorphism 

factor which includes the factors of number of 

overriding methods, number of methods and 
number of sub classes 

Classification 
 
After the computation of all the metrics, testing sample 

data can be forwarded to the training samples to measure 

and classify the metric results with existing results In 

terms of conditional probability by using Naive Bayesian 

classifier, which leads to the fault prediction analysis. 
 
Naïve Bayesian Classification 
 

Estimating probabilities  
 
 

[1] Each data sample is of the type 
 

X=(xi) i =1(1)n, where xi is the values of X for attribute Ai 
 

2.  Suppose there are m classes Ci, i=1(1)m. 
 

P(Ci|X) > P(Cj|X) 
 

i.e BC assigns X to class Ci having highest posterior 

probability conditioned on X 
 

The class for which P(Ci|X) is maximized is called the 

maximum posterior hypothesis. 
 
From Bayes Theorem 
 

3.P(X) is constant. Only P(X|Ci), P(Ci) need be 

maximized. 
 

If class prior probabilities not known, then assume all 

classes to be equally likely 

Otherwise maximize P(Ci) = Si/S 

Problem: computing P(X|Ci) is unfeasible! 
 
4.Naïve assumption: attribute independence 
 

P(X|Ci) = P(x1,…,xn|Ci) = P(xk|Ci) 

 
5.In order to classify an unknown sample X, evaluate for 

each class Ci. Sample X is assigned to the class CiffP 
 

P(X|Ci)P(Ci) > P(X|Cj) P(Cj). 
 
Experimental Analysis  
 
We experimentally analyzed the results by computing the 

all measures over code snippets individually and then 

computed parameters forwarded towards training dataset. 
 

Let us consider an example for computing Halstead 

metrics for small code snippet as follows 
 
main() 
 
{ 
 
inta,b,c,avg; 
 
scanf(“%d %d%d”, &a,&b,&c); 
 
avg=(a+b+c)/3; 
 
printf(“avg=%d”,avg); 
 
} 
 
The unique operators are main,(),(),int,scanf,&,=,*,/,printf 

The unique operation are a,b,cavg,”%d %d 

%d”,3,”avg=%d”  

1=10, 2=7, =17 

N1=16,N2=15,N=31 

Calculated Program Length N’=10 log2 10 + 7 

log2 7=52.9 

Volume V=31 log217=126.7 

 

Difficulty D=10/2  15/7=10.7 

Effort E=10.7 126.7=1,355.7 

Time required to program T=1,355.7/3000=0.004 

For the measure of object oriented metrics, we considered 

weighted methods per class, Depth of the inheritance tree, 

Coupling between classes and overridden methods and for 

the measure of cyclomatic complexity we considering an 

example like 

if A = 354 

then if B > 

C then A = 

B else A= C 

endif  
endif 

print A 

 

Thus using the formal  the cyclomatic complexity is 
8-7 + 2 = 3. In this case there is no graph called or 
subroutine. Alternatively one may calculate the 
cyclomatic complexity using the decision points rule.  
 
 

CONCLUSION: 
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We are concluding our research work with efficient 
metrics computation with Complexity, cyclomatic, 
object oriented metrics over blocks of source code 

followed by naïve Bayesian classification to compute 
whether the testing sample is cost effective or not by 
analyzing fault prediction. 
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