
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 0 3 I s s ue 11
Jul y 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1171

A SYSTEMATIC APPROACH FOR REDUCTION OF TEST EFFORT USING FAULT

PREDICTION MODELS

1 M.SHAHNAZ PARVEEN, 2 U.DHANUNJAYA
1 M.Tech student, Department of CSE, Sri Krishnadevaraya University College Of Engineering & Technology, Ananthapuramu.

 2 Assistant Professor, Department of CSE, Sri Krishnadevaraya University College Of Engineering & Technology, Ananthapuramu.

Abstract: Even though various approaches developed by

the many researchers, they may not be optimal while

predication of faults. In this approach we are introducing

the fault prediction approach with OO metrics along with

cyclomatic complexity and nested block depth, in

acceptance testing, each function specified in the design

document can be independently tested, that is, a set of test

cases is developed for each function, not for each

workflow module or other module/component. Our

experimental results show the efficient fault prediction

with our computation parameters.Our approach mainly

concentrates on the count of faults prior to testing,

expected number of faults, our classification which

involves algorithmic and processing, control, logic and

sequence, typographical Syntax errors i.e. incorrect

spelling of a variable name, regular iteration of statements,

incorrect initialization statements per module, this

proposed classification approach shows optimal results

while analyzing the metrics with training samples after

measurement.

Index Terms: Metrics, Cyclomatic complexity, OO

metrics, Fault prediction

I. INTRODUCTION

Software quality always depends on various

factors like complexity, quality & size and it is not an end

mark at customer satisfaction, even though customer

satisfaction is the ultimate goal, quality of product is

always basic feature of software development. Main

developing software products, reusability is the basic

important feature to use the existing code, it reduces the

redundancy and complexity while execution of client

request.

Traditional testing process is time consuming and

expensive while handling of large projects . The traditional

approaches are fault prediction works with the basic

metrics like Lines of code(LOC),Number of errors found,

Number of errors found with respect to the module, These

parameters are not sufficient to measure the fault

prediction and cost effectiveness. Software faults may be

design faults which are deterministic in nature and are

identified easily and other type of software faults is

classified as being temporary internal faults that are

transient and are difficult to be detected through testing.

It is difficult to analyze the fault prediction by

simply measuring the software metrics of the project.we

require a classification tool for the analysis of the predicted

results.The use of software in high-assurance and mission-

critical systems increases the need to develop and quantify

measures of software quality. Subsequently, software metrics

are useful in the timely prediction of high-risk components

during the software development process such a prediction

enables software managers to target quality improvement

efforts to the needed areas. For example, prior to the system

test, identifying the components that are likely to be faulty

during operations can improve the effectiveness of testing

efforts. Various software quality modeling techniques have

been developed and used in real-life software quality

predictions.
Classification-based modeling for software

quality estimation is a proven technique in achieving better

software quality. Some classification techniques used for

software quality estimation include optimal set reduction,

logistic regression, decision trees and neural networks, and

case-based reasoning. Software metrics -based quality

classification models classify software modules into

groups.
A two-group classification model is the most

commonly used, in which program modules are grouped

into classes such as, fault-prone(fp) and not fault-prone

(nfp).1 Software analysts interested in predicting whether a

software component will be fp or nfp, can utilize

classification models to obtain the needed prediction.

When associating with such models, two types of

misclassification errors are encountered: Type I error, that

is, an fp component is predicted as fp, and Type II error,

i.e., afp component is misclassified as nfp. Practically

speaking, Type II errors are more severe in terms of

software development costs and the organization’s

reputation. They may involve inspection and correction to

components after they have been deployed for operations .
In our previous empirical studies related to software

quality classification modeling, we have investigated several

classification techniques, including classification and

regression trees (CART), tree-based classification with S-

PLUS, the Tree disc algorithm, the C4.5 algorithm , the

Sprint-Sliq algorithm, logistic regression, and case-based

reasoning.Classificationmodels

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 0 3 I s s ue 11
Jul y 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1172

were calibrated using case studies of different large scale

software systems, including the one presented in this paper.

The models are calibrated to classify software modules as

either fp or nfp, as defined by the system being modeled.

II.RELATED WORK

The target organization is a software purchaser-
side company that provides various types of

telecommunication services using acquired software
systems. In the software acquisition processes, the

company is responsible for requirements analysis,
architectural design, and acceptance testing, while

developer-side companies are in charge of detailed design,
programming unit/integration/ system testing, and

debugging. As the services grow in the number of
variations with shorter renewal cycles than ever before, the

main motivation here is optimization of acceptance testing
to provide high quality services to customers. From this

perspective, the primary goal of this paper is reduction of
acceptance test effort using techniques for predicting fault-

prone modules [7].
Our study includes metrics collection, building

predictor models, and assessing the reduction of test effort.

C4.5 Algorithm

The C4.5 algorithm is an inductive supervised learning

system which employs decision trees to represent a quality
model. C4.5 is a descendent of another induction program,

ID3, and it consists of four principal programs: decision

tree generator, production rule generator, decision tree
interpreter, and production rule interpreter. The algorithm

uses these four programs when constructing and
evaluating classification tree models. Different tree models

were built by varying parameters: minimum node size
before splitting and pruning percentage.

The C4.5 algorithm commands certain pre-

processing of data in order for it to build decision tree
models. Some of these include attribute value description

type, predefined discrete classes, and sufficient number of
observations for supervised learning. The classification
tree is initially empty and the algorithm begins adding

decision and leaf nodes, starting with the root node.

Tree disc Algorithm

The Tree disc algorithm is a SAS macro implementation of

the modified CHi- square Automatic Interaction Detection

algorithm. It constructs a regression tree from an input data

set that predicts a specified categorical response variable

based on one or more predictors. The predictor variable is

selected to be the variable that is most significantly associated

with the dependent variable according to a chi-squared test of

independence in the contingency table.

Regression tree-based models are built by

varying model parameters in order to achieve the preferred

balance between the misclassification error rates, and to
avoid over fitting of classification trees. A generalized

classification rule is used to label each leaf node after the

regression tree is built. This classification rule is very
similar to the approach followed, when using S-PLUS

regression trees as classification trees[8].

Sprint-Sliq algorithm

Sprint-Sliq is an abbreviated version of Scalable
parallelizable induction of decision Trees -Supervised

Learning In Quest, the algorithm can be used to build
classification tree models that can analyze both numeric
and categorical attributes. It is a modified version of the

classification tree algorithm of CART, and uses a different
pruning technique based on the minimum description
length principle. The algorithm has excellent scalability
and analysis speed. Classification tree modeling using

Sprint-Sliq is accomplished in two phases: a tree building
phase and a tree pruning phase. The building phase
recursively partitions the training data until each partition

is either ‘‘pure’’ or meets the stop-splitting rules set by the
user. The IBM Intelligent Data Miner tool, which
implements the Sprint-Sliq algorithm, was used by our

research group to build classification trees. Sprint-Sliq
uses the Gini Index to evaluate the goodness of split of all
the possible splits. A class assignment rule is needed to

classify modules as fp and nfp.[9].

Logistic Regression

Logistic regression is a statistical modeling technique that

offers good model interpretation. Independent variables in
logistic regression may be categorical, discrete or

continuous. However, the categorical variables need to be

encoded(e.g., 0, 1) to facilitate classification modeling.
Our research group has used logistic regression to build

software quality classification models.
Let xj be the jth independent variable, and let xi be

the vector of the ith module’s independent variable values. A

module being fp is designated as an ‘‘event’’. Let q be the
probability of an event, and thus q=q/1-q is the odds of an
event. The logistic regression model has the form [10],

Log(q/1-q)=β0+β1x1+β1x2……….βjxj+βmxm

Where, log means the natural logarithm, bj is the regression

coefficient associated with independent variable xj, and m is

the number of independent variables. Logistic regression suits

software quality modeling because most software engineering

measures do have a monotonic relationship with faults that is

inherent in the underlying processes. Given a list of candidate

independent variables and a significance level, a, some of the

estimated coefficients may not be significantly different from

zero. Such variables should not be included in the final

model.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 0 3 I s s ue 11
Jul y 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1173

Architecture

Complexity, cyclomatic, object oriented metrics

Source Code

Training

Dataset

Fig 1: Proposed Architecture

III. PROPOSED WORK

We are proposing an efficient fault prediction with

efficient parameters or metrics optimal results. The paper

is concerned with faults due to Object oriented issues and

measures with the integrated basic metrics of software

engineering. Our proposed approach measures the metrics

on the source code and analyzes the Testing samples

which are measured Algorithmic and processing, Control,

logic and sequence, Typographical Syntax error etc, then

forwards these metric measures to the classification rule

for analysis of testing sample, the below diagram shows

proposed architecture, initially complexity, cyclomatic and

object oriented metrics applied over source code blocks

and measures respective parameters and treat them as

testing samples and forward those testing s amples to

training samples to compute posterior probability of

testing sample.

Basic Complexity metrics

Basic entity for measuring the software quality

or cost are the metrics we initially computing the

complexity metrics as Hallstead’s metric, which includes

program length, program vocabulary which leads to the

computation of Estimated length and finally computes the

Sample Dataset

Naïve Bayesian

Classifier

Prediction Result

purity ration, then computes the program effort in terms of

volume and density.

n1 = the number of distinct operators

n2 = the number of distinct operands

N1 = the total number of operators

N2 = the total number of operands

From these numbers, several measures can be calculated:

Program vocabulary: n=n1+n2

Program length: N=N1+N2

Calculated program length:

N’= 1 log2 1 + 2 log2 2

Volume: V=N+ log2

It is a quantitative measure of logical strength of the

program. It directly measures the number of linearly

independent paths through a program's source code, these

paths can be represented in various formats as sequence,

while for iteration, if then else for decision making, until

for iteration and then computes the complexity in terms of

M = E − N + 2P,

where

vertices or nodes and edges and in terms of number of program, with an edge between two basic blocks if control

may pass from the first to the second. The complexity M

is then defined as

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 0 3 I s s ue 11
Jul y 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1174

E = the number of edges of the graph.

N = the number of nodes of the graph.

P = the number of connected components.

Object oriented metrics

Objected oriented metrics are also one type of metrics

for measure the quality and cost of the project in terms of

Weighted methods per class

Depth of the inheritance tree

Coupling between classes

Response for a class
 Class size and finally computes the polymorphism

factor which includes the factors of number of

overriding methods, number of methods and
number of sub classes

Classification

After the computation of all the metrics, testing sample

data can be forwarded to the training samples to measure

and classify the metric results with existing results In

terms of conditional probability by using Naive Bayesian

classifier, which leads to the fault prediction analysis.

Naïve Bayesian Classification

Estimating probabilities

[1] Each data sample is of the type

X=(xi) i =1(1)n, where xi is the values of X for attribute Ai

2. Suppose there are m classes Ci, i=1(1)m.

P(Ci|X) > P(Cj|X)

i.e BC assigns X to class Ci having highest posterior

probability conditioned on X

The class for which P(Ci|X) is maximized is called the

maximum posterior hypothesis.

From Bayes Theorem

3.P(X) is constant. Only P(X|Ci), P(Ci) need be

maximized.

If class prior probabilities not known, then assume all

classes to be equally likely

Otherwise maximize P(Ci) = Si/S

Problem: computing P(X|Ci) is unfeasible!

4.Naïve assumption: attribute independence

P(X|Ci) = P(x1,…,xn|Ci) = P(xk|Ci)

5.In order to classify an unknown sample X, evaluate for

each class Ci. Sample X is assigned to the class CiffP

P(X|Ci)P(Ci) > P(X|Cj) P(Cj).

Experimental Analysis

We experimentally analyzed the results by computing the

all measures over code snippets individually and then

computed parameters forwarded towards training dataset.

Let us consider an example for computing Halstead

metrics for small code snippet as follows

main()

{

inta,b,c,avg;

scanf(“%d %d%d”, &a,&b,&c);

avg=(a+b+c)/3;

printf(“avg=%d”,avg);

}

The unique operators are main,(),(),int,scanf,&,=,*,/,printf

The unique operation are a,b,cavg,”%d %d

%d”,3,”avg=%d”

1=10, 2=7, =17

N1=16,N2=15,N=31

Calculated Program Length N’=10 log2 10 + 7

log2 7=52.9

Volume V=31 log217=126.7

Difficulty D=10/2 15/7=10.7

Effort E=10.7 126.7=1,355.7

Time required to program T=1,355.7/3000=0.004

For the measure of object oriented metrics, we considered

weighted methods per class, Depth of the inheritance tree,

Coupling between classes and overridden methods and for

the measure of cyclomatic complexity we considering an

example like

if A = 354

then if B >

C then A =

B else A= C

endif
endif

print A

Thus using the formal the cyclomatic complexity is
8-7 + 2 = 3. In this case there is no graph called or
subroutine. Alternatively one may calculate the
cyclomatic complexity using the decision points rule.

CONCLUSION:

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 0 3 I s s ue 11
Jul y 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1175

We are concluding our research work with efficient
metrics computation with Complexity, cyclomatic,
object oriented metrics over blocks of source code

followed by naïve Bayesian classification to compute
whether the testing sample is cost effective or not by
analyzing fault prediction.

REFERENCES

[1] Assessing the Cost Effectiveness of FaultPrediction in Acceptance

Testing AkitoMonden, akuma Hayashi, Shoji Shinoda, KumikoShirai,

Junichi Yoshida, Mike Barker

[2] Predicting Defect Densities in Source Code Files with Decision Tree

Learners Patrick Knab, Martin Pinzger, Abraham Bernstein

[3] Comparative Assessment of Software Quality Classification
Techniques: An Empirical Case Study TAGHI M. KHOSHGOFTAAR,

NAEEM SELIYA

[4] T.M. Khoshgoftaar and E.B. Allen, “ Modeling Software Quality with
Classification Trees,” Recent Advances in Reliability and Quality

Engineering, pp. 247-270, World Scientific, 1999.

[5] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto, B. Adams, and

A.E. Hassan, “ Revisiting Common Bug Prediction Findings Using Effort
Aware Models,” Proc. IEEE Int’l Conf. Software Maintenance, pp. 1-10,
2010.

[6] Y. Kamei, A. Monden, and K. Matsumoto, “ Empirical Evaluationof

SVM-Based Software Reliability Model,” Proc. Fifth

ACM/IEEEInt’lSymp. Empirical Software Eng., vol. 2, pp. 39-41, 2006.

[7] T.M. Khoshgoftaar and E.B. Allen, “ Modeling Software Quality with

Classification Trees,” Recent Advances in Reliability and Quality
Engineering, pp. 247-270, World Scientific, 1999.

[8] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy, “ Predicting Fault

Incidence Using Software Change History,” IEEE Trans. Software Eng.,
vol. 26, no. 7, pp. 653-661, July 2000.“ Information-Technology

Promotion Agency, Japan (IPA) Software Engineering Center (SEC) ed.,”
White Papers on Software Development Projects in Japan, 2010-2011 Ed.,

2010.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

