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ABSTRACT 

 We introduce an uncomplicated spectral 
approach to the well studied constrained 
clustering problem. This spectral approach 
captures constrained clustering as a generalized 
eigenvalue problem with graph Laplacians.And 
constrained clustered problem defined by three 
weighted graphs and these are the data graph, 
knowledge graph, disjoint graph. The algorithm 
works in nearly-linear time and provides 
concrete guarantees for the quality of the 
clusters, at least for the case of 2-way 
partitioning. In practice this translates to a very 
fast implementation that consistently 
outperforms existing spectral approaches both in 
speed and quality. 

Keywords: Constrained spectral clustering, 
sparse coding, efficiency, scalability 

1. INTRODUCTION 
 Clustering with constraints is a problem of 
central importance in machine learning and data 
mining. It captures the case when information 
about an application task comes in the form of 
both data and domain knowledge. We study the 
standard problem where domain knowledge is 
specified as a set of soft mustlink (ML) and 
cannot-link (CL) constraints [1]. The extensive 
literature reports a plethora of methods, 

including spectral algorithms that explore 
various modifications and extensions of the 
basic spectral. The distinctive feature of our 
algorithm is that it constitutes a natural 
generalization, rather than an extension of the 
basic spectral method. The generalization is 
based on a critical look at how existing methods 
handle constraints, in section 3. The solution is 
derived from a geometric embedding obtained 
via a spectral relaxation of an optimization 
problem, exactly in the spirit of . This is 
depicted in the workflow in Figure 1. Data and 
ML constraints are represented by a Laplacian 
matrix L and CL constraints by another 
Laplacian matrix H. The embedding is realized 
by computing a few eigenvectors of the 
generalized eigenvalue problem Lx = λHx. The 
generalization of  lies essentially in H being a 
Laplacian matrix rather than the diagonal D of 
L. In fact, as we will discuss later, D itself is 
equivalent to a specific Laplacian matrix; thus 
our method encompasses the basic spectral 
method as a special case of constrained 
clustering. Figure 1: A schematic overview of 
our approach. Our approach is characterized by 
its conceptual simplicity that enables a 
straightforward mathematical derivation of the 
algorithm, possibly the simplest among all 
competing spectral methods. Reducing the 
problem to a relatively simple generalized 
eigensystem enables us to derive directly from 
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recent significant progress due to Lee et al.  in 
the theoretical understanding of the standard 
spectral clustering method, offering its first 
practical realization. In addition, the algorithm 
comes with two features that are not 
simultaneously shared by any of the prior 
methods: (i) it is provably fast by design as it 
leverages fast linear system solvers for 
Laplacian systems [9] (ii) it provides a concrete 
theoretical guarantee for the quality of 2-way 
constrained partitioning, with respect to the 
underlying discrete optimization problem, via a 
generalized Cheeger inequality (section 6). In 
practice, our method is at least 10x faster than 
competing methods on large data sets. It solves 
data sets with millions of points in less than 2 
minutes, on very modest hardware. Furthermore 
the quality of the computed segmentations is 
often dramatically better. 

2. Related Work 

 The use of supervision in clustering tasks has 
been addressed in many ways. A first related 
approach is that of [33], which is inspired by 
distance learning. Constraints are given through 
a set of data point pairs that should be close. The 
authors then consider the problem of learning a 
weighted matrix of similarities. They derive an 
optimization problem of high complexity, which 
they solve by doing alternate gradient ascent on 
two objectives, one bringing closer points that 
are similar and the other putting off the other 
points. Similarly, in learning spectral clustering 
is the problem of finding weighted matrix or the 
spectrum of the Gram matrix given a known 
partition. A related field is supervised clustering 
[9], the problem of training a clustering 
algorithm to produce desirable clusterings: given 
sets of items and complete clusterings over these 
sets, we learn how to cluster future sets of items. 

Another set of related approaches are 
constrained versions of the k-means clustering 
algorithm. it is proposed that, at each step of the 
algorithm, each point is assigned to the closest 
centroid provided that must-link and cannotlink 
constraints are not violated. It is not clear how 
the choice of the ordering on points affects the 
clustering. Moreover, constraints are considered 
as hard constraints which makes the approach 
prone to noise effects. Kulis et al improve on the 
work of  in . Their algorithm relies on weighted 
kernel k-means ([8]). The authors build a kernel 
matrix K = σI + W + S, where W is a similarity 
matrix, S is a supervision matrix such that Sij is 
positive (respectively negative) when nodes i 
and j must link (respectively cannot link) or zero 
when unconstrained. The addition of σI ensures 
the positive semi-definiteness of K (otherwise, K 
would not be a kernel, would not have any latent 
Euclidean space, a requirement for k-means to 
converge and for theoretical justification). 
Introducing constraints in spectral clustering has 
received a lot of attention in the last decade 
([34,14,5,19,32]). In many cases, the proposed 
approaches rely on a modification of the 
similarity matrix and then the resolution of the 
associated approximated normalized cut. For 
instance, in , weights in the similarity matrix are 
forced to 0 or 1 following must-link and cannot-
link constraints. But this kind of weights may 
have a limited impact on the result of the 
clustering, in particular when the considered two 
nodes have many paths that link them together.  
consider three kinds of constraint and cast them 
into an optimization problem including 
membership constraints in a 2-partitioning graph 
problem. To guarantee a smooth solution, they 
reformulate the optimization problem so that it 
involves computing the eigen decomposition of 
the graph Laplacian associated with the data. 
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The approach relies on an optimization 
procedure that includes nullity of the flow from 
labeled nodes in cluster 1, to labeled nodes in 
cluster 2. The algorithm closely resembles the 
semi-supervised harmonic Laplacian approach 
developed for instance in . But this approach is 
also limited to the binary case. In , pairwise 
constraints are used to propagate affinity 
information to the other edges in the graph. A 
closed form of the optimal similarity matrix can 
be computed but its computation requires one 
matrix inversion per cannot-link constraint. In , 
constrained clustering is done by learning a 
transformation of the spectral embedding into 
another space defined by a kernel. The algorithm 
attempts to project data points representing 
nodes onto the bound of a unithypersphere. The 
inner product between vectors describing nodes 
that must link is close to 0, and the inner product 
between vectors describing nodes that cannot-
link is close to 1. That way, if a node vi belongs 
to the cluster j, then the vector vi describing vi 
will be projected to ✶j where ej is a vector of 
length k full of zeros except on the jth 
component where it is equal to 1. The number of 
dimensions of the hypersphere is directly related 
to the ability to separate clusters. One drawback 
is that the algorithm uses semidefinite programs 
whose size is quadratic in that number of 
dimensions. Recently, propose to include 
constraints by modifying directly the 
optimization problem rather than modifying the 
Laplacian. In their algorithm called csp, they 
introduce a matrix Q where Qij is 1 if i and j 
must-link, −1 if i and j cannot-link and 0 
otherwise. Then, a constraint f >Qf > α is added 
to the normalized cut objective considered in 
unconstrained spectral clustering. Parameter α is 
considered as a way to soften constraints. Their 
approach outperforms previous approaches such 

as the one based on kernel k-means defined in 
.An original approach based on tight relaxation 
of graph cut is presented in . The approach deals 
with must and cannot-links but in the two 
clusters case. It guarantees that no constraints 
are violated as long as they are consistent. For 
problems with more than two clusters, 
hierarchical clustering is proposed. 
Unfortunately in this case, the algorithm loses 
most of its theoretical guarantees. 

3. SPECTRAL CLUSTERING 
ALGORITHM  

Spectral clustering is is appealingly simple: 
Given some data, you build an affinity (or 
kernel) matrix, analyze its spectrum, and often 
get a perfect clustering from the dominant eigen 
vectors for free. This simple algorithm[4] or its 
slightly more complex variants which yield so 
good results are widely appreciated for 
applications. Here are the key steps of spectral 
clustering algorithm: Given a set of points S = 
{s1, . . . , sn } in a high dimensional space. 1. 
Form a distance matrix D ∈ R2 . This distance 
measure is Euclidean, but other measures also 
make sense. 2. Transform the distance matrix to 
an affinity matrix by Aij = exp(− σij ) if i ≠ j,0 if 
i = j. The free parameter σ 2 controls the rate at 
which affinity drops off with distance. 3. Form 
the diagonal matrix D whose (i,i) element is the 
sum of A’s ith row, and create the Laplacian 
matrix L = D−1/2 AD−1/2 4. Obtain the 
eigenvectors and eigenvalues of L. 5. Form a 
new matrix from the vectors associated with the 
k largest eigenvalues. Choose k by using eigen 
gap method. 6. Each item now has a vector of k 
coordinates in the transformed space. Normalize 
these vectors to unit length. 7. Cluster in k-
dimensional space. The result will be k well 
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separated clusters. Spectral clustering is a more 
advanced algorithm compared to k-means as it 
uses several mathematical concepts (i.e. degree 
matrices weight matrices, similarity matrices, 
similarity graphs, graph Laplacians, eigenvalues 
and eigenvectors) in order to divide similar data 
points in the same group and dissimilar data 
points in different groups. This Spectral 
Clustering works well for many real world data 
sets eventhough, it needs some modification in 
terms of improving its time complexity, space 
complexity. 

4. Re-thinking constraints 

 Many approaches have been pursued within the 
constrained spectral clustering framework. They 
are quite distinct but do share a common point of 
view: constraints are viewed as entities 
structurally extraneous to the basic spectral 
formulation, necessitating its modification or 
extension with additional mathematical features. 
However, a key fact is overlooked: Standard 
clustering is a special case of constrained 
clustering with implicit soft ML and CL 
constraints. To see why, let us briefly recall the 
optimization problem in the standard method 
(Ncut). φ  =  

⊆
 ( , ¯) 

( ) ( ¯)/ (  )
 

Here vol(S) denotes the total weight incident to 
the vertex set S, and cutG(S, S¯) denotes the 
total weight crossing from S to S¯ in G. The data 
graph GD is actually an implicit encoding of soft 
ML constraints. Indeed, pairwise affinities 
between nodes can be viewed as ‘soft 
declarations’ that such nodes should be 
connected rather than disconnected in a 
clustering. Let now di denote the total incident 
weight of vertex i in GD. Consider the demand 

graph K of implicit soft CL constraints, de- fined 
by the adjacency  

Kij = didj/vol(V ). It is easy to verify that 
vol(S)vol(S¯)/vol(V ) = cutK(S, S¯). We have 
min S⊆V cutGD (S, S¯) vol(S)vol(S¯)/vol(V ) = 
min S⊆V cutGD (S, S¯) cutK(S, S¯) . In other 
words, the Ncut objective can be viewed as: min 
S⊆V weight of cut (violated) implicit ML 
constraints weight of cut (satisfied) implicit CL 
constraints . (1) With this realization, it becomes 
evident that incorporating the knowledge graphs 
(GML, GCL) is mainly a degree-of-belief issue, 
between implicit and explicit constraints. Yet all 
existing methods insist on handling the explicit 
constraints separately. For example,  modify the 
Ncut optimization function by adding in the 
numerator the number of violated explicit 
constraints (independently of them being ML or 
CL), times a parameter γ. In another example,  
solve the spectral relaxation of Ncut, but under 
the constraint that the number of satisfied ML 
constraints minus the number of violated CL 
constraints is lower bounded by a parameter α. 
Despite the separate handling of the explicit 
constraints, degree-ofbelief decisions (reflected 
by parameters α and γ) are not avoided. The 
actual handling also appears to be somewhat 
arbitrary. For instance, most methods take the 
constraints unweighted, as usually provided by a 
user, and handle them uniformly; but it is 
unclear why one constraint in a densely 
connected part of the graph should be treated 
equally to another constraint in a less well-
connected part. Moreover, most prior methods 
enforce the use of the balance implicit 
constraints in K, without questioning their role, 
which may be actually adverserial in some 
cases. In general, the mechanisms for including 
the explicit constraints are oblivious of the input, 
or even of the underlying algebra. Our approach. 
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We choose to temporarily drop the distinction of 
the constraints into explicit and implicit. We 
instead assume that we are given one set of ML 
constraints, and one set of CL constraints, in the 
form of weighted graphs G and H. We then 
design a generalized spectral clustering method 
that retains the k-way version of the objective 
shown in equation 1. We apply this generalized 
method to our original problem, after a merging 
step of the explicit and implicit CL/ML 
constraints into one set of CL/ML constraints. 
The merging step can be left entirely up to the 
user, who may be able to exploit problem-
specific information and provide their choice of 
weights for G and H. Of course, we expect that 
in most cases explicit CL and ML constraints 
will be provided in the form of simple 
unweighted graphs GML and GCL. For this case 
we provide a simple method that resolves the 
degree-of-belief issue and constructs G and H 
automatically. The method is heuristic, but not 
oblivious to the data graph, as they adjust to it. 

 

5. CONCLUSION 

There are several methods implemented in our 
approach Our method proposes a natural way 
(based on a Gaussian process formulation) to 
propagate affinity information through pair wise 
constraints; the latter act as wormholes that 
connect space regions that are faraway (low 
affinity) for must-links, or disconnect nearby 
regions for cannot links. The new affinity matrix 
has a closed-form expression (eq. 2–3) that can 
be obtained by inverting a small matrix, at a 
negligible overhead over spectral clustering. 
This new affinity can be represented by a new 
kernel function derived from the original one. 
Experimentally, our method needs very few 

constraints to achieve good clustering’s as 
compared with other methods. 
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