
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 12
August 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1003

FPGA Binary Addition & Carry Tree Adders Using Prefix Computation or

Addition

Mr. M. MAHABOOB BASHA
1
&DADA PEERIAH KALLURI

2

1
Associate Professor Dept. of ECE, Svr Engineering College Nandyal Mail: - mmbfasi@gmail.com

2
PG-Scholar Dept. of ECE, Svr Engineering College Nandyal

Abstract

Adders are basic functional units in computer

arithmetic. Binary adders are used in

microprocessor for addition and subtraction

operations as well as for floating point

multiplication and division. Therefore adders

are fundamental components and improving

their performance is one of the major challenges

in digital designs. Variable latency adders have

been recently proposed in literature. A variable

latency adder employs speculation: the exact

arithmetic function is replaced with an

approximated one that is faster and gives the

correct result most of the time, but not always.

The approximated adder is augmented with an

error detection network that asserts an error

signal when speculation fails. Speculative

variable latency adders have attracted strong

interest thanks to their capability to reduce

average delay compared to traditional

architectures. This paper proposes a novel

variable latency speculative adder based on

Han-Carlson parallel-prefix topology that

resulted more effective than variable latency

Kogge-Stone topology. The paper describes the

stages in which variable latency speculative

prefix adders can be subdivided and presents a

novel error detection network that reduces error

probability compared to previous approaches.

Keywords: FPGA, Binary addition, Carry tree

adders, Prefix computation, Prefix addition.

1. Introduction

VLSI binary adders are critically important

elements in processor chips, they are used in

floating-point arithmetic units, ALUs, and

memory addresses program counter update and

magnitude comparator [1, 2]. Adders are

extensively used as a part of the filter such as

DSP lattice filter [3]. Ripple carry adder is the

first and most fundamental adder that is capable

of performing binary number addition. Since its

latency is proportional to the length of its input

operands, it is not very useful. To speed up the

addition, carry look ahead adder is introduced.

Parallel prefix adders provide good results as

compared to the conventional adders. The

adders with the large complex gates will be too

slow for VLSI, so the design is modularized by

breaking it into trees of smaller and faster

adders which are more readily implemented. For

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 12
August 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1004

large adders the delay of passing the carry

through the look-ahead stages becomes

dominated and therefore tree adders or parallel

prefix adders are used. High speed adders

depend on the previous carry to generate the

present sum. In integer addition any decrease in

delay will directly relate to an increase in

throughput. In nanometer range, it is very

important to develop addition algorithm that

provide high performance while reducing

power. Parallel prefix adders are suitable for

VLSI implementation since they rely on the use

of simple cells and maintain regular connection

between them. We can define each prefix

Structures in terms of logic levels, fan-out and

wiring tracks. Zero or more inverters are added

to each prefix cell output to minimize the delay

based on this model, buffers are individually

sized to minimize the delay, buffers are used to

minimize the fan-out and loading on gates since

high fan-out causes poor performance. we

design an extremely fast unreliable adder that

produces correct results for the vast majority of

input combinations. For brevity, we will call

this adder an Almost Correct Adder (ACA).

Fig 1. Graph representation of 16-bit Hybrid

Han-Carlson Adder.

Fig 2. Taxonomy of prefix networks.

2. Related Work

Design the Speculative Han-Carlson Adder. It

differs from other adder in that it can be used for

large word sizes. The proposed design reduces

the number of prefix operation by using more

number of Brent-Kung stages and lesser number

of Kogge-Stone stages. This also reduces the

complexity, silicon area and power consumption

significantly. Variable latency speculative prefix

adders can be subdivided

in five stages: pre-processing, speculative

prefix-processing, post-processing, error

detection and error correction. The error

correction stage is off the critical path, as it has

two clock cycles to obtain the exact sum when

speculation fails.

Consider the n-bit addition of two numbers: A =

an−1, an−2, a0 and B = bn−1, bn−2, b0

resulting in the sum, S = sn−1, sn−2, s0 and a

carry, Cout. The first stage in CLA computes

the bit generate and bit propagate as follows:

gi = ai · bi

pi = ai + bi, (1)

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 12
August 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1005

Where gi is the bit generates and pi is the bit

propagate. The schematic of gi and pi using

CMOS and transmission gates design style.

These are then utilized to compute the final sum

and Carry bits, in the last stage as follows:

Ci+1 = gi + pi · ci, (2)

Where ·, + and ⊕represent AND,OR, and XOR

operations. It is seen that the first and last stages

are intrinsically fast because they involve only

simple operations on signals local to each bit

position. However, intermediate stages embody

the long-distance propagation of carries, as a

result of which the performance of the adder

hinges on this part [10]. These intermediate

stages calculate group generate and group

propagate to avoid waiting for a ripple which, in

turn, reduces the delay. These group generate

and propagates are given by

Pi: j = Pi:k · Pk−1: j ,

Gi: j = Gi:k + Gk−1: j · Pi:k.

 (3)

There are many ways to develop these

intermediate stages, the most common being

parallel prefix. Many parallel prefix networks

have been described in the literature, especially

in the context of addition. In this paper, we have

used the Kogge-Stone implementation, Hans-

Carlson, Sklansky, Brent-Kung implementation

of CLA, and Kogge- Stone implementation of

Ling adder. PG logic in all adders is generally

represented in the form of cells. These diagrams

known as cell diagrams will be used to compare

a variety of adder architectures in the following

sections. Here two cells are used for

implementation of all the adders: grey cell and

the black cell.

Han-Carlson Adder: The Han-Carlson trees

are a family of networks between Kogge-Stone

and Brent-Kung. The logic performs Kogge-

Stone on the odd numbered bits and then uses

one more stage to ripple into the even positions.

Kogge-Stone Adders: The main difference

between KoggeStone adders and other adders is

its high performance. It calculates carries

corresponding to every bit with the help of

group generate and group propagates. In this

adder the logic levels are given by log2N, and

fan-out is 2.

Figure 3: Block generate and propagate (Ling

carry) using CMOS and transmission gate.

Now, instead of utilizing traditional carries, a

new of carry, known as Ling carries, is

produced where the ith Ling carry in [11] is

defined to be

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 12
August 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1006

Where

If we assume that all input gates have only two

inputs, we can see that calculation of c4 requires

5 logic levels, whereas that for H4 requires only

four. Although the computation of carry is

simplified, calculation of the sum bits using

Ling carries is much more complicated. The

sum bit, when calculated by using traditional

carry, is given to be

Substituting (5) into (9), we get that

However, according to [12] the computation of

the bits si can be transformed as follows:

Equation (11) can be implemented using a

multiplexer with Hi− 1 as the select line, which

selects either di or (di ⊕ pi− 1). No extra delay

is added by Ling carries to compute the sum

since the delay generated by the XOR gate is

almost equal to that generated by the

multiplexer and that the time taken to compute

the inputs to the multiplexer is lesser than that

taken to compute the Ling carry.. Here, for n-bit

addition, Ling carry Hi and Hi+1 is given by

This can be then further reduced by using the “.”

operator to

This allows the parallel prefix computation of

Ling adders using a separate tree [9] for even

and odd indexed positions. Using this

methodology, we implemented a 16-bit adder

using the Kogge-Stone tree and then utilized

that block to develop 32 and 64-bit adders. The

gates and blocks used for this implementation

were then modified using transmission gates.

Cells other than gray and black cell that are used

as components in Ling adder.

3. Experimental Results

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 12
August 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1007

Verilog descriptions of the proposed variable

latency speculative adders, and of their non-

speculative counterpart. It is not easy to

compare performances (in terms of power,

speed, and area) of different designs, since they

strongly depend on timing constraint used

during synthesis.

3.1 The Optimal K Choice

Comparison between variable latency adder and

the nonspeculative Han-Carlson topology reveal

that variable latency adders allow to reduce the

minimum achievable delay. For instance, in the

64 bit case, the minimum achievable delay is

about 280 ps for the non-speculative adder and

reduces up to 225 ps in the variable latency

architecture.

3.2 Comparison with Kogge-Stone

Variable Latency Speculative Adder:

Fig. 7 shows the comparison between proposed

speculative adder and Kogge-Stone one. Also in

this case, we report the performance of non-

speculative adders, in order to identify the

region where the speculative approach is

effective. As an example, focusing on 64-bit

adders, for lower than 350 ps, the proposed

Han-Carlson speculative adder is the best choice

in terms of silicon area and power consumption.

Moreover, it allows reducing the minimum

achievable to 225 ps, with a 18% improvement

respect to Kogge-Stone no speculative adder

and a 11% improvement respect to KoggeStone

speculative adder. For , proposed speculative

adders offer 45% area reduction and 35% power

saving compared to Kogge-Stone non-

speculative adder.

4(a)

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 12
August 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1008

4(b)

Fig. 4(a). Area report of Han-Carlson Adder, 4(b). error correction report of Han- Carlson Adder

4. Conclusion

The variable latency Han-Carlson parallel prefix

speculative adder for high-speed application is

proposed. A new, more accurate, error detection

network is introduced, which allows reducing

the error probability compared to the other

approaches. Compared with traditional, non-

speculative, adders, our analysis demonstrates

that variable latency Han-Carlson adders show

sensible improvements when the highest speed

is required; otherwise the burden imposed by

error detection and error correction stages

overwhelms any advantage. This can be used in

various applications like digital signal

processing, satellite and mobile phones. The 16

Bit Existing and Proposed adders are

implemented. In the future work, proposed

architecture will be converted into 32 bit Adders

and analyzes the area and speed. This adder will

be done by using our verilog and the Adder

design will implemented into FPGA

5. References

[1] O. J. Bedrij, .Carry-select adder,. IRE Trans.

Electron. Comput., pp. 340.346, June 1962.

[2] R. P. Brent and H. T. Kung, .A regular

layout for parallel adders,. IEEE

Trans.Computers, vol. C-

31, no. 3, pp. 260.264, Mar. 1982.

[3] J. Chen and J. E. Stine, .Optimization of

bipartite memory systems for multiplicative

divide and square root,. 48th IEEE International

Midwest Symp. Circuits and Systems, vol. 2,

pp. 1458.1461, 2005.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 12
August 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1009

[4] A. Cilardo, “A new speculative addition

architecture suitable for two's complement

operations,” in Proc. Design, Autom., Test Eur.

Conf. Exhib, (DATE'09), Apr. 2009, pp. 664–

669.

[5] K. Du, P. Varman, and K. Mohanram, “High

performance reliable variable latency carry

select addition,” in Proc. Design, Autom., Test

Eur. Conf. Exhib.(DATE '12), Mar. 2012, pp.

1257–1262.

[6] D. Goldberg, .What every computer scientist

should know about floating point arithmetic,.

ACM Computing surveys, vol. 23, no. 1, pp.

5.48, 1991.

[7] T. Han and D. Carlson, .Fast area-efficient

VLS Adders,. in Proc. 8th Symp. Comp. Arith.,

Sept. 1987, pp. 49.56.

[8] D. Harris, .A taxonomy of parallel prefix

networks, in Record of the Thirty-Seventh

Asilomar Conference on Signals, Systems and

Computers, Nov. 2003, pp. 2213.2217.

[9] S. Knowles, .A family of adders,. in Proc.

15
th

 IEEE Symp. Comp. Arith., June 2001, pp.

277.281.

[10] P. Kogge and H. Stone, .A parallel

algorithm for the efficient solution of a general

class of recurrence relations,. IEEE Trans.

Computers, vol. C-22, no. 8, pp. 786.793, Aug.

1973.

[11] I. Koren, Computer Arithmetic Algorithms.

Natick, MA, USA: A K Peters, 2002.

[12] H. Ling, .High speed binary adder,. IBM

Journal of Research and Development, vol. 25,

no. 3, pp.156.166, 1981.

[13] R. Ladner and M. Fischer, .Parallel prefix

Computation,.J. ACM, vol. 27, no. 4, pp.

831.838,

Oct. 1980.

[14] J. Sklansky, .Conditional sum addition

logic,. IRE Trans. Electron. Comput., pp. 226.

231, June

1960.

[15] S. M. Nowick, “Design of a low-latency

asynchronous adder using speculative

completion,”

IEE Proc. Comput. Digit. Tech., vol. 143, no. 5,

pp. 301–307, Sep. 1996.

[16] V. G. Oklobdzija, B. Zeydel, H. Dao, S.

Mathew, and R. Krishnamurthy, Energy delay

estimation technique for high-performance

microprocessor VLSI adders,. Proc. 16th IEEE

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 12
August 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1010

Symp. Computer Arithmetic (ARITH-16’03), p.

272, June 2003.

[17] A. K. Verma, P. Brisk, and P. Ienne,

“Variable Latency Speculative Addition: A New

Paradigm for Arithmetic Circuit Design,” in

Proc. Design, Autom., Test Eur. (DATE '08),

Mar. 2008, pp. 1250–1255.

[18] S. Winograd, .On the time required to

perform addition,.J. ACM, vol. 12, no. 2,pp.

277.285, 1965.

[19] R. Zimmermann, “Binary adder

architectures for cell-based VLSI and their

synthesis,” Ph.D. thesis, Swiss Federal Institute

of Technology, (ETH) Zurich, Zurich,

Switzerland, 1998, HartungGorre Verlag.

