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Abstract 

Adders are basic functional units in computer 

arithmetic. Binary adders are used in 

microprocessor for addition and subtraction 

operations as well as for floating point 

multiplication and division. Therefore adders 

are fundamental components and improving 

their performance is one of the major challenges 

in digital designs. Variable latency adders have 

been recently proposed in literature. A variable 

latency adder employs speculation: the exact 

arithmetic function is replaced with an 

approximated one that is faster and gives the 

correct result most of the time, but not always. 

The approximated adder is augmented with an 

error detection network that asserts an error 

signal when speculation fails. Speculative 

variable latency adders have attracted strong 

interest thanks to their capability to reduce 

average delay compared to traditional 

architectures. This paper proposes a novel 

variable latency speculative adder based on 

Han-Carlson parallel-prefix topology that 

resulted more effective than variable latency 

Kogge-Stone topology. The paper describes the 

stages in which variable latency speculative 

prefix adders can be subdivided and presents a 

novel error detection network that reduces error 

probability compared to previous approaches. 

Keywords: FPGA, Binary addition, Carry tree 

adders, Prefix computation, Prefix addition. 

1. Introduction 

VLSI binary adders are critically important 

elements in processor chips, they are used in 

floating-point arithmetic units, ALUs, and 

memory addresses program counter update and 

magnitude comparator [1, 2]. Adders are 

extensively used as a part of the filter such as 

DSP lattice filter [3]. Ripple carry adder is the 

first and most fundamental adder that is capable 

of performing binary number addition. Since its 

latency is proportional to the length of its input 

operands, it is not very useful. To speed up the 

addition, carry look ahead adder is introduced. 

Parallel prefix adders provide good results as 

compared to the conventional adders. The 

adders with the large complex gates will be too 

slow for VLSI, so the design is modularized by 

breaking it into trees of smaller and faster 

adders which are more readily implemented. For 
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large adders the delay of passing the carry 

through the look-ahead stages becomes 

dominated and therefore tree adders or parallel 

prefix adders are used. High speed adders 

depend on the previous carry to generate the 

present sum. In integer addition any decrease in 

delay will directly relate to an increase in 

throughput. In nanometer range, it is very 

important to develop addition algorithm that 

provide high performance while reducing 

power. Parallel prefix adders are suitable for 

VLSI implementation since they rely on the use 

of simple cells and maintain regular connection 

between them. We can define each prefix 

Structures in terms of logic levels, fan-out and 

wiring tracks. Zero or more inverters are added 

to each prefix cell output to minimize the delay 

based on this model, buffers are individually 

sized to minimize the delay, buffers are used to 

minimize the fan-out and loading on gates since 

high fan-out causes poor performance. we 

design an extremely fast unreliable adder that 

produces correct results for the vast majority of 

input combinations. For brevity, we will call 

this adder an Almost Correct Adder (ACA). 

 

Fig 1. Graph representation of 16-bit Hybrid 

Han-Carlson Adder. 

 

Fig 2. Taxonomy of prefix networks. 

2. Related Work 

Design the Speculative Han-Carlson Adder. It 

differs from other adder in that it can be used for 

large word sizes. The proposed design reduces 

the number of prefix operation by using more 

number of Brent-Kung stages and lesser number 

of Kogge-Stone stages. This also reduces the 

complexity, silicon area and power consumption 

significantly. Variable latency speculative prefix 

adders can be subdivided 

in five stages: pre-processing, speculative 

prefix-processing, post-processing, error 

detection and error correction. The error 

correction stage is off the critical path, as it has 

two clock cycles to obtain the exact sum when 

speculation fails. 

Consider the n-bit addition of two numbers: A = 

an−1, an−2, a0 and B = bn−1, bn−2, b0 

resulting in the sum, S = sn−1, sn−2, s0 and a 

carry, Cout. The first stage in CLA computes 

the bit generate and bit propagate as follows: 

gi = ai · bi 

pi = ai + bi,    (1) 
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Where gi is the bit generates and pi is the bit 

propagate. The schematic of gi and pi using 

CMOS and transmission gates design style. 

These are then utilized to compute the final sum 

and Carry bits, in the last stage as follows: 

Ci+1 = gi + pi · ci,    (2)  

Where ·, + and ⊕represent AND,OR, and XOR 

operations. It is seen that the first and last stages 

are intrinsically fast because they involve only 

simple operations on signals local to each bit 

position. However, intermediate stages embody 

the long-distance propagation of carries, as a 

result of which the performance of the adder 

hinges on this part [10]. These intermediate 

stages calculate group generate and group 

propagate to avoid waiting for a ripple which, in 

turn, reduces the delay. These group generate 

and propagates are given by 

Pi: j = Pi:k · Pk−1: j , 

Gi: j = Gi:k + Gk−1: j · Pi:k.   

 (3) 

There are many ways to develop these 

intermediate stages, the most common being 

parallel prefix. Many parallel prefix networks 

have been described in the literature, especially 

in the context of addition. In this paper, we have 

used the Kogge-Stone implementation, Hans-

Carlson, Sklansky, Brent-Kung implementation 

of CLA, and Kogge- Stone implementation of 

Ling adder. PG logic in all adders is generally 

represented in the form of cells. These diagrams 

known as cell diagrams will be used to compare 

a variety of adder architectures in the following 

sections. Here two cells are used for 

implementation of all the adders: grey cell and 

the black cell. 

Han-Carlson Adder: The Han-Carlson trees 

are a family of networks between Kogge-Stone 

and Brent-Kung. The logic performs Kogge-

Stone on the odd numbered bits and then uses 

one more stage to ripple into the even positions.  

Kogge-Stone Adders: The main difference 

between KoggeStone adders and other adders is 

its high performance. It calculates carries 

corresponding to every bit with the help of 

group generate and group propagates. In this 

adder the logic levels are given by log2N, and 

fan-out is 2. 

 

Figure 3: Block generate and propagate (Ling 

carry) using CMOS and transmission gate. 

Now, instead of utilizing traditional carries, a 

new of carry, known as Ling carries, is 

produced where the ith Ling carry in [11] is 

defined to be 
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Where 

 

 

If we assume that all input gates have only two 

inputs, we can see that calculation of c4 requires 

5 logic levels, whereas that for H4 requires only 

four. Although the computation of carry is 

simplified, calculation of the sum bits using 

Ling carries is much more complicated. The 

sum bit, when calculated by using traditional 

carry, is given to be 

 

Substituting (5) into (9), we get that 

 

However, according to [12] the computation of 

the bits si can be transformed as follows: 

 

Equation (11) can be implemented using a 

multiplexer with Hi− 1 as the select line, which 

selects either di or (di ⊕ pi− 1). No extra delay 

is added by Ling carries to compute the sum 

since the delay generated by the XOR gate is 

almost equal to that generated by the 

multiplexer and that the time taken to compute 

the inputs to the multiplexer is lesser than that 

taken to compute the Ling carry.. Here, for n-bit 

addition, Ling carry Hi and Hi+1 is given by 

 

This can be then further reduced by using the “.” 

operator to 

This allows the parallel prefix computation of 

Ling adders using a separate tree [9] for even 

and odd indexed positions. Using this 

methodology, we implemented a 16-bit adder 

using the Kogge-Stone tree and then utilized 

that block to develop 32 and 64-bit adders. The 

gates and blocks used for this implementation 

were then modified using transmission gates. 

Cells other than gray and black cell that are used 

as components in Ling adder. 

3. Experimental Results 
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Verilog descriptions of the proposed variable 

latency speculative adders, and of their non-

speculative counterpart. It is not easy to 

compare performances (in terms of power, 

speed, and area) of different designs, since they 

strongly depend on timing constraint used 

during synthesis. 

3.1 The Optimal K Choice 

Comparison between variable latency adder and 

the nonspeculative Han-Carlson topology reveal 

that variable latency adders allow to reduce the 

minimum achievable delay. For instance, in the 

64 bit case, the minimum achievable delay is 

about 280 ps for the non-speculative adder and 

reduces up to 225 ps in the variable latency 

architecture. 

3.2 Comparison with Kogge-Stone 

Variable Latency Speculative Adder: 

Fig. 7 shows the comparison between proposed 

speculative adder and Kogge-Stone one. Also in 

this case, we report the performance of non-

speculative adders, in order to identify the 

region where the speculative approach is 

effective. As an example, focusing on 64-bit 

adders, for lower than 350 ps, the proposed 

Han-Carlson speculative adder is the best choice 

in terms of silicon area and power consumption. 

Moreover, it allows reducing the minimum 

achievable to 225 ps, with a 18% improvement 

respect to Kogge-Stone no speculative adder 

and a 11% improvement respect to KoggeStone 

speculative adder. For , proposed speculative 

adders offer 45% area reduction and 35% power 

saving compared to Kogge-Stone non-

speculative adder.  

 

4(a) 
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4(b) 

Fig. 4(a). Area report of Han-Carlson Adder, 4(b). error correction report of Han- Carlson Adder  

4. Conclusion 

The variable latency Han-Carlson parallel prefix 

speculative adder for high-speed application is 

proposed. A new, more accurate, error detection 

network is introduced, which allows reducing 

the error probability compared to the other 

approaches. Compared with traditional, non-

speculative, adders, our analysis demonstrates 

that variable latency Han-Carlson adders show 

sensible improvements when the highest speed 

is required; otherwise the burden imposed by 

error detection and error correction stages 

overwhelms any advantage. This can be used in 

various applications like digital signal 

processing, satellite and mobile phones. The 16 

Bit Existing and Proposed adders are 

implemented. In the future work, proposed 

architecture will be converted into 32 bit Adders 

and analyzes the area and speed. This adder will 

be done by using our verilog and the Adder 

design will implemented into FPGA 
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