
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 788

A More Efficient AES Threshold Implementation

 *V.NEELIMA **M.SANJAY

 *M.TECH ,Dept of ECE, VAAGDEVI ENGINEERING COLLEGE

Warangal

**Assistant. Prof Dept of ECE, VAAGDEVI ENGINEERING COLLEGE

Warangal

Abstract:-

Our contribution is two fold: first we

describe a very compact hardware

implementation of AES-128, which requires

only 2400 GE. This is to the best of our

knowledge the smallest implementation

reported so far. Then we apply the threshold

countermeasure by Nikova et al. to the AES

S-box and yield an implementation of the

AES improving the level of resistance

against first-order side-channel attacks. Our

experimental results on real-world power

traces show that although our

implementation provides additional security,

it is still susceptible to some sophisticated

attacks having enough number of

measurements.

 Keywords: side-channel attacks,

countermeasures, secret sharing,

lightweight, ASIC

1.INTRODUCTION

The mass deployment of pervasive devices

promises many benefits such as lower

logistic costs, higher process granularity,

optimized supply-chains, or location based

services among others. Besides these

benefits, there are also many risks inherent

in pervasive computing: many foreseen

applications are security sensitive, such as

wireless sensor networks for military,

financial or automotive applications. With

the widespread presence of embedded

computers in such scenarios, security is a

striving issue, because the potential damage

of malicious attacks also increases. An

aggravating factor is that pervasive devices

are usually not deployed in a controlled but

rather in a hostile environment, i.e., an

adversary has physical access to or control

over the devices. This adds the whole field

of physical attacks to the potential attack

scenarios. Most notably are here so called

side-channel attacks, especially Simple,

Differential and Correlation Power Analysis

[6, 18].

1.1 Related Work

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 789

Low-power low-area implementations of the

AES have been reported in [15] requiring

3100 GE and 160 clock cycles and in [13]

requiring 3400 GE and 1032 clock cycles.

Both implementations use an 8-bit serialized

data path and implement only a quarter of

the MixColums operations. The first design,

[15], implements two S-boxes and performs

the data path and the key schedule

operations in parallel, while the latter

implementation is fully serial and uses a

RAM-like architecture. Canright has

investigated very thoroughly how to

implement the AES S-box in hardware with

minimal area requirements [8]. On the other

hand, several masking schemes have been

proposed to create a masked AES S-box

using either multiplicative or additive

approaches. A common approach is to use

the tower field representation for an additive

masking scheme because of the linearity of

the inversion in GF(22). The examples are

[4] and [26] which are provably secure, but

in practice obvious first-order leakages have

been observed [20]. Later, Canright et al. [9]

applied the idea of [26] to his very compact

S-box resulting in the most compact masked

S-box to date. However, as expected its

hardware implementation still has first-order

leakage.

1.2 Our Work

Our first contribution is a description of the

smallest hardware implementation of AES

known to date. Our design goal was solely

low area, and thus we were able to set the

time-area and the power-area tradeoffs

differently, and in favour for a more

compact hardware realization. To pursue our

goal, we have taken a holistic approach that

optimizes the total design, not every

component individually. In total we

achieved an implementation that requires

only 2400 GE and needs 226 clock cycles,

which is to the best of our knowledge 23%

smaller than any previously published

implementations.

 As a second contribution, we investigate

side-channel countermeasures for this

lightweight AES implementation. It turns

out that when using Canright’s

representation, the only non-linear function

is the multiplication in GF(22). An example

for how to share this function using only

three shares has been presented by Nikova et

al. in [24]. Building on these findings, we

applied the countermeasure to our

unprotected AES implementation. For this

architecture we conducted a complete side-

channel evaluation based on real-world

power traces that we obtain from SASEBO.

We use a variety of different power analysis

attacks to investigate the achieved level of

resistance of our implementation against

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 790

first order DPA attacks even if an attacker is

capable of measuring 100 million power

traces.

1.3 Outline

We first give a brief introduction to

Differential Power Analysis and

countermeasures in the following Section. A

general overview follows a more detailed

description of the masking scheme presented

in [23, 24], which we use for our

experimental evaluation. Subsequently in

Section 3 AES and Canright’s optimized S-

box are briefly recalled, before we describe

a shared AES S-box. Based on these

findings, in Section 4 we propose two

hardware architectures – unprotected and

protected – of AES-128 and mount DPA

attacks on its real-world power traces

in Section 5.

2.INTRODUCTION TO DPA

Smart cards and other types of pervasive

devices performing cryptographic operations

are seriously challenged by side-channel

cryptanalysis. Several publications, e.g.,

[12] have stressed that such physical attacks

are an extremely practical and powerful tool

for recovering the secrets of unprotected

cryptographic devices. In fact, these attacks

exploit the information leaking through

physical side channels and involved in

sensitive computations to reveal the key

materials. Amongst the known sources of

side channels and the corresponding attacks

most notable are power analysis attacks

[18]. Many different kinds of power analysis

attacks, e.g., simple and differential power

analysis (SPA and DPA) [18], template-

based attacks [2], and mutual information

analysis [14], have been introduced while

each one has its own advantages and is

suitable in its special conditions. However,

correlation power analysis (CPA) [6], which

is a general form of DPA, got more attention

since it is able to efficiently reveal the

secrets by comparing the measurements to

the estimations obtained by means of a

theoretical power model which fits to the

characteristics of the target implementation.

2.1 Countermeasures

Generally speaking, the goal of a DPA

countermeasure is to prevent a dependency

between the power consumption of a

cryptographic device and characteristics of

the executed algorithm, e.g., intermediate

values, executed operations, and taken

branches [19]. Amongst the

countermeasures proposed at different levels

of design and abstraction Masking methods,

which rely on randomizing key-dependent

intermediate values processed during the

execution of the cipher, are widely applied

on either the algorithmic level [26] or the

cell level [27]. An n-order masking

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 791

technique is in fact an (n + 1, n + 1) secret

sharing scheme [3, 31], where all shares of

the secret are required to proceed. When an

algorithmic masking scheme is applied on a

microprocessor-based platform, it is often

combined by shuffling [16] which

randomizes the order of operations.

Applying a masking scheme in a software

implementation (microprocessor) can be

defeated by higher order attacks [11, 34].

However, practical experiences like [20]

showed that still there is a first-order

leakage when hardware (ASIC or FPGA) is

protected by a masking scheme at algorithm

level. This leakage can be exploited by

sophisticated power models, e.g., toggle-

count

model, or by a template-based DPA attack.

 In short, currently there exists no perfect

protection against DPA attacks. However,

applying appropriate countermeasures

makes the attacker’s task more difficult and

expensive. Chari et al. have shown in [10]

that up to n-th order DPA attacks can be

prevented by using n masks. Following this

direction, Nikova et al. extended the idea of

masking with more than two shares in [23]

to prevent those attacks which use

sophisticated power models, e.g., counting

the glitches

occuring when the inputs of a complex

combinational circuit change. They showed

that non-linear functions implemented in

such a way, achieve provable security

against first-order DPA attacks and also

resist higher-order attacks that are based on

a comparison of mean power consumption.

Estimations of a hardware implementation

of these ideas are presented in [24] where an

S-box of the Noekeon cipher [17] is

considered as a case study without practical

evaluation of its resistance to DPA attacks.

Afterwards, the same approach is applied on

the S-box of the PRESENT cipher [5], and

its resistance against first-order attacks is

verified in [28]. Since it seems to be a

promising candidate for a lightweight and

side-channel resistant implementation, we

have chosen this scheme to implement the

AES S-box and have a comparison (on its

first-order leakage) to the masked AES S-

boxes proposed so far, e.g., [9] and [26].

 3.SHARED COMPUTATION OF

THE AES S-BOX USING COMPOSITE

FIELDS

In this section first an algorithmic

description of AES is given, before the AES

S-box as described by Canright is expressed.

Finally, the threshold countermeasure of

Nikova et al. is applied to the Canright AES

S-box that will be used in the next section

for a protected implementation of the AES.

3.1 Algorithmic Description of AES

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 792

In November 2001 the Rijndael algorithm

was chosen as the Advanced Encryption

Standard (AES) by the National Institute of

Standards and Technology (NIST) [22].

AES is a symmetric block cipher, that

processes data blocks of 128 bits. Three

different key lengths are specified: 128, 192,

and 256 bits, resulting in 10, 12 or 14

rounds, respectively. AES is, depending on

the key length, also referred to as AES-128,

AES-192, and AES-256 and in the

remainder of this

article we focus on the encryption process of

AES-128. At the beginning of the algorithm,

the input is copied into the State array,

which consists of 16 bytes, arranged in four

rows and four columns (4 _ 4 - Matrix). At

the end, the State array is copied to the

output. The bytes of the State are interpreted

as coefficients of a polynomial

representation of finite field elements in

GF(28). All byte values in the remainder of

this article will be written in hexadecimal

notation in the form {ab}. In encryption

mode, the initial key is added to the input

value at the very beginning, which is called

an initial round. This is followed by 9

iterations of a normal round and ends with a

slightly modified final round. During one

normal round the following operations are

performed in the following order: SubBytes,

ShiftRows, MixColumns, and

AddRoundkey. The final round is a normal

round without the MixColumns stage.

SubBytes is a non-linear, invertible byte

substitution and consists of two

transformations that are performed on each

of the bytes independently: First each byte is

substituted by its multiplicative inverse in

GF(28) (if existent),

element {00} is mapped to itself. Then the

following affine transformation over GF(2)

is applied: b 0 i =

bi_b(i+5)mod8_b(i+6)mod8_b(i+7)mod8_ci

for 0 _ i _ 8, where bi(ci) is the i-th bit of the

byte b(c), c = f63g = 011000112 .

ShiftRows cyclically shifts each row of the

State by a certain offset. The first row is not

shifted at all, the second row is shifted by

one, the third row by two, and the fourth

row by three bytes to the left. MixColumns

processes one column of the State at a time.

The bytes are interpreted as coefficients of a

four-term polynomial over GF(24). Each

column is multiplied modulo x4 + 1 with a

fixed polynomial a(x) = f03gx3 + f01gx2 +

f01gx+f02g. This can be written as the

following matrix multiplication, where s0(x)

= a(x) s(x):

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 793

AddRoundKey adds the 128-bit round key

generated from KeyExpansion to the 128-bit

State. It is a simple XOR-addition of the

round key and the State. KeyExpansion

derives 10 round keys from the initial key

iteratively. The key is grouped into four

words w0, w1, w2, and w3, that consist of

four bytes each. w3 is cyclically shifted to

the left by one byte. The result is bytewise

substituted by the S-box and then a round

constant RCon is XOR-added. Finally the

result is XOR added to w0 yielding w00 .

w01 is obtained by XOR adding w00 with

w1, w02 = w01 _ w2 and w03 = w02 _ w3.

The new key state or round key RKi is then

formed by RKi = w00 jw01 jw02 jw03 . The

round constants RConi are derived by the

following equation: RConi = xi mod m(x),

where i denotes the round number, 0 _ i _ 9

and the irreducible polynomial m(x)=

x8+x4+x3+x+1. For further details on AES,

the interested reader is referred to [29].

3.2 Canright’s Representation of the AES

S-box

Canright investigated the hardware

requirements of the AES S-box very

thoroughly in [8]. He proposed a very

compact S-box that is composed of smaller

fields. As one can see from Fig. 1 the input

to the S-box is transformed by a linear

mapping that changes the basis from GF(28)

to GF(28)/GF(24)/GF(22) (please ignore

pipelining and register remarks in this step,

these issues are addressed in Section 3.3 and

in Section 5). The output is transformed by a

linear mapping that combines the basis

change back to GF(28) and the inverse

mapping of the AES S-box. Beside two 4-bit

XORs, a GF(24) inverter (center module), a

GF(24)

square-scaler (top left module) and three

instances of a GF(24) multiplier (right and

bottom left) are required. The GF(24)

square-scaler uses a normal basis (�4; �)

and only consists of wiring and three XOR

gates. The GF(24) inverter uses a normal

basis (�4; �) and consists of 5 XOR gates,

some wiring and three instances of a GF(22)

multiplier (thick lined rectangles)3. The

GF(24) multiplier consists of nine XOR

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 794

gates, some wiring and three parallel

instances of a GF(22) multiplier.

3.3 A Shared AES S-box

To apply the threshold countermeasure of

Nikova et al. [24] we need to share the non-

linear functions of the algorithms, while the

linear functions are simply implemented s

times in parallel, where s denotes the

amount of shares. Particularly interesting are

realizations with minimal amount of shares,

i.e., s = 3, because they require the fewest

hardware resources. Having a closer look on

the representation of Canright, it turns out

that the only non-linear parts of the AES S-

box are the multipliers in GF(22). In [24] an

exemplary realization of this multiplier

using only three shares has been presented.

It is noteworthy to point out that the

threshold countermeasure requires registers

between different

stages of shared functions. As can be seen

from Fig. 1, Canright’s S-box representation

requires in total five pipelining stages. Note

that not only the output of the shared

functions, but all signals have to be

pipelined. This implies that in total we need

to store 174 bits, which as we will see in

Section 4 will increase the area requirements

even further (please ignore remasked

register remarks in this step, this issue is

discussed in Section 5).

 4.

HARDWARE ARCHITECTURES

This section is dedicated to the description

of the different hardware profiles that we

will attack in the next section. For this

purpose we first introduce the design flow

used before we detail the hardware

architectures, and finally summarize the

implementation results.

 4.1 Design flow

We used Mentor Graphics ModelSimXE

6.4b and Synopsys Design Compiler version

A-2007.12-SP1 for functional simulation

and synthesis of the designs to the Virtual

Silicon (VST) standard cell library

UMCL18G212T3 [33], which is based on

the UMC L180 0.18_m 1P6M logic process

with a typical voltage of 1:8V. We used

Synopsys Power Compiler version A-

2007.12-SP1 to estimate the power

consumption of our ASIC implementations.

For synthesis and for power estimation we

advised the compiler to keep the hierarchy

and use a clock frequency of 100 KHz,

which is a widely used operating frequency

for RFID applications.

Note that the wire-load model used, though

it is the smallest available for this library,

still simulates the typical wire-load of a

circuit with a size of around 10 000 GE.

To substantiate our claims on the efficacy of

the proposed countermeasures, we

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 795

implemented the ASIC cores on SASEBO to

obtain and evaluate real-world power traces.

For design synthesis, implementation and

configuration of SASEBO we used Xilinx

ISE v10.1.03 WebPACK. In a typical

application scenario the cryptographic core

would be part of an integrated ASIC, hence

for the power measurements on SASEBO

we embedded the cryptographic core in a

framework that handles the communication

between the two FPGAs.

4.2 A Very Compact Implementation of AES

 The most area consumption typically occurs

for storing the intermediate state, because

typically flip-flops are used, which have

high area requirements. In the technology

we used, a single-input, positive edge

triggered D flip-flop requires 5 GE and can

store 1 bit. If you have more than one input,

e.g. the output from SubBytes, the output

from ShiftRows and the output from

MixColumns, you need multiplexers. A

Multiplexer for a selection from two inputs

to one output (2-to-1 MUX) costs 2.33 GE

per bit. Scan flip-flops combine a D flip-flop

and a 2-to-1 MUX for 6 GE per bit. That is a

saving of 1.33 GE per bit of storage. For the

AES this sums up to 340 GE. Scan flip flops

have been used before, e.g. in

implementations of PRESENT [30] and

KATAN/KTANTAN [7].

Based on the properties of scan flip-flops (2

inputs “for free”), we designed the

architecture for our tiny AES

implementation. As can be seen in Fig. 3,

both the State array and the Key array each

consist of a 16 stage 8-bit width shift

register. Each of the stages comprises 8 scan

flip-flops (cells 00 to 33) with two inputs.

One input receives the output of the

previous stage, while the other one contains

the result of ShiftRows, which comes for

free in our design, since shifting is done by

wiring. Instead of adding one 2-to-1 MUX

for every cell of the State array, we designed

our architecture in a way that we only need

one additional MUX for every row. These

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 796

are the 4 2-to-1 MUXes (each 8-bit width)

on the right hand side of the cells (03) to

(33), accounting for 75 GE instead of 300

GE. This choice is strongly related to the

choice of parallelism of the MixColumns

operation. Both [13] and [15] implemented

MixColumns in a serialized way, that is, it

takes 4 clock cycles to calculate one column.

We opted to implement MixColumns not in

a serialized way, because, as we are going to

show below, the hidden overhead is larger

than the potential savings.

The Key array consists of a similar 128 flip-

flop array as the State array, but the wiring

between the registers is different. There are

two shifting directions: horizontal and

vertical. The current 8-bit chunk of the

round key is output during the horizontal

shifting, while the S-box look-up for the key

schedule is performed during vertical

shifting. Note that the RotWord operation is

implemented by taking the output of the (13)

cell instead of the (03) cell as the input for

the S-box look-up. The S-box output is

XORed to the round constant RCon and the

output of the (00) cell. Once all four S-box

look ups have been performed the first

column of the key state contains already the

new roundkey, but the other three columns

do not. The remaining steps of the key

update is performed during the output of the

round key chunk by XORing the output of

cell (00)

to the output of cell (01) as the new input of

cell (00). Once the whole row is output, i.e.,

every fourth clock cycle, the feedback XOR

is not required, and thus the output of cell

(00) is gated with an AND gate. Note that on

top of the cost for storage (768 GE) and the

calculation and storage of the round constant

(89 GE), in our implementation the whole

key schedule requires only one 8-bit AND

gate (11 GE), an 8-bit XOR gate with two

inputs (19 GE) and an 8-bit XOR

gate with three inputs (35 GE). We believe

that our results are very close to a theoretical

optimum. This is reflected in the area

savings compared to previous results: 924

GE4 vs. 1076 in [15]. [13] uses a RAM-like

storage, which includes both, the State and

the Key arrays. Thus for a fair comparison

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 797

we have to add both modules together: 1678

GE vs. 2040 GE in [13].

In our architecture, MixColumns is realized

by four instances of a module called col,

which outputs the result of the first row of

the MixColumns matrix. Since the matrix

used is circulant, one can use the same

module and just rotate the input accordingly.

Note that in hardware rotation can be

realized by simple wiring and comes nearly

for free. By serializing MixColumns, one

can save 75% of the area (280 GE). Also, 3

of the 4 MUXes on the right hand side of

every row can be discarded, and the 32-bit

width 2-to-1 MUX (75 GE) at the right hand

side of the dashed line in Fig. 3 could be

shrinked to an 8-bit width 2- to-1 MUX (19

GE), leading to savings of 112 GE. So in

total, the potential savings for the whole

design (not only MixColumns) are 392 GE.

However, one needs to temporarily store at

least 3 of the output bytes, because we

cannot over-write the input bytes, before all

four output bytes are calculated. That is a

storage overhead of 5_24 = 120 GE. Since

the MixColumns matrix is circulant, we

need to rotate the input to the col module

with a different offset for every output byte.

This can be implemented by simple wiring

(see the right hand side of col in Fig. 3),

followed by a 32-bit width 4-to-1 MUX

(192 GE) to select the correct input. In

summary, the potential savings are in this

case reduced to 80 GE, while at the same

time one needs far more complex control

logic to orchestrate the control signals for

the MUXes and the additional temporary

storage flip-flops (see below).

 Instead of using a Finite State Machine

(FSM), we rather spent considerable amount

of time and effort to decrease the area

requirements for the control logic for the

unprotected version (Profile 1). The control

signals are derived from a 5-bit LFSR with

taps at bit position 1 and 5 that has a cycle

length of 21. This is exactly the amount of

cycles required to perform one round of

AES and the key schedule: 16 cycles for

AddRoundKey, 1 for ShiftRows (during

which the Key state is not clocked) and 4 for

the parallel execution of MixColumns and

SubWord. Every time a cycle is completed a

pulse is generated that is used to control the

MUXes and the clock gating logic. Simple

Boolean logic is used to derive all control

signals from this pulse, such that in total

only 73 GE are required for the control

logic. In [15] no details about the control

logic are given, and 220 GE are required for

both control logic and “others”. Thus a fairer

comparison is 80 GE vs. 220 GE. As a

consequence of a very serialized

implementation, a RAM-like storage, and

usage of an FSM, [13] requires 400 GE for

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 798

control logic (including the round constant

generation) compared to 162 GE for our

implementation. Similar to [15], we used

Canright’s description of the AES S-box [8],

which is the smallest known.

Our envisioned target application is a very

constrained device, e.g. a low-cost passive

RFID-tag or similar. By re-ordering the

input and output bytes, it is possible to

reduce the area significantly, to be precise

by 13.5%. As a consequence, our

implementation requires an input and output

ordering that is row-wise, i.e.,

S00jS01jS02jS03jS10 : : : S32jS33 and not

column-wise (S00jS10jS20jS30jS01 : : :

S23jS33), where Sij denotes one byte of the

input/output with 0 _ i; j _ 3. If column-wise

ordering is needed, 20 additional 8-bit wide

2-to-1 MUXes are required

(373 GE). I n fact with our approach we

forward the effort of re-ordering the bytes to

the other communication party. In an RFID

scenario this will most likely be a reader or a

database server, which is by far not as

constrained as a passive RFID tag. Hence,

the costs for the byte re-ordering are

marginal. Furthermore, when two devices

with our AES implementation communicate,

no byte re-ordering is needed at all. We

believe that this re-ordering does not pose

a severe problem in practice, while at the

same time results in an attractive area

saving.

4.3 A Threshold Implementation of AES

If we share both the data path and the key

schedule we obtain the threshold version

(profile 2). The additional hardware

requirements for this profile are depicted in

Fig. 2 by the dashed lines. For this profile

we need four randomly generated masks

(md1, md2, mk1, mk2), which are XORed

to the data chunk and the key chunk. The

unmasking step is performed by simply

XORing all three shares yielding the output

(data_out). The state of the masks also needs

to be

maintained, which leads to two more

instantiations of both the State and the Key

module (mask md1, mask md2, mask mk1

and mask mk2). Furthermore, the S-box is

now replaced by a shared S-box module that

contains five pipelining stages (see Fig. 1).

This delays the computation of the round

keys and, as a consequence, the pipeline

needs to be emptied in every encryption

round. Thus profile 2 needs 25 clock cycles

for one round and uses a small FSM to

derive the control signal (77 GE).

4.4 Performance Figures

Table 1 summarizes the implementation

figures of both profiles. The upper part gives

a detailed breakdown of the area

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 799

requirements both in absolute and relative

values. The lower part lists the smallest

achievable area requirements, power

estimations, clock cycles, and throughput at

100 KHz. Profile 1 (unprotected) has an area

footprint of 2400 GE of which 70% are

required to store the key and the data state.

MixColumns and S-box are the other two

main contributors to the area requirements.

Profile 2 (threshold version) increases the

area demands more than four-fold to 10793

GE. The main reason for

this is the S-box, which increases more than

10 fold and now occupies a whopping 35%

of the area. This increment mainly comes

from the 13-fold increment of the GF(22)

multiplier (13 GE vs. 173 GE) and the four

pipelining stages that need to store an

additional 174 bits (870 GE).

 Profile 1 requires 21 clock cycles per

round and 16 clock cycles to output the

result (226 clock cycles in total). Profile 2

needs 4 additional clock cycles per round,

due to the pipelining stages in the S-box,

which leads to a total of 266 clock cycles

(18% increment). Please note that the time

required can be reduced by 16 clock cycles

for additional 21 GE for profile 1 and 64 GE

for profile 2 by adding another XOR gate for

the final KeyAdd allowing to interleave

consecutive message blocks. The power

consumption was estimated at 100 KHz and

a supply voltage of 1:8V. The unprotected

implementation (profile 1) requires 3:7 _A

and thus is suitable for passive RFID-tags.

For profile 2, however, this figure increases

more than threefold to 13:4 _A, which might

already decrease the reading range of a

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 800

passive RFID tag. If required, power saving

techniques might be applied to reduce the

power consumption at the cost of additional

area. Please note that power figures for

different standard-cell libraries cannot be

compared in a fair manner. Furthermore,

power estimates vary greatly depending on

the simulation method used and effort spent.

Therefore we did compare our power figures

with previous works.

 5.

EXPERIMENTAL RESULTS

In addition to the performance and area

consumption features of our threshold

implementation, we have implemented the

whole AES encryption design on an FPGA-

based platform and analyzed the actual

power consumption traces to practically

investigate its resistance to first-order DPA

attacks. Later in this section the platform

used and the measurement setup are

introduced, then practical results are shown

to validate the desired security levels.

5.1 Measurement Setup

A SASEBO (Side-channel Attack Standard

Evaluation Board) which is particularly

designed for side-channel attack

experiments [1] has been used as the

measurement platform. It contains an

xc2vp7 Virtex-II Pro FPGA [35] as the

crypto FPGA, clocked at a frequency of

3MHz5, to implement the design. A LeCroy

WP715Zi 1.5GHz oscilloscope at a

sampling rate of 1GS/s and a differential

probe which captures voltage drop of a 1

resistor at VDD (1:8V) path are used as the

measurement equipments to collect the

power traces.

5.2 Side-Channel Resistance

In order to find the leakage points and have

a reference to fairly judge about the power

analysis resistance of our implementation,

we have switched off the mask generators

and kept all masks as zero to prevent

randomization by masking. 100 000 traces

are collected from this implementation while

encrypting random plaintexts. As expected

and also observed in [20], CPA attacks

which use a HW model predicting the S-box

input or output are not able to recover the

secrets of hardware implementations. What

should directly lead to a successful attack is

a CPA using HD model which predicts bit

flips on a part of the state register when S-

box outputs are overwritten to each other.

Therefore, two consecutive key bytes, i.e.,

216 hypotheses, should be guessed. The

results of such an attack, which shows the

amount of information leakage related to

register updates, is depicted by Fig. 4(a).

Note that to reduce the attack complexity we

have given a favor to the attacker by

knowing a key byte and reducing the key

hypotheses to 28. As shown in Fig. 4(b),

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 801

around 30 000 traces are sufficient to

perform asuccessful attack. Bcause of the

pipeline architecture of the S-box the correct

key guess appears at more than one clock

cycle in the attack results. Also, a

mutual information analysis attack using the

same distinguisher, i.e., HD of the register

updates, is efficiently capable of recovering

the secret. The results of this attack are

shown in Fig. 5(a) and Fig. 5(b). It is

noteworthy to mention that those four clock

cycles in which the secret leaks clearly in

both Fig. 4 and Fig. 5 are when the

intermediate results of the target S-box

computation are consecutively stored in the

pipeline registers of the shared S-box.

In order to observe the combinational circuit

leakage a correlation-enhanced collision

attack, presented in [21], is mounted by

getting average over the acquired traces

based on the plaintext bytes, and correlating

the mean traces after alignment based on the

clock cycles when the target S-boxes are

computed. In fact, this attack is very similar

to a template-based DPA attack using only

the mean vectors of the templates and

avoiding the profiling step. The result of this

attack presented in Fig. 6 shows that the

leakage of the combinational circuit, i.e., the

S-box instance, also leads to successfully

revealing the linear difference between two

key bytes.

 In the second step we have measured 5

million traces while the random number

generators are turned on and work normally.

The plaintext bytes are randomly selected,

and the masks are shared neither between

the plaintext and key bytes nor between

computation rounds of encryptions. In short,

there is no mask reuse in our target design.

All attacks, mounted on the first step when

the random number generators were off, are

repeated on the new measurements. The

CPA attack using HD, whose result is shown

in Fig. 7(a), is expectedly not successful

since registers are masked by means of three

shares and the predicted HD does not fit to

the register updates. However, the registers

which contain the shares are updated at the

same time, and their information leakages

through

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 802

power consumption are inherently summed

up. As observed in [32] the sum of shared

registers leakages is not independent of the

actual (unshared) value, and a mutual

information analysis is expected to recover

the secret. We have repeated the last mutual

information analysis attack by means of a

HD model as the distinguisher. The

corresponding attack result is shown in Fig.

7(b), but it still cannot distinguish the

correct hypothesis. This might be related to

the number of traces; in other words, 5

million traces seem to be not enough due to

the amount of switching and electronic noise

in our platform. However, the same issue

has been addressed in [25], where it is

argued that the combinational functions

following the registers change the

distribution of shared register leakages

leading to failed mutual information analysis

attacks.

On the other hand, repeating the last

correlation collision attack, whose results

are given in Fig. 7(c) and Fig. 7(d), led to

revealing the secret using around 3:5 million

traces. Since this attack recovers the first-

order leakage of combinational circuits, it

shows that our shared S-box still has first-

order leakage. During the investigation of

this issue (as also addressed in [25]) we have

realized that the values which are saved in

the intermediate registers of our shared S

box are not uniformly distributed. This

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 803

means, property 3 illustrated in [23] and [25]

does not hold although we have used the

shared multiplication in GF(22) proposed by

the original authors. The problem arises

when the output of the shared multiplication

modules which have some shared inputs are

mixed by means of the linear functions. In

fact, the correction terms which have been

added to the shared multiplications to

provide uniformity are canceled out. It is

actually a practical evidence showing that if

the uniformity property does not hold, the

leakage of the combinational circuit caused

by the glitches leads to a recoverable first-

order leakage. Since searching through all

possible correction terms and their

combination to check whether they lead to a

uniform distribution in our design was a

very time consuming task, we could neither

check all possible cases nor could we find a

suitable case. Instead, (as also addressed in

[25]) we have tried to use random fresh

masks inside each pipeline stage when

required. The scheme we have used to add

fresh masks, so-called remasking, is shown

by Fig. 8. We have simulated our shared S-

box and tried to find the minimum cases

where remasking is required, and finally

yielded the design shown in Fig. 1; the

remasked registers are marked by O.

Finally 100 million traces have been

acquired from the last design when all

random number generators worked normally

and the plaintext bytes were randomly

selected. It should be noted that the fresh

masks for the remasked registers are

provided by means of LSFRs which have

enough period considering 100 million

measurements. All the attacks illustrated

have been repeated here on all measured

traces. A CPA and an MIA using a HD

model on S-box outputs are still not

applicable; their results are depicted in Fig.

9(a) and Fig. 9(b) respectively. Also, we

have performed a third-order CPA attack by

cubing the power traces and correlating the

results to predictions of a HD model in order

to recover the leakage of the inherently

summed shared register updates. The result

of this attack shown in Fig. 9(c) indicates

that 100 million traces are still not enough

for such a higher-order attack. The

correlation collision attack is also not

applicable. Its results are shown in Fig. 9(d).

This means that our target design could

prevent the first-order leakage under

Gaussian assumption since correlation

collision attack applies only the mean

traces6. This confirms the statement given in

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 804

[25] that the average power leakage of a

threshold implementation should be

independent of the processed values. We

examined several models and performed a

couple of mutual information attacks, and

finally could make the secret distinguishable

using HD of the S-box input. Using this

model, similar to correlation collision

attacks, the linear difference between two

key bytes can be recovered. The result of

this attack is shown by Fig. 9(e) and Fig.

9(f), and indicates that the secret gets

distinguishable using more than 80 million

traces.

 6. CONCLUSION

While implementations of cryptographic

algorithms in pervasive devices seriously

face area and power constraints, their

resistance against physical attacks has to be

taken into account. Unfortunately, nearly all

side-channel countermeasures introduce

power and area overheads which are

proportional to the values of the unprotected

implementation.

Therefore, this fact prohibits the

implementation of a wide range of proposed

countermeasures and also limits possible

cipher candidates for ubiquitous computing

applications. Most of the countermeasures

proposed for implementing a side-channel

resistant

AES in hardware remained unfortunately

with a first-order leakage. In this article we

have applied a recently proposed secret

sharing-based masking scheme to the AES

S-box in order to improve the first-order

resistance. Decomposition of the AES S-box

into a series of S-boxes of algebraic degree

two and splitting them into (at least) three

shares is a challenging task. However, we

have used the architecture of the smallest

AES S-box and have shared the non-linear

operation which is a GF(22) multiplier. To

separate the glitches of different parts of the

circuit we have designed the S-box in five

pipeline stages by adding four sets of

intermediate registers and applying a

remasking scheme on some selected

registers. Our proposed hardware

architecture for the AES reduces the area

requirements to only 2400 GE, which is

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 805

23% smaller than the smallest previously

published. After the secret sharing based

countermeasure has been applied, the area

requirements are 11031 GE, while the

timing overhead compared to our

unprotected implementation with a similar

architecture is only 18%. According to

practical side-channel investigations,

masking the state and the key registers by

means of two shares each could improve the

resistance against the considered (most well-

known) first-order DPA attacks. Our

protected implementation offers 128-bit

standardized security with improved side-

channel resistance for around 11 000 GE.

REFERENCES

1. Side-channel attack standard evaluation

board (sasebo). Further information are

available via

http://www.rcis.aist.go.jp/special/SASEBO/i

ndex-en.html.

2. D. Agrawal, J. R. Rao, and P. Rohatgi.

Multi-channel Attacks. In CHES 2003,

volume 2779 of LNCS, pages 2–16.

Springer, 2003.

3. G. R. Blakley. Safeguarding

Cryptographic Keys. In National Computer

Conference,

pages 313–317, 1979.

4. J. Blömer, J. Guajardo, and V. Krummel.

Provably Secure Masking of AES. In

SAC 2004, volume 3357 of LNCS, pages

69–83. Springer, 2004.

5. A. Bogdanov, G. Leander, L. Knudsen, C.

Paar, A. Poschmann, M. Robshaw,

Y. Seurin, and C. Vikkelsoe. PRESENT -

An Ultra-Lightweight Block Cipher. In

CHES 2007, volume 4727 of LNCS, pages

450–466. Springer, 2007.

6. E. Brier, C. Clavier, and F. Olivier.

Correlation Power Analysis with a Leakage

Model. In CHES 2004, volume 3156 of

LNCS, pages 16–29. Springer, 2004.

7. C. D. Cannière, O. Dunkelman, and M.

Knezevic. KATAN & KTANTAN - A

Family of Small and Efficient Hardware-

Oriented Block Ciphers. In CHES 2009,

volume 5747 of LNCS, pages 272–288.

Springer, 2009.

8. D. Canright. A Very Compact S-Box

AUTHOR 1:-

 * V.NEELIMA completed her B tech

in BALAJI INSTITUTE OF

TECHNOLOGY & SCIENCE in 2013 and

completed M-Tech in VAAGDEVI

ENGINEERING COLLEGE.

AUTHOR 2:-

 **Mr. M.SANJAY is working as

Asstistant. Prof in Dept of ECE

VAAGDEVI ENGINEERING COLLEGE.

