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Abstract:-  

Our contribution is two fold: first we 

describe a very compact hardware 

implementation of AES-128, which requires 

only 2400 GE. This is to the best of our 

knowledge the smallest implementation 

reported so far. Then we apply the threshold 

countermeasure by Nikova et al. to the AES 

S-box and yield an implementation of the 

AES improving the level of resistance 

against first-order side-channel attacks. Our 

experimental results on real-world power 

traces show that although our 

implementation provides additional security, 

it is still susceptible to some sophisticated 

attacks having enough number of 

measurements. 
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1.INTRODUCTION 

The mass deployment of pervasive devices 

promises many benefits such as lower 

logistic costs, higher process granularity, 

optimized supply-chains, or location based 

services among others. Besides these 

benefits, there are also many risks inherent 

in pervasive computing: many foreseen 

applications are security sensitive, such as 

wireless sensor networks for military, 

financial or automotive applications. With 

the widespread presence of embedded 

computers in such scenarios, security is a 

striving issue, because the potential damage 

of malicious attacks also increases. An 

aggravating factor is that pervasive devices 

are usually not deployed in a controlled but 

rather in a hostile environment, i.e., an 

adversary has physical access to or control 

over the devices. This adds the whole field 

of physical attacks to the potential attack 

scenarios. Most notably are here so called 

side-channel attacks, especially Simple, 

Differential and Correlation Power Analysis 

[6, 18]. 

1.1 Related Work 
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Low-power low-area implementations of the 

AES have been reported in [15] requiring 

3100 GE and 160 clock cycles and in [13] 

requiring 3400 GE and 1032 clock cycles. 

Both implementations use an 8-bit serialized 

data path and implement only a quarter of 

the MixColums operations. The first design, 

[15], implements two S-boxes and performs 

the data path and the key schedule 

operations in parallel, while the latter 

implementation is fully serial and uses a 

RAM-like architecture. Canright has 

investigated very thoroughly how to 

implement the AES S-box in hardware with 

minimal area requirements [8]. On the other 

hand, several masking schemes have been 

proposed to create a masked AES S-box 

using either multiplicative or additive 

approaches. A common approach is to use 

the tower field representation for an additive 

masking scheme because of the linearity of 

the inversion in GF(22). The examples are 

[4] and [26] which are provably secure, but 

in practice obvious first-order leakages have 

been observed [20]. Later, Canright et al. [9] 

applied the idea of [26] to his very compact 

S-box resulting in the most compact masked 

S-box to date. However, as expected its 

hardware implementation still has first-order 

leakage. 

1.2 Our Work 

Our first contribution is a description of the 

smallest hardware implementation of AES 

known to date. Our design goal was solely 

low area, and thus we were able to set the 

time-area and the power-area tradeoffs 

differently, and in favour for a more 

compact hardware realization. To pursue our 

goal, we have taken a holistic approach that 

optimizes the total design, not every 

component individually. In total we 

achieved an implementation that requires 

only 2400 GE and needs 226 clock cycles, 

which is to the best of our knowledge 23% 

smaller than any previously published 

implementations.  

      As a second contribution, we investigate 

side-channel countermeasures for this 

lightweight AES implementation. It turns 

out that when using Canright’s 

representation, the only non-linear function 

is the multiplication in GF(22). An example 

for how to share this function using only 

three shares has been presented by Nikova et 

al. in [24]. Building on these findings, we 

applied the countermeasure to our 

unprotected AES implementation. For this 

architecture we conducted a complete side-

channel evaluation based on real-world 

power traces that we obtain from SASEBO. 

We use a variety of different power analysis 

attacks to investigate the achieved level of 

resistance of our implementation against 
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first order DPA attacks even if an attacker is 

capable of measuring 100 million power 

traces. 

1.3 Outline 

We first give a brief introduction to 

Differential Power Analysis and 

countermeasures in the following Section. A 

general overview follows a more detailed 

description of the masking scheme presented 

in [23, 24], which we use for our 

experimental evaluation. Subsequently in 

Section 3 AES and Canright’s optimized S-

box are briefly recalled, before we describe 

a shared AES S-box. Based on these 

findings, in Section 4 we propose two 

hardware architectures – unprotected and 

protected – of AES-128 and mount DPA 

attacks on its real-world power traces 

in Section 5. 

                                                 

2.INTRODUCTION TO DPA 

Smart cards and other types of pervasive 

devices performing cryptographic operations 

are seriously challenged by side-channel 

cryptanalysis. Several publications, e.g., 

[12] have stressed that such physical attacks 

are an extremely practical and powerful tool 

for recovering the secrets of unprotected 

cryptographic devices. In fact, these attacks 

exploit the information leaking through 

physical side channels and involved in 

sensitive computations to reveal the key 

materials. Amongst the known sources of 

side channels and the corresponding attacks 

most notable are power analysis attacks 

[18]. Many different kinds of power analysis 

attacks, e.g., simple and differential power 

analysis (SPA and DPA) [18], template-

based attacks [2], and mutual information 

analysis [14], have been introduced while 

each one has its own advantages and is 

suitable in its special conditions. However, 

correlation power analysis (CPA) [6], which 

is a general form of DPA, got more attention 

since it is able to efficiently reveal the 

secrets by comparing the measurements to 

the estimations obtained by means of a 

theoretical power model which fits to the 

characteristics of the target implementation.  

2.1 Countermeasures 

Generally speaking, the goal of a DPA 

countermeasure is to prevent a dependency 

between the power consumption of a 

cryptographic device and characteristics of 

the executed algorithm, e.g., intermediate 

values, executed operations, and taken 

branches [19]. Amongst the 

countermeasures proposed at different levels 

of design and abstraction Masking methods, 

which rely on randomizing key-dependent 

intermediate values processed during the 

execution of the cipher, are widely applied 

on either the algorithmic level [26] or the 

cell level [27]. An n-order masking 
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technique is in fact an (n + 1, n + 1) secret 

sharing scheme [3, 31], where all shares of 

the secret are required to proceed. When an 

algorithmic masking scheme is applied on a 

microprocessor-based platform, it is often 

combined by shuffling [16] which 

randomizes the order of operations. 

Applying a masking scheme in a software 

implementation (microprocessor) can be 

defeated by higher order attacks [11, 34]. 

However, practical experiences like [20] 

showed that still there is a first-order 

leakage when hardware (ASIC or FPGA) is 

protected by a masking scheme at algorithm 

level. This leakage can be exploited by 

sophisticated power models, e.g., toggle-

count 

model, or by a template-based DPA attack.  

    In short, currently there exists no perfect 

protection against DPA attacks. However, 

applying appropriate countermeasures 

makes the attacker’s task more difficult and 

expensive. Chari et al. have shown in [10] 

that up to n-th order DPA attacks can be 

prevented by using n masks. Following this 

direction, Nikova et al. extended the idea of 

masking with more than two shares in [23] 

to prevent those attacks which use 

sophisticated power models, e.g., counting 

the glitches 

occuring when the inputs of a complex 

combinational circuit change. They showed 

that non-linear functions implemented in 

such a way, achieve provable security 

against first-order DPA attacks and also 

resist higher-order attacks that are based on 

a comparison of mean power consumption. 

Estimations of a hardware implementation 

of these ideas are presented in [24] where an 

S-box of the Noekeon cipher [17] is 

considered as a case study without practical 

evaluation of its resistance to DPA attacks. 

Afterwards, the same approach is applied on 

the S-box of the PRESENT cipher [5], and 

its resistance against first-order attacks is 

verified in [28]. Since it seems to be a 

promising candidate for a lightweight and 

side-channel resistant implementation, we 

have chosen this scheme to implement the 

AES S-box and have a comparison (on its 

first-order leakage) to the masked AES S-

boxes proposed so far, e.g., [9] and [26].  

        3.SHARED COMPUTATION OF 

THE AES S-BOX USING COMPOSITE 

FIELDS 

In this section first an algorithmic 

description of AES is given, before the AES 

S-box as described by Canright is expressed. 

Finally, the threshold countermeasure of 

Nikova et al. is applied to the Canright AES 

S-box that will be used in the next section 

for a protected implementation of the AES. 

3.1 Algorithmic Description of AES 
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In November 2001 the Rijndael algorithm 

was chosen as the Advanced Encryption 

Standard (AES) by the National Institute of 

Standards and Technology (NIST) [22]. 

AES is a symmetric block cipher, that 

processes data blocks of 128 bits. Three 

different key lengths are specified: 128, 192, 

and 256 bits, resulting in 10, 12 or 14 

rounds, respectively. AES is, depending on 

the key length, also referred to as AES-128, 

AES-192, and AES-256 and in the 

remainder of this 

article we focus on the encryption process of 

AES-128. At the beginning of the algorithm, 

the input is copied into the State array, 

which consists of 16 bytes, arranged in four 

rows and four columns (4 _ 4 - Matrix). At 

the end, the State array is copied to the 

output. The bytes of the State are interpreted 

as coefficients of a polynomial 

representation of finite field elements in 

GF(28). All byte values in the remainder of 

this article will be written in hexadecimal 

notation in the form {ab}. In encryption 

mode, the initial key is added to the input 

value at the very beginning, which is called 

an initial round. This is followed by 9 

iterations of a normal round and ends with a 

slightly modified final round. During one 

normal round the following operations are 

performed in the following order: SubBytes, 

ShiftRows, MixColumns, and 

AddRoundkey. The final round is a normal 

round without the MixColumns stage.  

SubBytes is a non-linear, invertible byte 

substitution and consists of two 

transformations that are performed on each 

of the bytes independently: First each byte is 

substituted by its multiplicative inverse in 

GF(28) (if existent), 

element {00} is mapped to itself. Then the 

following affine transformation over GF(2) 

is applied: b 0 i = 

bi_b(i+5)mod8_b(i+6)mod8_b(i+7)mod8_ci 

for 0 _ i _ 8, where bi(ci) is the i-th bit of the 

byte b(c), c = f63g = 011000112 .   

ShiftRows cyclically shifts each row of the 

State by a certain offset. The first row is not 

shifted at all, the second row is shifted by 

one, the third row by two, and the fourth 

row by three bytes to the left. MixColumns 

processes one column of the State at a time. 

The bytes are interpreted as coefficients of a 

four-term polynomial over GF(24). Each 

column is multiplied modulo x4 + 1 with a 

fixed polynomial a(x) = f03gx3 + f01gx2 + 

f01gx+f02g. This can be written as the 

following matrix multiplication, where s0(x) 

= a(x)  s(x): 
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AddRoundKey adds the 128-bit round key 

generated from KeyExpansion to the 128-bit 

State. It is a simple XOR-addition of the 

round key and the State. KeyExpansion 

derives 10 round keys from the initial key 

iteratively. The key is grouped into four 

words w0, w1, w2, and w3, that consist of 

four bytes each. w3 is cyclically shifted to 

the left by one byte. The result is bytewise 

substituted by the S-box and then a round 

constant RCon is XOR-added. Finally the 

result is XOR added to w0 yielding w00 . 

w01 is obtained by XOR adding w00 with 

w1, w02 = w01 _ w2 and w03 = w02 _ w3. 

The new key state or round key RKi is then 

formed by RKi = w00 jw01 jw02 jw03 . The 

round constants RConi are derived by the 

following equation: RConi = xi mod m(x), 

where i denotes the round number, 0 _ i _ 9 

and the irreducible polynomial m(x)= 

x8+x4+x3+x+1. For further details on AES, 

the interested reader is referred to [29]. 

 

3.2 Canright’s Representation of the AES 

S-box 

Canright investigated the hardware 

requirements of the AES S-box very 

thoroughly in [8]. He proposed a very 

compact S-box that is composed of smaller  

fields. As one can see from Fig. 1 the input 

to the S-box is transformed by a linear 

mapping that changes the basis from GF(28) 

to GF(28)/GF(24)/GF(22) (please ignore 

pipelining and register remarks in this step, 

these issues are addressed in Section 3.3 and 

in Section 5). The output is transformed by a 

linear mapping that combines the basis 

change back to GF(28) and the inverse 

mapping of the AES S-box. Beside two 4-bit 

XORs, a GF(24) inverter (center module), a 

GF(24) 

 

square-scaler (top left module) and three 

instances of a GF(24) multiplier (right and 

bottom left) are required. The GF(24) 

square-scaler uses a normal basis (�4; �) 

and only consists of wiring and three XOR 

gates. The GF(24) inverter uses a normal 

basis (�4; �) and consists of 5 XOR gates, 

some wiring and three instances of a GF(22) 

multiplier (thick lined rectangles)3. The 

GF(24) multiplier consists of nine XOR 



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 13 
September 2016 

  

Available online: http://internationaljournalofresearch.org/  P a g e  | 794 

gates, some wiring and three parallel 

instances of a GF(22) multiplier.  

3.3 A Shared AES S-box  

To apply the threshold countermeasure of 

Nikova et al. [24] we need to share the non-

linear functions of the algorithms, while the 

linear functions are simply implemented s 

times in parallel, where s denotes the 

amount of shares. Particularly interesting are 

realizations with minimal amount of shares, 

i.e., s = 3, because they require the fewest 

hardware resources. Having a closer look on 

the representation of Canright, it turns out 

that the only non-linear parts of the AES S-

box are the multipliers in GF(22). In [24] an 

exemplary realization of this multiplier 

using only three shares has been presented. 

It is noteworthy to point out that the 

threshold countermeasure requires registers 

between different 

stages of shared functions. As can be seen 

from Fig. 1, Canright’s S-box representation 

requires in total five pipelining stages. Note 

that not only the output of the shared 

functions, but all signals have to be 

pipelined. This implies that in total we need 

to store 174 bits, which as we will see in 

Section 4 will increase the area requirements 

even further (please ignore remasked 

register remarks in this step, this issue is 

discussed in Section 5). 

                                            4. 

HARDWARE ARCHITECTURES 

This section is dedicated to the description 

of the different hardware profiles that we 

will attack in the next section. For this 

purpose we first introduce the design flow 

used before we detail the hardware 

architectures, and finally summarize the 

implementation results. 

 4.1 Design flow  

We used Mentor Graphics ModelSimXE 

6.4b and Synopsys Design Compiler version 

A-2007.12-SP1 for functional simulation 

and synthesis of the designs to the Virtual 

Silicon (VST) standard cell library 

UMCL18G212T3 [33], which is based on 

the UMC L180 0.18_m 1P6M logic process 

with a typical voltage of 1:8V. We used 

Synopsys Power Compiler version A-

2007.12-SP1 to estimate the power 

consumption of our ASIC implementations. 

For synthesis and for power estimation we 

advised the compiler to keep the hierarchy 

and use a clock frequency of 100 KHz, 

which is a widely used operating frequency 

for RFID applications.  

Note that the wire-load model used, though 

it is the smallest available for this library, 

still simulates the typical wire-load of a 

circuit with a size of around 10 000 GE.  

To substantiate our claims on the efficacy of 

the proposed countermeasures, we 
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implemented the ASIC cores on SASEBO to 

obtain and evaluate real-world power traces. 

For design synthesis, implementation and 

configuration of SASEBO we used Xilinx 

ISE v10.1.03 WebPACK. In a typical 

application scenario the cryptographic core 

would be part of an integrated ASIC, hence 

for the power measurements on SASEBO 

we embedded the cryptographic core in a 

framework that handles the communication 

between the two FPGAs.  

4.2 A Very Compact Implementation of AES  

 

 The most area consumption typically occurs 

for storing the intermediate state, because 

typically flip-flops are used, which have 

high area requirements. In the technology 

we used, a single-input, positive edge 

triggered D flip-flop requires 5 GE and can 

store 1 bit. If you have more than one input, 

e.g. the output from SubBytes, the output 

from ShiftRows and the output from 

MixColumns, you need multiplexers. A 

Multiplexer for a selection from two inputs 

to one output (2-to-1 MUX) costs 2.33 GE 

per bit. Scan flip-flops combine a D flip-flop 

and a 2-to-1 MUX for 6 GE per bit. That is a 

saving of 1.33 GE per bit of storage. For the 

AES this sums up to 340 GE. Scan flip flops 

have been used before, e.g. in 

implementations of PRESENT [30] and 

KATAN/KTANTAN [7]. 

Based on the properties of scan flip-flops (2 

inputs “for free”), we designed the 

architecture for our tiny AES 

implementation. As can be seen in Fig. 3, 

both the State array and the Key array each 

consist of a 16 stage 8-bit width shift 

register. Each of the stages comprises 8 scan 

flip-flops (cells 00 to 33) with two inputs. 

One input receives the output of the 

previous stage, while the other one contains 

the result of ShiftRows, which comes for 

free in our design, since shifting is done by 

wiring. Instead of adding one 2-to-1 MUX 

for every cell of the State array, we designed 

our architecture in a way that we only need 

one additional MUX for every row. These 
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are the 4 2-to-1 MUXes (each 8-bit width) 

on the right hand side of the cells (03) to 

(33), accounting for 75 GE instead of 300 

GE. This choice is strongly related to the 

choice of parallelism of the MixColumns 

operation. Both [13] and [15] implemented 

MixColumns in a serialized way, that is, it 

takes 4 clock cycles to calculate one column. 

We opted to implement MixColumns not in 

a serialized way, because, as we are going to 

show below, the hidden overhead is larger 

than the potential savings.  

 

The Key array consists of a similar 128 flip-

flop array as the State array, but  the wiring 

between the registers is different. There are 

two shifting directions: horizontal and 

vertical. The current 8-bit chunk of the 

round key is output during the horizontal 

shifting, while the S-box look-up for the key 

schedule is performed during vertical 

shifting. Note that the RotWord operation is 

implemented by taking the output of the (13) 

cell instead of the (03) cell as the input for 

the S-box look-up. The S-box output is 

XORed to the round constant RCon and the 

output of the (00) cell. Once all four S-box 

look ups have been performed the first 

column of the key state contains already the 

new roundkey, but the other three columns 

do not. The remaining steps of the key 

update is performed during the output of the 

round key chunk by XORing the output of 

cell (00) 

to the output of cell (01) as the new input of 

cell (00). Once the whole row is  output, i.e., 

every fourth clock cycle, the feedback XOR 

is not required, and thus the output of cell 

(00) is gated with an AND gate. Note that on 

top of the cost for storage (768 GE) and the 

calculation and storage of the round constant 

(89 GE), in our implementation the whole 

key schedule requires only one 8-bit AND 

gate (11 GE), an 8-bit XOR gate with two 

inputs (19 GE) and an 8-bit XOR 

gate with three inputs (35 GE). We believe 

that our results are very close to a theoretical 

optimum. This is reflected in the area 

savings compared to previous results: 924 

GE4 vs. 1076 in [15]. [13] uses a RAM-like 

storage, which includes both, the State and 

the Key arrays. Thus for a fair comparison 
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we have to add both modules together: 1678 

GE vs. 2040 GE in [13]. 

In our architecture, MixColumns is realized 

by four instances of a module called col, 

which outputs the result of the first row of 

the MixColumns matrix. Since the matrix 

used is circulant, one can use the same 

module and just rotate the input accordingly. 

Note that in hardware rotation can be 

realized by simple wiring and comes nearly 

for free. By serializing MixColumns, one 

can save 75% of the area (280 GE). Also, 3 

of the 4 MUXes on the right hand side of 

every row can be discarded, and the 32-bit 

width 2-to-1 MUX (75 GE) at the right hand 

side of the dashed line in Fig. 3 could be 

shrinked to an 8-bit width 2- to-1 MUX (19 

GE), leading to savings of 112 GE. So in 

total, the potential savings for the whole 

design (not only MixColumns) are 392 GE. 

However, one needs to temporarily store at 

least 3 of the output bytes, because we 

cannot over-write the input bytes, before all 

four output bytes are calculated. That is a 

storage overhead of 5_24 = 120 GE. Since 

the MixColumns matrix is circulant, we 

need to rotate the input to the col module 

with a different offset for every output byte. 

This can be implemented by simple wiring 

(see the right hand side of col in Fig. 3), 

followed by a 32-bit width 4-to-1 MUX 

(192 GE) to select the correct input. In 

summary, the potential savings are in this 

case reduced to 80 GE, while at the same 

time one needs far more complex control 

logic to orchestrate the control signals for 

the MUXes and the additional temporary 

storage flip-flops (see below).  

   Instead of using a Finite State Machine 

(FSM), we rather spent considerable amount 

of time and effort to decrease the area 

requirements for the control logic for the 

unprotected version (Profile 1 ). The control 

signals are derived from a 5-bit LFSR with 

taps at bit position 1 and 5 that has a cycle 

length of 21. This is exactly the amount of 

cycles required to perform one round of 

AES and the key schedule: 16 cycles for 

AddRoundKey, 1 for ShiftRows (during 

which the Key state is not clocked) and 4 for 

the parallel execution of MixColumns and 

SubWord. Every time a cycle is completed a 

pulse is generated that is used to control the 

MUXes and the clock gating logic. Simple 

Boolean logic is used to derive all control 

signals from this pulse, such that in total 

only 73 GE are required for the control 

logic. In [15] no details about the control 

logic are given, and 220 GE are required for 

both control logic and “others”. Thus a fairer 

comparison is 80 GE vs. 220 GE. As a 

consequence of a very serialized 

implementation, a RAM-like  storage, and 

usage of an FSM, [13] requires 400 GE for 
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control logic (including  the round constant 

generation) compared to 162 GE for our 

implementation. Similar to [15], we used 

Canright’s description of the AES S-box [8], 

which is the smallest known. 

 

Our envisioned target application is a very 

constrained device, e.g. a low-cost passive 

RFID-tag or similar. By re-ordering the 

input and output bytes, it is possible to 

reduce the area significantly, to be precise 

by 13.5%. As a consequence, our 

implementation requires an input and output 

ordering that is row-wise, i.e., 

S00jS01jS02jS03jS10 : : : S32jS33 and not 

column-wise (S00jS10jS20jS30jS01 : : : 

S23jS33), where Sij denotes one byte of the 

input/output with 0 _ i; j _ 3. If column-wise 

ordering is needed, 20 additional 8-bit wide 

2-to-1 MUXes are required 

(373 GE). I n fact with our approach we 

forward the effort of re-ordering the bytes to 

the other communication party. In an RFID 

scenario this will most likely be a reader or a 

database server, which is by far not as 

constrained as a passive RFID tag. Hence, 

the costs for the byte re-ordering are 

marginal. Furthermore, when two devices 

with our AES implementation communicate, 

no byte re-ordering is needed at all. We 

believe that this re-ordering does not pose 

a severe problem  in practice, while at the 

same time results in an attractive area 

saving. 

4.3 A Threshold Implementation of AES 

If we share both the data path and the key 

schedule we obtain the threshold version 

(profile 2 ). The additional hardware 

requirements for this profile are depicted in 

Fig. 2 by the dashed lines. For this profile 

we need four randomly generated masks 

(md1, md2, mk1, mk2), which are XORed 

to the data chunk and the key chunk. The 

unmasking step is performed by simply 

XORing all three shares yielding the output 

(data_out). The state of the masks also needs 

to be 

maintained, which leads to two more 

instantiations of both the State and the Key 

module (mask md1, mask md2, mask mk1 

and mask mk2). Furthermore, the S-box is 

now replaced by a shared S-box module that 

contains five pipelining stages (see Fig. 1). 

This delays the computation of the round 

keys and, as a consequence, the pipeline 

needs to be emptied in every encryption 

round. Thus profile 2 needs 25 clock cycles 

for one round and uses a small FSM to 

derive the control signal (77 GE).  

4.4 Performance Figures 

Table 1 summarizes the implementation 

figures of both profiles. The upper part gives 

a detailed breakdown of the area 
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requirements both in absolute and relative 

values. The lower part lists the smallest 

achievable area requirements, power 

estimations, clock cycles, and throughput at 

100 KHz. Profile 1 (unprotected) has an area 

footprint of 2400 GE of which 70% are 

required to store the key and the data state. 

MixColumns and S-box are the other two 

main contributors to the area requirements. 

Profile 2 (threshold version)  increases the 

area demands more than four-fold to 10793 

GE. The main reason for 

 

this is the S-box, which increases more than 

10 fold and now occupies a whopping 35% 

of the area. This increment mainly comes 

from the 13-fold increment of the GF(22) 

multiplier (13 GE vs. 173 GE) and the four 

pipelining stages that need to store an 

additional 174 bits (870 GE).                                       

          Profile 1 requires 21 clock cycles per 

round and 16 clock cycles to output the 

result (226 clock cycles in total). Profile 2 

needs 4 additional clock cycles per round, 

due to the pipelining stages in the S-box, 

which leads to a total of 266 clock cycles 

(18% increment). Please note that the time 

required can be reduced by 16 clock cycles 

for additional 21 GE for profile 1 and 64 GE 

for profile 2 by adding another XOR gate for 

the final KeyAdd allowing to interleave 

consecutive message blocks. The power 

consumption was estimated at 100 KHz and 

a supply voltage of 1:8V. The unprotected 

implementation (profile 1 ) requires 3:7 _A 

and thus is suitable for passive RFID-tags. 

For profile 2, however, this figure increases 

more than threefold to 13:4 _A, which might 

already decrease the reading range of a 
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passive RFID tag. If required, power saving 

techniques might be applied to reduce the 

power consumption at the cost of additional 

area. Please note that  power figures for 

different standard-cell libraries cannot be 

compared in a fair manner. Furthermore, 

power estimates vary greatly depending on 

the simulation method used and effort spent. 

Therefore we did compare our power figures 

with previous works. 

                                                 5. 

EXPERIMENTAL RESULTS 

In addition to the performance and area 

consumption features of our threshold 

implementation, we have implemented the 

whole AES encryption design on an FPGA-

based platform and analyzed the actual 

power consumption traces to practically 

investigate its resistance to first-order DPA 

attacks. Later in this section the platform 

used and the measurement setup are 

introduced, then practical results are shown 

to validate the desired security levels. 

5.1 Measurement Setup 

A SASEBO (Side-channel Attack Standard 

Evaluation Board) which is particularly 

designed for side-channel attack 

experiments [1] has been used as the 

measurement platform. It contains an 

xc2vp7 Virtex-II Pro FPGA [35] as the 

crypto FPGA, clocked at a frequency of 

3MHz5, to implement the design. A LeCroy 

WP715Zi 1.5GHz oscilloscope at a 

sampling rate of 1GS/s and a differential 

probe which captures voltage drop of a 1 

resistor at VDD (1:8V) path are used as the 

measurement equipments to collect the 

power traces.  

5.2 Side-Channel Resistance 

In order to find the leakage points and have 

a reference to fairly judge about the power 

analysis resistance of our implementation, 

we have switched off the mask generators 

and kept all masks as zero to prevent 

randomization by masking. 100 000 traces 

are collected from this implementation while 

encrypting random plaintexts. As expected 

and also observed in [20], CPA attacks 

which use a HW model predicting the S-box 

input or output are not able to recover the 

secrets of hardware implementations. What 

should directly lead to a successful attack is 

a CPA using HD model which predicts bit 

flips on a part of the state register when S-

box outputs are overwritten to each other. 

Therefore, two consecutive key bytes, i.e., 

216 hypotheses, should be guessed. The 

results of such an attack, which shows the 

amount of information leakage related to 

register updates, is depicted by Fig. 4(a). 

Note that to reduce the attack complexity we 

have given a favor to the attacker by 

knowing a key byte and reducing the key 

hypotheses to 28. As shown in Fig. 4(b), 
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around 30 000 traces are sufficient to 

perform asuccessful attack. Bcause of the 

pipeline architecture of the S-box the correct 

key guess appears at more than one clock 

cycle in the attack results. Also, a  

 

mutual information analysis attack using the 

same distinguisher, i.e., HD of the register 

updates, is efficiently capable of recovering 

the secret. The results of this attack are 

shown in Fig. 5(a) and Fig. 5(b). It is 

noteworthy to mention that those four clock 

cycles in which the secret leaks clearly in 

both Fig. 4 and Fig. 5 are when the 

intermediate results of the target S-box 

computation are consecutively stored in the 

pipeline registers of the shared S-box.  

In order to observe the combinational circuit 

leakage a correlation-enhanced collision 

attack, presented in [21], is mounted by 

getting average over the acquired traces 

based on the plaintext bytes, and correlating 

the mean traces after alignment based on the 

clock cycles when the target S-boxes are 

computed. In fact, this attack is very similar 

to a template-based DPA attack using only 

the mean vectors of the templates and 

avoiding the profiling step. The result of this 

attack presented in Fig. 6 shows that the 

leakage of the combinational circuit, i.e., the 

S-box instance, also leads to successfully 

revealing the linear difference between two 

key bytes. 

 In the second step we have measured 5 

million traces while the random number 

generators are turned on and work normally. 

The plaintext bytes are randomly selected, 

and the masks are shared neither between 

the plaintext and key bytes nor between 

computation rounds of encryptions. In short, 

there is no mask reuse in our target design. 

All attacks, mounted on the first step when 

the random number generators were off, are 

repeated on the new measurements. The 

CPA attack using HD, whose result is shown 

in Fig. 7(a), is expectedly not successful 

since registers are masked by means of three 

shares and the predicted HD does not fit to 

the register updates. However, the registers 

which contain the shares are updated at the 

same time, and their information leakages 

through   
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power consumption are inherently summed 

up. As observed in [32] the sum of shared 

registers leakages is not independent of the 

actual (unshared) value, and a mutual 

information analysis is expected to recover 

the secret. We have repeated the last mutual 

information analysis attack by means of a 

HD model as the distinguisher. The 

corresponding attack result is shown in Fig. 

7(b), but it still cannot distinguish the 

correct hypothesis. This might be related to 

the number of traces; in other words, 5 

million traces seem to be not enough due to 

the amount of switching and electronic noise 

in our platform. However, the same issue 

has been addressed in [25], where it is 

argued that the combinational functions 

following the registers change the 

distribution of shared register leakages 

leading to failed mutual information analysis 

attacks. 

 

 

On the other hand, repeating the last 

correlation collision attack, whose results 

are given in Fig. 7(c) and Fig. 7(d), led to 

revealing the secret using around 3:5 million 

traces. Since this attack recovers the first-

order leakage of combinational circuits, it 

shows that our shared S-box still has first-

order leakage. During the investigation of 

this issue (as also addressed in [25]) we have 

realized that the values which are saved in 

the intermediate registers of our shared S 

box are not uniformly distributed. This 
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means, property 3 illustrated in [23] and [25] 

does not hold although we have used the 

shared multiplication in GF(22) proposed by 

the original authors. The problem arises 

when the output of the shared multiplication 

modules which have some shared inputs are 

mixed by means of the linear functions. In 

fact, the correction terms which have been 

added to the shared multiplications to 

provide uniformity are canceled out. It is 

actually a practical evidence showing that if 

the uniformity property does not hold, the 

leakage of the combinational circuit caused 

by the glitches leads to a recoverable first-

order leakage. Since searching through all 

possible correction terms and their 

combination to check whether they lead to a 

uniform distribution in our design was a 

very time consuming task, we could neither 

check all possible cases nor could we find a 

suitable case. Instead, (as also addressed in 

[25]) we have tried to use random fresh 

masks inside each pipeline stage when 

required. The scheme we have used to add 

fresh masks, so-called remasking, is shown 

by Fig. 8. We have simulated our shared S-

box and tried to find the minimum cases 

where remasking is required, and finally 

yielded the design shown in Fig. 1; the 

remasked registers are marked by O. 

 

Finally 100 million traces have been 

acquired from the last design when all 

random number generators worked normally 

and the plaintext bytes were randomly 

selected. It should be noted that the fresh 

masks for the remasked registers are 

provided by means of LSFRs which have 

enough period considering 100 million 

measurements. All the attacks illustrated 

have been repeated here on all measured 

traces. A CPA and an MIA using a HD 

model on S-box outputs are still not 

applicable; their results are depicted in Fig. 

9(a) and Fig. 9(b) respectively. Also, we 

have performed a third-order CPA attack by 

cubing the power traces and correlating the 

results to predictions of a HD model in order 

to recover the leakage of the inherently 

summed shared register updates. The result 

of this attack shown in Fig. 9(c) indicates 

that 100 million traces are still not enough 

for such a higher-order attack. The 

correlation collision attack is also not 

applicable. Its results are shown in Fig. 9(d). 

This means that our target design could 

prevent the first-order leakage under 

Gaussian assumption since correlation 

collision attack applies only the mean 

traces6. This confirms the statement given in 
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[25] that the average power leakage of a 

threshold implementation should be 

independent of the processed values. We 

examined several models and performed a 

couple of mutual information attacks, and 

finally could make the secret distinguishable 

using HD of the S-box input. Using this 

model, similar to correlation collision 

attacks, the linear difference between two 

key bytes can be recovered. The result of 

this attack is shown by Fig. 9(e) and Fig. 

9(f), and indicates that the secret gets 

distinguishable using more than 80 million 

traces. 

  

                                                         6. CONCLUSION 

While implementations of cryptographic 

algorithms in pervasive devices seriously 

face area and power constraints, their 

resistance against physical attacks has to be 

taken into account. Unfortunately, nearly all 

side-channel countermeasures introduce 

power and area overheads which are 

proportional to the values of the unprotected 

implementation. 

Therefore, this fact prohibits the 

implementation of a wide range of proposed 

countermeasures and also limits possible 

cipher candidates for ubiquitous computing 

applications. Most of the countermeasures 

proposed for implementing a side-channel 

resistant 

AES in hardware remained unfortunately 

with a first-order leakage. In this article we 

have applied a recently proposed secret 

sharing-based masking scheme to the AES 

S-box in order to improve the first-order 

resistance. Decomposition of the AES S-box 

into a series of S-boxes of algebraic degree 

two and splitting them into (at least) three 

shares is a challenging task. However, we 

have used the architecture of the smallest 

AES S-box and have shared the non-linear 

operation which is a GF(22) multiplier. To 

separate the glitches of different parts of the 

circuit we have designed the S-box in five 

pipeline stages by adding four sets of 

intermediate registers and applying a 

remasking scheme on some selected 

registers. Our proposed hardware 

architecture for the AES reduces the area 

requirements to only 2400 GE, which is 
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23% smaller than the smallest previously 

published. After the secret sharing based 

countermeasure has been applied, the area 

requirements are 11031 GE, while the 

timing overhead compared to our 

unprotected implementation with a similar 

architecture is only 18%. According to 

practical side-channel investigations, 

masking the state and the key registers by 

means of two shares each could improve the 

resistance against the considered (most well-

known) first-order DPA attacks. Our 

protected implementation offers 128-bit 

standardized security with improved side-

channel resistance for around 11 000 GE. 
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