
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 831

 Adaptive Technique For Test Packet Generation

 *B.MADHURI **K.GOUTHAM RAJU

 *M.TECH Dept of CSE,VAAGDEVI COLLEGE OF ENGINEERING

 **Assistant Professor Dept of CSE, VAAGDEVI COLLEGE OF ENGINEERING

Abstract—

Recently networks are growing wide and

more complex. However administrators use

tools like ping and trace route to debug

problems. Hence we proposed an automatic

and Methodical approach for testing and

debugging networks called Automatic Test

Packet Generation (ATPG). This approach

gets router configurations and generates a

device-independent model. ATPG generate

a few set of test packets to find every link in

the network. Test packets are forwarded

frequently and it detect failures to localize

the fault. ATPG can detect both functional

and performance (throughput, latency)

problems. We found, less number of test

packets is enough to test all rules in

networks. For example, 4000 packets can

cover all rules in Stanford backbone

network, while 53 are much enough to cover

all links.

Keywords: Fault Localization, Test Packet

Selection, Network Debugging, Automatic

Test packet Generation (ATPG), Forwarding

Information Base (FIB).

1.INTRODUCTION

It is popularly known us, very difficult to

troubleshoot or identify and remove errors in

networks. Every day, network engineers

fight with mislabeled cables, software bugs,

router misconfigurations, fiber cuts, faulty

interfaces and other reasons that cause

networks to drop down. Network engineers

hunt down bugs with various tools (e.g.,

Ping, trace route, SNMP) and track down

the reason for network failure using a

combination of accrued wisdom and

impression. Debugging networks is

becoming more harder as networks are

growing larger (modern data centers may

contain 10 000 switches, a campus network

may serve 50 000 users, a 100-Gb/s long-

haul link may carry 100 000 flows) and are

getting complicated (with over 6000 RFCs,

router software was based on millions of

lines of source code, and network chips

contain billions of gates. Fig. 1 is a

simplified view of network state. Bottom of

the figure is the forwarding state to forward

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 832

each packet, consist of L2 and L3

forwarding information base (FIB), access

control lists, etc. The forwarding state was

written by the control plane (that could be

local or remote) and should correctly

implement the network administrator’s

scheme. Examples of the scheme include:

―Security group X was isolated from

security Group Y,‖ ―Use OSPF for routing,‖

and ―Video traffic received at least 1 Mb/s.‖

We could think of the controller compiling

the scheme (A) into devicespecific

configuration files (B), which in turn

determine the forwarding behavior of each

packet (C). To ensure the network behave as

designed, the three steps should remain

consistent every times. Minimally, requires

that sufficient links and nodes are working;

the control plane identifies that a laptop can

access a server, the required outcome can

fail if links fail. The main reason for

network failure is hardware and software

failure, and this problem is recognized

themselves as reach ability failures and

throughput/latency degradation.ATPG

detects errors independently and

exhaustively testing forwarding entries and

packet processing rules in network. In this

tool, test packets are created algorithmically

from the device configuration files and First

information base, with minimum number of

packets needed for complete coverage.

Test packets are fed into the network in

which every rule was exercised directly

from the data plan. Since ATPG treats links

just like normal forwarding rules, the full

coverage provides testing of every link in

network. It could be particularized to

generate a minimal set of packets that test every

link for network liveness. For reacting to

failures, many network operators like Internet

proactively test the health of the network by

pinging between all pairs of sources.

Organizations can modify ATPG to face their

needs; for example, they can select to test for

network liveness (link cover) or test every rule

(rule cover) to make sure security policy. ATPG

could be modified to test reachability and

performance. ATPG can adapt to constraints

such as taking test packets from only a few

places in the network or using particular routers

to generate test packets from every port.

The contributions of this paper are as

follows:

1) A survey of network operators exposing

common failures and root causes.

 2) A test packet generation algorithm.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 833

3) A fault localization algorithm to separate

faulty devices and Rules.

4) ATPG usecases for functional and

throughput testing.

5) Evaluation of prototype ATPG system

using rulesets gathered from the Stanford

and Internet2 backbones.

 II.

CURRENT PRACTICE

To understand the problems network

engineers encounter, and how they currently

troubleshoot them, we invited subscribers to

the NANOG1 mailing list to complete a

survey in May–June 2012. Of the 61 who

responded, 12 administer small networks (

<1k hosts), 23 medium networks (1 k–10

>100 k hosts), 11 large networks (10 k–100

k hosts), and 12 very large networks (k

hosts). All responses (anonymized) are

reported in [33] and are summarized in

TABLE I.

Causes: The two most common symptoms

(switch and router software bugs and

hardware failure) are best found by dynamic

testing.

Cost of troubleshooting: Two metrics

capture the cost of network debugging—the

number of network-related tickets per month

and the average time consumed to resolve a

ticket (Fig. 2). There are 35% of networks

that generate more than 100 tickets per

month. Of the respondents, 40.4% estimate

it takes under 30 min to resolve a ticket.

However, 24.6% report that it takes over an

hour on average. Tools: Table II shows that ,

, and SNMP are by far the most popular

tools. When asked what the ideal tool for

network debugging would be, 70.7%

reported a desire for automatic test

generation to check performance and

correctness. Some added a desire for ―long

running tests to detect jitter or intermittent

issues,‖ ―real-time link capacity

monitoring,‖ and ―monitoring tools for

network state.‖ In summary, while our

survey is small, it supports the hypothesis

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 834

that network administrators face

complicated symptoms TABLE II TOOLS

USED BY NETWORK DMINISTRATORS

(MOST OFTEN; LEAST OFTEN) and

causes. The cost of debugging is nontrivial

due to the frequency of problems and the

time to solve these problems. Classical tools

such as and are still heavily used, but

administrators desire more sophisticated

tools.

III. NETWORK MODEL

ATPG uses the header space framework—a

geometric model of how packets are

processed we described in [16] (and used in

[31]). In header space, protocol-specific

meanings associated with headers are

ignored: A header is viewed as a flat

sequence of ones and zeros. A header is a

point (and a flow is a region) in the space,

where is an upper bound on header length.

By using the header space framework, we

obtain a unified, vendor-independent, and

protocol-agnostic model of the network2

that simplifies the packet generation process

significantly.

A. Definitions Fig.

3 summarizes the definitions in our model.

Packets:

A packet is defined by a tuple, where the

denotes a packet’s position in the network at

any time instant; each physical port in the

network is assigned a unique number.

Switches:

A switch transfer function, models a

network device, such as a switch or router.

Each network device contains a set of

forwarding rules (e.g., the forwarding table)

that determine how packets are processed.

An arriving packet is associated with exactly

one rule bymatching it against each rule in

descending order of priority, and is dropped

if no rule matches.

Rules:

 A rule generates a list of one or more output

packets, corresponding to the output port(s)

to which the packet is sent, and defines how

packet fields are modified. The rule

abstraction models all real-world rules we

know including IP forwarding (modifies

port, checksum, and TTL, but not IP

address); VLAN tagging (adds VLAN IDs

to the header); and ACLs (block a header, or

map to a queue).

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 835

and causes. The cost of debugging is

nontrivial due to the frequency of problems

and the time to solve these problems.

Classical tools such as and are still heavily

used, but administrators desire more

sophisticated tools To send and receive test

packets, network monitor assumes special

test agents in the network. The network

monitor gets the database and builds test

packets and instructs each agent to send the

proper packets. Recently, test agents

partition test packets by IP Proto field and

TCP/UDP port number, but other fields like

IP option can be used. If any tests fail, the

monitor chooses extra test packets from

booked packets to find the problem. The

process gets repeated till the fault has been

identified. To communicate with test agents,

monitor uses JSON, and SQLite’s string

matching to lookup test packets efficiently

ATPG uses the header space framework—a

geometric model of how packets are

processed we described in [16] (and used in

[31]). In header space, protocol-specific

meanings associated with headers are

ignored: A header is viewed as a flat

sequence of ones and zeros.

A header is a point (and a flow is a region)

in the space, where is an upper bound on

header length. By using the header space

framework, we obtain a unified, vendor-

independent, and protocol-agnosticmodel of

the network2 that simplifies the packet

generation process significantly. models all

real-world rules we know including IP

forwarding (modifies port, checksum, and

TTL, but not IP address); VLAN tagging

(adds VLAN IDs to the header); and ACLs

(block a header, or map to a queue).

Essentially, a rule defines how a region of

header space at the ingress (the set of

packets matching the rule) is transformed

into regions of header space at the egress

connected by links. Links are rules that

forward packets from to without

modification. If no topology rules match an

input port, the port is an edge port, and the

packet has reached its destination. B. Life of

a Packet The life of a packet can be viewed

as applying the switch and topology transfer

functions repeatedly (Fig. 4). When a packet

arrives at a network port , the switch

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 836

function that contains the input port is

applied to , producing a list of new packets .

If the packet reaches its destination, it is

recorded. Otherwise, the topology function

is used to invoke the switch function

containing the new port. The process repeats

until packets reach their destinations (or are

dropped).

IV. ATPG SYSTEM

Based on the network model, ATPG

generates the minimal number of test

packets so that every forwarding rule in the

network is exercised and covered by at least

one test packet.When an error is detected,

ATPG uses a fault localization algorithm to

determine the failing rules or links. Fig. 5 is

a block diagram of theATPG system. The

system first collects all the forwarding state

from the network (step 1). This usually

involves reading the FIBs, ACLs, and

configfiles, as well as obtaining the

topology. ATPG uses Header Space

Analysis [16] to compute reachability

between all the test terminals (step 2). The

result is then used by the test packet

selection algorithm to compute a minimal

set of test packets that can test Fig. 5. ATPG

system block diagram. all rules (step 3).

These packets will be sent periodically by

the test terminals (step 4). If an error is

detected, the fault localization algorithm is

invoked to narrow down the cause of the

error (step 5). While steps 1 and 2 are

described in [16], steps 3–5 are new.

A. Test Packet Generation 1

Algorithm:

 We assume a set of test terminals in the

network can send and receive test packets.

Our goal is to generate aset of test packets to

exercise every rule in every switch function,

so that any fault will be observed by at least

one test packet. This is analogous to

software test suites that try to test every

possible branch in a program. The broader

goal can be limited to testingevery link or

every queue. When generating test packets,

ATPG must respect two key constraints:

1) Port: ATPG must only use test terminals

that areavailable;

2)Header: ATPGmust only use headers that

each test terminal is permitted to send. For

example, the network administrator may

only allow using a specific set of VLANs.

Formally, we have the following problem.

Problem 1 (Test Packet Selection): For a

network with the switch functions, , and

topology function, determine the minimum

set of test packets to exercise all reachable

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 837

rules, subject to the port and header

constraints. ATPG chooses test packets

using an algorithm we call Test Packet

Selection (TPS). TPS first finds all

equivalent classes between each pair of

available ports. An equivalent class is a set

of packets that exercises the same

combination of rules. Here, test packets are

generated algorithmically from device

configuration files and from FIBs, which

requires minimum number of packets for

complete coverage.

Test packets are fed into the network in

which that every rule is covered directly

from the data plane. Since ATPG treats links

like normal forwarding rules, its full

coverage provides testing of every link in

the network. It can also be specialized to

form a minimal set of packets that obviously

test every link for network liveness.

B. Life of a Packet

The life of a packet can be viewed as

applying the switch and topology transfer

functions repeatedly (Fig. 4). When a packet

arrives at a network port , the switch

function that contains the input port is

applied to producing a list of new packets .

If the packet reaches its destination, it is

recorded. Otherwise, the topology function

is used to invoke the switch function

containing the new port. The process repeats

until packets reach their destinations (or are

dropped) first finds all equivalent classes

between each pair of available ports. An

equivalent class is a set of packets that

exercises the same combination of rules.

Here, test packets are generated

algorithmically from device configuration

files and from FIBs, which requires

minimum number of packets for complete

coverage.

 Test packets are fed into the

network in which that every rule is covered

directly from the data plane. Since ATPG

treats links like normal forwarding rules, its

full coverage provides testing of every link

in the network. It can also be specialized to

form a minimal set of packets that obviously

test every link for network liveness. B. Life

of a Packet The life of a packet can be

viewed as applying the switch and topology

transfer functions repeatedly (Fig. 4). When

a packet arrives at a network port , the

switch function that contains the input port

is applied to producing a list of new packets

. If the packet reaches its destination, it is

recorded. Otherwise, the topology function

is used to invoke the switch function

containing the new port. The process repeats

until packets reach their destinations (or are

dropped).

V.TYPES OF ATPG

Two types of testing’s, functional and

performance testing, as the following use

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 838

cases demonstrate.Functional TestingWe

can test the functional correctness of a

network by testingthat every reachable

forwarding and drop rule in the network is

behaving correctly. Forwarding Rule: A

forwarding rule is behaving orrectly if a test

packet exercises the rule and leaves on the

correct port with the correct header

Link Rule:

 A link rule is a special case of a orwarding

rule. It can be tested by making sure a test

packet passes correctly over the link without

header modifications. Drop Rule: Testing

drop rules is harder because we must verify

the absence of received test packets. We

need to know which test packets might reach

an egress test terminal if a drop rule was to

fail. To find these packets, in the all-pairs

reachability analysis, we conceptually ―flip‖

each drop rule to a broadcast rule in the

transfer functions. We do not actually

change rules in the switches—we simply

emulate the drop rule failure in order to

identify all the ways a packet could reach

the egress test terminals. If the drop rule was

instead a broadcast rule, it would forward

the packet to all of its output ports, and the

test packets would reach Terminals 2 and 3.

Now, we sample the resulting equivalent

classes as usual:We pick one sample test

packet from A ^ B and one from A^C . Note

that we have to test both A^ b and A^C

because the drop rule may have failed R2 at

, resulting in an unexpected packet to be

received at either test terminal 2(A^C) or

test terminal 3 . Finally, we send and expect

the two test packets not to appear since their

arrival would indicate a failure of R2’s drop

rule.

Performance Testing

We can also use ATPG to monitor the

performance of links, queues, and QoS

classes in the network, and even monitor

SLAs.

Congestion:

If a queue is congested, packets will

experience longer queuing delays. This can

be considered as a (performance) fault.

ATPG lets us generate one way congestion

tests to measure the latency between every

pair of test terminals; once the latency

passed a threshold, fault localization will

pinpoint the congested queue, as with

regular faults. With appropriate headers, we

can test links or queues as in Alice’s second

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 839

problem. Available Bandwidth: Similarly,

we can measure the available bandwidth of a

link, or for a particular service class. ATPG

will generate the test packet headers needed

to test every link, or every queue, or every

service class; a stream of packets with

VI. IMPLEMENTATION

Based on the network model, ATPG

generates the minimal number of test

packets so that every forwarding rule in the

network is check and covered by at least one

test packet. When an error is detected,

ATPG uses a fault localization algorithm to

determine the failing rules or links [1]. Fig.1

is a block diagram of the ATPG system. The

system first collects all the forwarding state

from the network then all below test perform

on network. Step 1- This involves reading

the FIBs, ACLs, and config file, and

obtaining the topology. ATPG uses Header

Space Analysis to compute reach ability

between all the test terminals. Step 2- The

result is then used by the test packet

selection algorithm to compute a minimal

set of test packets that can test ll rules. Step

3 - These packets will be sent periodically

by the test terminals Step 4 - If an error is

erected, the fault localization algorithm is

down the cause of the error.

A general survey of network admin provides

information about common failures and root

causes in network. A fault localization

algorithm is to quarantine faulty devices and

its rules and configurations. ATPG performs

various testing like functional and

performance testing to improve accuracy.

Evaluation of a prototype ATPG system

using rule sets collected from the Stanford

and Internet2 backbones We can think of the

controller compiling the policy (A) into

device-specific configuration files (B),

which in turn determine the forwarding

behavior of each packet (C). To ensure the

net-work behaves as designed, all three steps

should remain consistent at all times i.e. In

addition, the topology, shown to the bottom

right in the figure, should also satisfy a set

of liveness properties. Minimally, requires

that sufficient links and nodes are working;

if the control plane specifies that a laptop

can access a server, the desired outcome can

fail if links fail. Can also specify

performance guarantees that detect flaky

links.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 840

Overhead and performance and

limitations

the offline ATPG calculation less frequently,

this runs the risk of using out-of-date

forwarding information. Instead, we reduce

overhead in two ways. First, we have

recently sped up the all-pairs reachability

calculation using a

astmultithreaded/multimachine header space

library. Second, instead of extracting the

complete network state every time ATPG is

triggered, an incremental state updater can

significantly reduce both the etrieval time

and the time to calculate reachability. We

are working on a real-time version of ATPG

that incorporates both techniques. Test

agents within terminals incur negligible

overhead because they merely demultiplex

test packets addressed to their IP address at a

modest rate (e.g., 1 per millisecond)

compared to the link speeds Gb/s most

modern CPUs are capable of receiving.

Dynamic boxes: ATPG cannot model boxes

whose internalstate can be changed by test

packets. For example, an NAT that

dynamically assigns TCP ports to outgoing

packets can confuse the online monitor as

the same test packet can give different

results. 2) Nondeterministic boxes: Boxes

can load-balance packets based on a hash

function of packet fields, usually combined

with a random seed; this is common in

multipath routing such as ECMP. When the

hash algorithm and parameters are unknown,

ATPG cannot properly model such rules.

However, if there are known packet patterns

that can iterate through all possible outputs,

ATPG can generate packets to traverse

every output.

CONCLUSION

Testing liveness of a network is a

fundamental problem for ISPs and large data

center operators. Sending probes between

every pair of edge ports is neither exhaustive

nor scalable ATPG, however, goes much

further than liveness testing with the same

framework. ATPG can test for reachability

policy (by testing all rules including drop

rules) and performance health (by

associating performance measures such as

latency and loss with test packets). Our

implementation also augments testing with a

simple fault localization scheme also

constructed using the header space

framework. As in software testing, the

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 841

formal model helps maximize test coverage

while minimizing test packets.

REFERENCES

[1] Zeng , Kazemian, Varghese,and Nick

―Automatic Test Packet Generation‖,VOL.

22, NO. 2, APRIL 2014

[2] Y. Bejerano and R. Rastogi, ―Robust

monitoring of link delays and faults in IP

networks,‖ IEEE/ACM Trans Netw., vol.

14, no. 5, pp. 1092–1103, Oct. 2006

[3] N. Duffield, ―Network tomography of

binary network performance

characteristics,‖ IEEE Trans. Inf. Theory,

vol. 52, no. 12, pp. 5373–5388, Dec. 2006.

[4] N. Duffield, F. L. Presti, V. Paxson,

andD.Towsley,―Inferringlink loss using

striped unicast probes,‖ in Proc. IEEE

INFOCOM, 2001, vol. 2, pp. 915–923.

[5] Y. Bejerano and R. Rastogi, ―Robust

monitoring of link delays and faults in IP

networks,‖ IEEE/ACM Trans. Netw., vol.

14, no. 5, pp. 1092–1103, Oct. 2006.

[6] C. Cadar, D. Dunbar, and D. Engler,

―Klee: Unassisted and automatic generation

of high-coverage tests for complex systems

programs,‖ in Proc. OSDI, Berkeley, CA,

USA, 2008, pp. 209–224.

[7] M. Canini,D.Venzano, P.

Peresini,D.Kostic, and J. Rexford, ―A NICE

way to test OpenFlow applications,‖ in Proc.

NSDI, 2012, pp. 10–10.

[8] A. Dhamdhere, R. Teixeira, C. Dovrolis,

and C. Diot, ―Netdiagnoser:

Troubleshooting network unreachabilities

using end-to-end probes and routing data,‖

in Proc. ACM CoNEXT, 2007, pp. 18:1–

18:12..

[9] N. Duffield, ―Network tomography of

binary network performance

characteristics,‖ IEEE Trans. Inf. Theory,

vol. 52, no. 12, pp. 5373–5388, Dec. 2006.

[10] N. Duffield, F. L. Presti, V. Paxson, and

D. Towsley, “Inferring link loss using striped

unicast probes,” in Proc. IEEE INFOCOM,

2001, vol. 2, pp. 915–923.

AUTHOR 1:-

 * B.Madhuri completed her B tech in

Ganapathy Engineering College in 2014 and

pursuing M-Tech in Vaagdevi College of

Engineering

AUTHOR 2:-

 **K.Goutham Raju is working as

Assistant Professor in Dept of CSE,

Vaagdevi College of Engineering

