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 Abstract — This paper presents a new methodology to generate efficient transistor networks. Transistor-level 

optimization consists in an effective possibility to increase design quality when generating CMOS logic gates to be 

inserted in standard cell libraries. Starting from an input ISOP, the proposed method is able to deliver series-parallel 

and non-series-parallel arrangements with reduced transistor count. The experiments performed over the set of 4-

input P-class Booleans functions have demonstrated the efficiency of the proposed approach.  
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INTRODUCTION 

VLSI digital design, the signal delay propagation, 

power dissipation, and area of circuits are strongly 

related to the number of transistors (switches) . 

Hence, transistor arrangement optimization is of 

special interest when designing standard cell libraries 

and custom gates. Switchbased technologies, such as 

CMOS, FinFET, and carbon nanotubes, can take 

advantage of such an improvement. Therefore, 

efficient algorithms to automatically generate 

optimized transistor networks are quite useful for 

designing digital integrated circuits (ICs). 

Several methods have been presented in the literature 

for generating and optimizing transistor networks. 

Most traditional solutions are based on factoring 

Boolean expressions, in which only series–parallel 

(SP) associations of transistors can be obtained from 

factored forms. On the other hand, graph-based 

methods are able to find SP and also non-SP (NSP) 

arrangements with potential reduction in transistor 

count 

Despite the efforts of previous works, there is still a 

room for improving the generation of transistor 

networks. For instance, consider a given function 

represented by the following equation: 

F = a ・ b + a ・ c + a ・ d + b ・ c ・ d.       (1) 

For this function, factorization methods are able to 

deliver the SP network, comprising seven transistors. 

Existing graph-based methods, in turn, are able to 

provide the NSP solution, also with seven transistors. 

However, the optimal arrangement composed of only 

five transistors,, is not found by any of these 

methods.The proposed method starts from a sum-of 

products (SOP) form F and produces a reduced 

transistor network. It comprises two main modules: 

1) kernel identification and 2) network composition. 

The former aims to find efficient SP and NSP switch 

networks through graph structures called kernels. The 

latter receives the partial networks obtained from the 

first module and performs switch sharing, resulting in 

a single network representing F. Results have shown 

a significant reduction in transistor count when 

compared with other approaches. Experiments have 

also demonstrated an improvement in performance, 

power dissipation, and area of CMOS gates as a 

consequence of such a device saving. 

Several different methods have been proposed for 

implementing switch networks. The resulting 

networks may present different properties, which are 

not described in a comprehensive way in the 

literature. The basic element to implement networks 

is the switch. This element can be called as direct 

switch, when it conducts by applying a ‘1’ logic 

value in its control terminal, or complementary 

switch, when it conducts by applying a ‘0’ logic 

value in its control terminal. By composing these 

elements, it is possible to build arrangements, known 

as logic networks, to allow the interconnection 

between two different terminals according to a given 

logic function that this network represents. 

Depending of the technology used, these switches 

can be implemented as physical devices. In the 

currently CMOS technology, they are represented by 

the NMOS transistor (direct switch) and the PMOS 

transistor (complementary switch). 

The proposed method comprises two main modules: 

1) the kernel identification and 2) the switch network 

composition. The former receives an ISOP F and 

identifies individual NSP and SP switch networks, 

representing subfunctions of f. The latter composes 

those networks into a single network by performing 

logic sharing. The provided output is an optimized 

switch network representing the target function f. The 

execution flow of the method is presented in Fig. 1. 

 
Fig. 1. Execution flow of the proposed method. 

Kernel Identification 

During the kernel identification module, an 

intermediate data structure called kernel is used to 

search for possible SP and NSP networks. The kernel 

identification module is divided in four steps, as 

presented in Fig. 3 (left) and in Algorithm 1. Each 

step is responsible for finding switch networks 
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representing subfunctions of the target function f. The 

NSP kernel finder step aims to obtain optimized NSP 

networks from an input ISOP F. When a switch 

network is found, the cubes used to achieve such 

network are removed from F. Such removal may lead 

to a simpler ISOP F1. The SP kernel finder step, in 

turn, searches for SP networks using as the input F1. 

Similarly to the first step, the cubes of the found SP 

networks are removed from F1, resulting F2. Since 

the remaining cubes of F2 were not useful to produce 

NSP or SP networks, redundant cubes are added into 

the kernels in order to find NSP arrangements with 

redundant paths. Therefore, the cubes leading to NSP 

networks with redundant paths are removed from F2, 

resulting F3. The last step produces branched switch 

networks, which comprises parallel paths 

corresponding to cubes from F3. Finally, a list of 

switch networks is produced as output of the kernel 

identification module. Each step of this first module 

is detailed presented below. 

1) Nonseries–Parallel Kernel Finder: Let f be a 

Boolean function given in ISOP form F = c1 + ・ ・ 

・ + cm, where m denotes the number of cubes in F. 

In order to identify NSP kernels, the combination of 

m cubes are taken four at a time, i.e., four-

combination of cubes. The sum of such four cubes 

results in an ISOP H, which represents h that is a 

subfunction of f. A kernel with four vertices is 

obtained from H. To ensure that the generated kernel 

results in a NSP switch network, two rules must be 

checked. Rule 1: Let Ev be the set of edges connected 

to the vertex v ∈  V. For each cube (vertex) v ∈  V, all 

literals from v must be shared through the edges e ∈  

Ev . This rule is satisfied if and only if the following 

equation results the value 1: 

Rule 2: The kernel obtained from H must be 

isomorphic to the graph  Such a graph template is 

referred as NSP kernel. An NSP kernel is mapped to 

a switch network by applying an edge swapping over 

three edges of the kernel. For instance, let us consider 

the generic NSP kernel To map this kernel to a 

network, the edge e2 is moved to the place of e4, e4 

is moved to the place of e3, and e3 is moved to the 

place of e2. By applying such a reordering, it is 

possible to achieve the network . The reordering 

procedure is necessary to ensure that each path of the 

switch network represents a cube from the 

subfunction h.  

 

 
Example 1: Consider the following ISOP as the input 

to the NSP kernel finder step: 

F = a ・ b + a ・ c ・ e + d ・ e + b ・ c ・ d. (3) 

The resulting kernel K1, satisfies Rule 1 and Rule 2, 

and can be mapped by edge reordering to the switch 

network S1,. 

Example 2: By combining cubes four at a time, the 

NSP kernel finder procedure can find more than one 

kernel per ISOP. For instance, consider the following 

equation: 

 
F = a ・ b + a ・ c + c ・ e + a ・ d + b ・ c ・ d + 

a ・ g + b ・ c ・ g. (4) 

For this ISOP, only two combinations of four cubes 

satisfy both Rule 1 and Rule 2, resulting in the NSP 

kernels 

2) Series–Parallel Kernel Finder: Let F1 be an ISOP 

form that represents all the cubes of F that were not 

used to build switch networks in the NSP kernel 

finder step. To identify SP kernels, combination of 

m1 cubes from F1 are taken four at a time. A kernel 

with four vertices is then obtained. To ensure that the 

obtained kernel results in a valid SP network, Rule 1 

and the following Rule 3 must be checked. Rule 3: 

The obtained kernel must be isomorphic to the grap. 

Such a graph template is referred as SP kernel. 

Similarly to previous step, the SP kernel finder step 

must apply some transformations over the kernel in 

order to achieve a switch network. First, the kernel 

edges shown  are mapped to an auxiliary template 

graph, Afterward, a switch network is obtained by 

applying the edge reordering subroutine over the 

auxiliary template graph,. 
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3) Redundant Cube Insertion: In some cases, it is 

useful to build NSP arrangements with redundant 

cubes instead of using SP associations. Thus, when 

there still cubes not represented through NSP and SP 

networks, the redundant cube insertion  step tries to 

build NSP kernels by combining remaining cubes 

with redundant cubes. Let F be an ISOP representing 

the Boolean function f. A cube c is redundant if F + c 

= f . Consider a switch network representing an ISOP 

f. An implementation of a redundant cube c in such a 

network leads to a redundant logic path, i.e., the path 

does not contribute to the logic behavior of the 

network. Even though, redundant paths allow 

efficient logic sharing in NSP networks. The 

redundant cube insertion step works over an ISOP F2 

representing the cubes that were not implemented by 

NSP and SP kernel finder steps. To obtain NSP 

kernels wit  redundant cubes, combinations of m2 

cubes are taken three at a time, where m2 is the 

number of cubes in F2. A kernel with three vertices is 

then obtained for each combination. 

 
Branched Network Generation: Cubes from ISOP F 

are removed when a network implementation 

representing it is found. Even though previous steps 

are very efficient in finding logic sharing, there may 

still cubes not represented through any of the found 

networks. In this sense, the remaining cubes in F3  

are implemented as a single switch network. 

Therefore, the branched network generation step 

translates each remaining cube in F3 to a branch of 

switches associate in series. 

 
Network Composition 

The network composition module receives the 

function F and a list of partial switch networks S, 

generated during the kernel identification module. 

This module composes the networks from S in an 

iterative process by performing logic sharing among 

such networks. The target network starts empty and, 

for each network s ∈  S a parallel association is 

performed together with simple and complex sharing 

strategies. 

The simple and the complex switch sharing are 

applied in order to remove redundant switches in the 

target network. The pseudocode of the network 

composition is presented in Algorithm 6. The 

makeParallelAssociation subroutine, in line 4, just 

places two networks in parallel. This way, this 

subroutine runs in constant time O(1). The simple 

and the complex switch sharing steps are presented in 

the following 

sections 1) Simple Sharing and 2) Complex Sharing 

together with their respective time complexities. 

1) Simple Sharing: The simple sharing step 

implements the edge sharing technique presented in 

[13]. Basically, the method traverses the switch 

network searching for equivalent switches, i.e., 

switches that are controlled by the same literal. The 

network is then restructured in such a way that one 

common node between equivalent switches is 

available. In some cases, the equivalent switches 

must be swapped in the networks in order to share a 

common node. When a common node between 

equivalent switches is available, only one switch is 

necessary, leading to a reduction in the number of 

switches. After performing a switch sharing, the logic 

behavior of the network must be checked to ensure an 

accurate implementation of the target function. The 

switch sharing is accepted only if the logic behavior 

of the network is maintained. This optimization and 

validation process is applied iteratively over the 

network until there is no more feasible switch sharing 

to be applied. 

 
Complex Sharing: The complex sharing step receives 

a preprocessed network provided by the previous step 

and tries to perform additional optimizations. As 

mentioned in the simple sharing step, after finding 

equivalent switches, the procedure checks if the 

candidate switches have a common node that enables 

sharing. However, there are some cases where a 

common node is not directly found due to the 

position of the switches in the network. Hence, in 

order to improve the switch sharing, straightforward 
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SP switch compressions are performed, as shown in 

Fig. 18(a) and (b), respectively. Then, simple switch 

sharing is applied over the compressed network. 

 
III. EXPERIMENTAL RESULTS  

In order to provide a comparison of our methodology 

to other available solutions described in the literature, 

the experiments were performed over the set of 4-

input P-class logic functions. This set, composed by 

3982 functions, was chosen because it contains 

simple functions that are more  likely to be used as 

logic gates in real designs. We have generated gates 

for each function of this set, and compared them to 

other methods available in the literature. Table I 

shows the obtained results when considering the total 

switch count to compute the logic gates. These results 

also summarize the inverters needed to implement the 

gates. Inverters are needed to generate the 

complementary signal for input variables that appears 

in both polarities. As presented in Table I, our 

method compares favorably with past approaches. 

IV. CONCLUSIONS  

This paper proposed a new graph-based method to 

generate optimized transistor (switch) networks. The 

proposed method results in a reduction of transistor 

count when compared to previous approaches. It is 

known that reducing transistor count in a logic gate it 

is possible to achieve better results in terms of signal 

delay propagation and power consumption. These 

associated gains were not explicitly investigated in 

this work, and they are being left as future work at 

gate, library and circuit design level.  
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