
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 860

Optimal Transistor Network Synthesis for Super Gate Design
CHALLAGUNDLA NAVEEN KUMAR

1
, M.AMARANATH REDDY

2
.

1
PG Scholar, Electronics and Communication Engineering, CV Raman Institute of Technology, AP, India

2
Assistant Professor, Electronics and Communication Engineering, CV Raman Institute of Technology, AP, India

 Abstract — This paper presents a new methodology to generate efficient transistor networks. Transistor-level

optimization consists in an effective possibility to increase design quality when generating CMOS logic gates to be

inserted in standard cell libraries. Starting from an input ISOP, the proposed method is able to deliver series-parallel

and non-series-parallel arrangements with reduced transistor count. The experiments performed over the set of 4-

input P-class Booleans functions have demonstrated the efficiency of the proposed approach.

Keywords— Logic synthesis, transistor networks, EDA, CMOS

INTRODUCTION

VLSI digital design, the signal delay propagation,

power dissipation, and area of circuits are strongly

related to the number of transistors (switches) .

Hence, transistor arrangement optimization is of

special interest when designing standard cell libraries

and custom gates. Switchbased technologies, such as

CMOS, FinFET, and carbon nanotubes, can take

advantage of such an improvement. Therefore,

efficient algorithms to automatically generate

optimized transistor networks are quite useful for

designing digital integrated circuits (ICs).

Several methods have been presented in the literature

for generating and optimizing transistor networks.

Most traditional solutions are based on factoring

Boolean expressions, in which only series–parallel

(SP) associations of transistors can be obtained from

factored forms. On the other hand, graph-based

methods are able to find SP and also non-SP (NSP)

arrangements with potential reduction in transistor

count

Despite the efforts of previous works, there is still a

room for improving the generation of transistor

networks. For instance, consider a given function

represented by the following equation:

F = a ・ b + a ・ c + a ・ d + b ・ c ・ d. (1)

For this function, factorization methods are able to

deliver the SP network, comprising seven transistors.

Existing graph-based methods, in turn, are able to

provide the NSP solution, also with seven transistors.

However, the optimal arrangement composed of only

five transistors,, is not found by any of these

methods.The proposed method starts from a sum-of

products (SOP) form F and produces a reduced

transistor network. It comprises two main modules:

1) kernel identification and 2) network composition.

The former aims to find efficient SP and NSP switch

networks through graph structures called kernels. The

latter receives the partial networks obtained from the

first module and performs switch sharing, resulting in

a single network representing F. Results have shown

a significant reduction in transistor count when

compared with other approaches. Experiments have

also demonstrated an improvement in performance,

power dissipation, and area of CMOS gates as a

consequence of such a device saving.

Several different methods have been proposed for

implementing switch networks. The resulting

networks may present different properties, which are

not described in a comprehensive way in the

literature. The basic element to implement networks

is the switch. This element can be called as direct

switch, when it conducts by applying a ‘1’ logic

value in its control terminal, or complementary

switch, when it conducts by applying a ‘0’ logic

value in its control terminal. By composing these

elements, it is possible to build arrangements, known

as logic networks, to allow the interconnection

between two different terminals according to a given

logic function that this network represents.

Depending of the technology used, these switches

can be implemented as physical devices. In the

currently CMOS technology, they are represented by

the NMOS transistor (direct switch) and the PMOS

transistor (complementary switch).

The proposed method comprises two main modules:

1) the kernel identification and 2) the switch network

composition. The former receives an ISOP F and

identifies individual NSP and SP switch networks,

representing subfunctions of f. The latter composes

those networks into a single network by performing

logic sharing. The provided output is an optimized

switch network representing the target function f. The

execution flow of the method is presented in Fig. 1.

Fig. 1. Execution flow of the proposed method.

Kernel Identification

During the kernel identification module, an

intermediate data structure called kernel is used to

search for possible SP and NSP networks. The kernel

identification module is divided in four steps, as

presented in Fig. 3 (left) and in Algorithm 1. Each

step is responsible for finding switch networks

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 861

representing subfunctions of the target function f. The

NSP kernel finder step aims to obtain optimized NSP

networks from an input ISOP F. When a switch

network is found, the cubes used to achieve such

network are removed from F. Such removal may lead

to a simpler ISOP F1. The SP kernel finder step, in

turn, searches for SP networks using as the input F1.

Similarly to the first step, the cubes of the found SP

networks are removed from F1, resulting F2. Since

the remaining cubes of F2 were not useful to produce

NSP or SP networks, redundant cubes are added into

the kernels in order to find NSP arrangements with

redundant paths. Therefore, the cubes leading to NSP

networks with redundant paths are removed from F2,

resulting F3. The last step produces branched switch

networks, which comprises parallel paths

corresponding to cubes from F3. Finally, a list of

switch networks is produced as output of the kernel

identification module. Each step of this first module

is detailed presented below.

1) Nonseries–Parallel Kernel Finder: Let f be a

Boolean function given in ISOP form F = c1 + ・ ・

・ + cm, where m denotes the number of cubes in F.

In order to identify NSP kernels, the combination of

m cubes are taken four at a time, i.e., four-

combination of cubes. The sum of such four cubes

results in an ISOP H, which represents h that is a

subfunction of f. A kernel with four vertices is

obtained from H. To ensure that the generated kernel

results in a NSP switch network, two rules must be

checked. Rule 1: Let Ev be the set of edges connected

to the vertex v ∈ V. For each cube (vertex) v ∈ V, all

literals from v must be shared through the edges e ∈

Ev . This rule is satisfied if and only if the following

equation results the value 1:

Rule 2: The kernel obtained from H must be

isomorphic to the graph Such a graph template is

referred as NSP kernel. An NSP kernel is mapped to

a switch network by applying an edge swapping over

three edges of the kernel. For instance, let us consider

the generic NSP kernel To map this kernel to a

network, the edge e2 is moved to the place of e4, e4

is moved to the place of e3, and e3 is moved to the

place of e2. By applying such a reordering, it is

possible to achieve the network . The reordering

procedure is necessary to ensure that each path of the

switch network represents a cube from the

subfunction h.

Example 1: Consider the following ISOP as the input

to the NSP kernel finder step:

F = a ・ b + a ・ c ・ e + d ・ e + b ・ c ・ d. (3)

The resulting kernel K1, satisfies Rule 1 and Rule 2,

and can be mapped by edge reordering to the switch

network S1,.

Example 2: By combining cubes four at a time, the

NSP kernel finder procedure can find more than one

kernel per ISOP. For instance, consider the following

equation:

F = a ・ b + a ・ c + c ・ e + a ・ d + b ・ c ・ d +

a ・ g + b ・ c ・ g. (4)

For this ISOP, only two combinations of four cubes

satisfy both Rule 1 and Rule 2, resulting in the NSP

kernels

2) Series–Parallel Kernel Finder: Let F1 be an ISOP

form that represents all the cubes of F that were not

used to build switch networks in the NSP kernel

finder step. To identify SP kernels, combination of

m1 cubes from F1 are taken four at a time. A kernel

with four vertices is then obtained. To ensure that the

obtained kernel results in a valid SP network, Rule 1

and the following Rule 3 must be checked. Rule 3:

The obtained kernel must be isomorphic to the grap.

Such a graph template is referred as SP kernel.

Similarly to previous step, the SP kernel finder step

must apply some transformations over the kernel in

order to achieve a switch network. First, the kernel

edges shown are mapped to an auxiliary template

graph, Afterward, a switch network is obtained by

applying the edge reordering subroutine over the

auxiliary template graph,.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 862

3) Redundant Cube Insertion: In some cases, it is

useful to build NSP arrangements with redundant

cubes instead of using SP associations. Thus, when

there still cubes not represented through NSP and SP

networks, the redundant cube insertion step tries to

build NSP kernels by combining remaining cubes

with redundant cubes. Let F be an ISOP representing

the Boolean function f. A cube c is redundant if F + c

= f . Consider a switch network representing an ISOP

f. An implementation of a redundant cube c in such a

network leads to a redundant logic path, i.e., the path

does not contribute to the logic behavior of the

network. Even though, redundant paths allow

efficient logic sharing in NSP networks. The

redundant cube insertion step works over an ISOP F2

representing the cubes that were not implemented by

NSP and SP kernel finder steps. To obtain NSP

kernels wit redundant cubes, combinations of m2

cubes are taken three at a time, where m2 is the

number of cubes in F2. A kernel with three vertices is

then obtained for each combination.

Branched Network Generation: Cubes from ISOP F

are removed when a network implementation

representing it is found. Even though previous steps

are very efficient in finding logic sharing, there may

still cubes not represented through any of the found

networks. In this sense, the remaining cubes in F3

are implemented as a single switch network.

Therefore, the branched network generation step

translates each remaining cube in F3 to a branch of

switches associate in series.

Network Composition

The network composition module receives the

function F and a list of partial switch networks S,

generated during the kernel identification module.

This module composes the networks from S in an

iterative process by performing logic sharing among

such networks. The target network starts empty and,

for each network s ∈ S a parallel association is

performed together with simple and complex sharing

strategies.

The simple and the complex switch sharing are

applied in order to remove redundant switches in the

target network. The pseudocode of the network

composition is presented in Algorithm 6. The

makeParallelAssociation subroutine, in line 4, just

places two networks in parallel. This way, this

subroutine runs in constant time O(1). The simple

and the complex switch sharing steps are presented in

the following

sections 1) Simple Sharing and 2) Complex Sharing

together with their respective time complexities.

1) Simple Sharing: The simple sharing step

implements the edge sharing technique presented in

[13]. Basically, the method traverses the switch

network searching for equivalent switches, i.e.,

switches that are controlled by the same literal. The

network is then restructured in such a way that one

common node between equivalent switches is

available. In some cases, the equivalent switches

must be swapped in the networks in order to share a

common node. When a common node between

equivalent switches is available, only one switch is

necessary, leading to a reduction in the number of

switches. After performing a switch sharing, the logic

behavior of the network must be checked to ensure an

accurate implementation of the target function. The

switch sharing is accepted only if the logic behavior

of the network is maintained. This optimization and

validation process is applied iteratively over the

network until there is no more feasible switch sharing

to be applied.

Complex Sharing: The complex sharing step receives

a preprocessed network provided by the previous step

and tries to perform additional optimizations. As

mentioned in the simple sharing step, after finding

equivalent switches, the procedure checks if the

candidate switches have a common node that enables

sharing. However, there are some cases where a

common node is not directly found due to the

position of the switches in the network. Hence, in

order to improve the switch sharing, straightforward

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 13
September 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 863

SP switch compressions are performed, as shown in

Fig. 18(a) and (b), respectively. Then, simple switch

sharing is applied over the compressed network.

III. EXPERIMENTAL RESULTS

In order to provide a comparison of our methodology

to other available solutions described in the literature,

the experiments were performed over the set of 4-

input P-class logic functions. This set, composed by

3982 functions, was chosen because it contains

simple functions that are more likely to be used as

logic gates in real designs. We have generated gates

for each function of this set, and compared them to

other methods available in the literature. Table I

shows the obtained results when considering the total

switch count to compute the logic gates. These results

also summarize the inverters needed to implement the

gates. Inverters are needed to generate the

complementary signal for input variables that appears

in both polarities. As presented in Table I, our

method compares favorably with past approaches.

IV. CONCLUSIONS

This paper proposed a new graph-based method to

generate optimized transistor (switch) networks. The

proposed method results in a reduction of transistor

count when compared to previous approaches. It is

known that reducing transistor count in a logic gate it

is possible to achieve better results in terms of signal

delay propagation and power consumption. These

associated gains were not explicitly investigated in

this work, and they are being left as future work at

gate, library and circuit design level.

REFERENCES

[1] Y. Lai; Y. Jiang; H. Chu, ―BDD Decomposition

for Mixed CMOS/PTL Logic Circuit Synthesis‖, In:

IEEE Int. Symp. on Circuits and Systems (ISCAS

2005), p. 5649-5652.

[2] H. Al-Hertani, D. Al-Khalili and C. Rozon,

―Accurate total static leakage current estimation in

transistor stacks‖, In Proc. Int. Conf. on Computer

Systems and Applications, 2006, pp. 262-65.

[3] T. J. Thorp, G. S Yee, C. M Sechen, ―Design and

synthesis of dynamic circuits‖. IEEE Trans. on VLSI

Systems, v. 11, n. 1, p. 141-149, Feb. 2003.

[4] L. S. Da Rosa Junior, F. S. Marques, T. M. G.

Cardoso, R. P. Ribas, S. Sapatnekar, A. I. Reis, "Fast

Disjoint Transistor Networks from BDDs", In: 19th

Symp. on Integrated Circuits and Systems Design

(SBCCI 2006), p. 137-142.

[5] A. I. Reis, O. C. Anderson. Library Sizing. US

Patent number: 8015517, Filing date: Jun 5, 2009,

Issue date: Sep 6, 2011, Application number:

12/479,603.

[6] R. Roy, D. Bhattacharya, V. Boppana,

"Transistor-level optimization of digital designs with

flex cells," IEEE Trans. on Computers , vol.38, no.2,

pp. 53- 61, Feb. 2005.

[7] M. C. Golumbic, A. Mintz, U. Rotics, ―An

improvement on the complexity of factoring read-

once Boolean functions‖, Discrete Appl. Math, 2008,

Vol. 156, n. 10, p. 1633-1636.

[8] E. Sentovich et al, ―SIS: A system for sequential

circuit synthesis‖, Technical Report No. UCB/ERL

M92/41, EECS Department, University of California,

Berkeley, 1992.

[9] M. G. A. Martins, L. S. Da Rosa Junior, A.

Rasmussen, R. P. Ribas, A. I. Reis, ―Boolean

Factoring with Multi-Objective Goals‖. In: IEEE Int.

Conf. on Computer Design (ICCD 2010), p. 229-234.

[10] J. Zhu, M. Abd-El-Barr, ―On the optimization of

MOS circuits‖. IEEE Trans. on Circuits and Systems:

Fundamental Theory and Applications, Theory Appl.,

vol. 40, no. 6, pp. 412–422, 1993.

[11] L. S. Da Rosa Junior, F. S. Marques, F.

Schneider, R. P. Ribas, A. I. Reis, ―A Comparative

Study of CMOS Gates with Minimum Transistor

Stacks‖. In: 20th Symp. on Integrated Circuits and

Systems Design (SBCCI 2007), p. 93-98.

[12] V. N. Possani, R. S. Souza, J. S. Domingues

Junior, L. V. Agostini, F. S. Marques, L. S. Da Rosa

Junior, ―Optimizing Transistor Networks Using a

Graph-Based Technique‖. Journal of Analog

Integrated Circuits and Signal Processing (ALOG),

May 2012.

[13] D. Kagaris, T. Haniotakis, ―A Methodology for

Transistor-Efficient Supergate Design‖, IEEE Trans.

on Very Large Scale Integration (VLSI) Systems, p.

488-492, 2007.

[14] V. N. Possani, V. Callegaro, A. I. Reis, R. P.

Ribas, F. Marques, L. S. Da Rosa Junior, ―NSP

Kernel Finder - A Methodology to Find and to Build

Non-Series-Parallel Transistor Arrangements‖. In:

25th Symp. on Integrated Circuits and Systems

Design (SBCCI 2012), p. 1-6.

