
 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 01 Issue 05

June 2014

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1062

Diversify Are Queries Over Xml Data Words
1V.Shiva Kumar, Asst. Professor

2Dr.Daya Gupta, Professor

ABSTRACT:

While keyword query empowers ordinary

users to search vast amount of data, the

ambiguity of keyword query makes it

difficult to effectively answer keyword

queries, especially for short and vague

keyword queries. To address this

challenging problem, in this paper we

propose an approach that automatically

diversifies XML keyword search based on

its different contexts in the XML data.

Given a short and vague keyword query and

XML data to be searched, we first derive

keyword search candidates of the query by a

simple feature selection model. And then,

we design an effective XML keyword search

diversification model to measure the quality

of each candidate. After that, two efficient

algorithms are proposed to incrementally

compute top-k qualified query candidates as

the diversified search intentions. Two

selection criteria are targeted: the k selected

query candidates are most relevant to the

given query while they have to cover

maximal number of distinct results. At last,

a comprehensive evaluation on real and

synthetic data sets demonstrates the

effectiveness of our proposed diversification

model and the efficiency of our algorithms.

EXISTING SYSTEM:

 The problem of diversifying

keyword search is firstly studied in

IR community. Most of them

perform diversification as a post-

processing or reranking step of

document retrieval based on the

analysis of result set and/or the query

logs. In IR, keyword search

diversification is designed at the

topic or document level.

 Liu et al. is the first work to measure

the difference of XML keyword

search results by comparing their

feature sets. However, the selection

of feature set is limited to metadata

in XML and it is also a method of

post-process search result analysis.

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 01 Issue 05

June 2014

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1063

DISADVANTAGES OF EXISTING

SYSTEM:

 When the given keyword query only

contains a small number of vague

keywords, it would become a very

challenging problem to derive the

user’s search intention due to the

high ambiguity of this type of

keyword queries.

 Although sometimes user

involvement is helpful to identify

search intentions of keyword queries,

a user’s interactive process may be

time-consuming when the size of

relevant result set is large.

 It is not always easy to get these

useful taxonomy and query logs. In

addition, the diversified results in IR

are often modeled at document

levels.

 A large number of structured XML

queries may be generated and

evaluated.

 There is no guarantee that the

structured queries to be evaluated

can find matched results due to the

structural constraints;

 The process of constructing

structured queries has to rely on the

metadata information in XML data.

PROPOSED SYSTEM:

 To address the existing issues, we

will develop a method of providing

diverse keyword query suggestions

to users based on the context of the

given keywords in the data to be

searched. By doing this, users may

choose their preferred queries or

modify their original queries based

on the returned diverse query

suggestions.

 To address the existing limitations

and challenges, we initiate a formal

study of the diversification problem

in XML keyword search, which can

directly compute the diversified

results without retrieving all the

relevant candidates.

 Towards this goal, given a keyword

query, we first derive the co-related

feature terms for each query

keyword from XML data based on

mutual information in the probability

theory, which has been used as a

criterion for feature selection. The

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 01 Issue 05

June 2014

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1064

selection of our feature terms is not

limited to the labels of XML

elements.

 Each combination of the feature

terms and the original query

keywords may represent one of

diversified contexts (also denoted as

specific search intentions). And then,

we evaluate each derived search

intention by measuring its relevance

to the original keyword query and

the novelty of its produced results.

 To efficiently compute diversified

keyword search, we propose one

baseline algorithm and two improved

algorithms based on the observed

properties of diversified keyword

search results.

ADVANTAGES OF PROPOSED

SYSTEM:

 Reduce the computational cost.

 Efficiently compute the new SLCA

results

 We get that our proposed

diversification algorithms can return

qualified search intentions and

results to users in a short time.

SYSTEM ARCHITECTURE:

INTRODUCTION

MINING software repositories is an

interdisciplinary domain, which aims to

employ data mining to deal with software

engineering problems [22]. In modern

software development, software repositories

are large-scale databases for storing the

output of software development, e.g., source

code, bugs, emails, and specifications.

Traditional software analysis is not

completely suitable for the large-scale and

complex data in software repositories [58].

Data mining has emerged as a promising

means to handle software data (e.g., [7],

[32]). By leveraging data mining techniques,

mining software repositories can uncover

interesting information in software

repositories and solve real world software

problems.

A bug repository (a typical software

repository, for storing details of bugs), plays

an important role in managing software

bugs. Software bugs are inevitable and

fixing bugs is expensive in software

development. Software companies spend

over 45 percent of cost in fixing bugs [39].

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 01 Issue 05

June 2014

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1065

Large software projects deploy bug

repositories (also called bug tracking

systems) to support information collection

and to assist developers to handle bugs [9],

[14]. In a bug repository, a bug is

maintained as a bug report, which records

the textual description of reproducing the

bug and updates according to the status of

bug fixing [64]. A bug repository provides a

data platform to support many types of tasks

on bugs, e.g., fault prediction [7], [49], bug

localization [2], and reopenedbug analysis

[63]. In this paper, bug reports in a bug

repository are called bug data.

The primary contributions of this paper are

as follows: 1) We present the problem of

data reduction for bug triage. This problem

aims to augment the data set of bug triage in

two aspects, namely a) to simultaneously

reduce the scales of the bug dimension and

the word dimension and b) to improve the

accuracy of bug triage.

2) We propose a combination approach to

addressing the problem of data reduction.

This can be viewed as an application of

instance selection and feature selection

in bug repositories. 3) We build a binary

classifier to predict the order of applying

instance selection and feature selection. To

our knowledge, the order of applying

instance selection and feature selection has

not been investigated in related domains 2

BACKGROUND AND MOTIVATION

2.1 Background

Bug repositories are widely used for

maintaining software bugs, e.g., a popular

and open source bug repository, Bugzilla

[5]. Once a software bug is found, a reporter

(typically a developer, a tester, or an end

user) records this bug to the bug repository.

A recorded bug is called a bug report, which

has multiple items for detailing the

information of reproducing the bug. In Fig.

1, we show a part of bug report for bug

284541 in Eclipse.2 In a bug report, the

summary and the description are two key

items about the information of

the bug, which are recorded in natural

languages. As their names suggest, the

summary denotes a general statement

for identifying a bug while the description

gives the details for reproducing the bug

DISCUSSION

In this paper, we propose the problem of

data reduction for bug triage to reduce the

scales of data sets and to improve the quality

of bug reports. We use techniques of

instance selection and feature selection to

reduce noise and redundancy in bug data

sets. However, not all the noise and

redundancy are removed. For example, as

mentioned in Section 5.2.4, only less than 50

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 01 Issue 05

June 2014

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1066

percent of duplicate bug reports can be

removed in data reduction (198=532 ¼

37:2% by CH ! ICF and 262=532 ¼ 49:2%

by ICF ! CH). The reason for this fact is that

it is hard to exactly detect noise and

redundancy in real-world applications. On

one hand, due to the large scales of bug

repositories, there exist no adequate labels to

mark whether a bug report or a word

belongs to noise or redundancy; on the other

hand, since all the bug reports in a bug

repository are recorded in natural languages,

even noisy and redundant data may contain

useful information for bug fixing

CONCLUSIONS

Bug triage is an expensive step of software

maintenance in both labor cost and time

cost. In this paper, we combine feature

selection with instance selection to reduce

the scale of bug data sets as well as improve

the data quality. To determine the order of

applying instance selection and feature

selection for a new bug data set, we extract

attributes of each bug data set and train a

predictive model based on historical data

sets. We empirically invest gate the data

reduction for bug triage in bug repositories

of two large open source projects, namely

Eclipse and Mozilla. Our work provides

an approach to leveraging techniques on

data processing to form reduced and high-

quality bug data in software development

and maintenance. In future work, we plan on

improving the results of data reduction in

bug triage to explore how to prepare a

highquality bug data set and tackle a

domain-specific software task. For

predicting reduction orders, we plan to pay

efforts to find out the potential relationship

between the attributes of bug data sets and

the reduction orders.

, “Software fault prediction using

quad tree-based k-means clustering

algorithm,” IEEE Trans.

Knowl. Data Eng., vol. 24, no. 6, pp. 1146–

1150, Jun. 2012.

[8] H. Brighton and C. Mellish, “Advances

in instance selection for

instance-based learning algorithms,” Data

Mining Knowl. Discovery,

vol. 6, no. 2, pp. 153–172, Apr. 2002.

[9] S. Breu, R. Premraj, J. Sillito, and T.

Zimmermann, “Information

needs in bug reports: Improving cooperation

between developers

and users,” in Proc. ACM Conf. Comput.

Supported Cooperative

Work, Feb. 2010, pp. 301–310.

[10] V. Bol_on-Canedo, N. S_anchez-

Maro~no, and A. Alonso-Betanzos,

“A review of feature selection methods on

synthetic data,” Knowl.

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 01 Issue 05

June 2014

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e | 1067

Inform. Syst., vol. 34, no. 3, pp. 483–519,

2013.

[11] V. Cerver_on and F. J. Ferri, “Another

move toward the minimum

consistent subset: A tabu search approach to

the condensed nearest

neighbor rule,” IEEE Trans. Syst., Man,

Cybern., Part B, Cybern.,

vol. 31, no. 3, pp. 408–413, Jun. 2001.

[12] D. _Cubrani_c and G. C. Murphy,

“Automatic bug triage using text

categorization,” in Proc. 16th Int. Conf.

Softw. Eng. Knowl. Eng.,

Jun. 2004, pp. 92–97.

[13] Eclipse. (2014). [Online]. Available:

http://eclipse.org/

[14] B. Fitzgerald, “The transformation of

open source software,” MIS

Quart., vol. 30, no. 3, pp. 587–598, Sep.

2006.

[15] A. K. Farahat, A. Ghodsi, M. S. Kamel,

“Efficient greedy feature

selection for unsupervised learning,” Knowl.

Inform. Syst., vol. 35,

no. 2, pp. 285–310, May 2013.

[16] N. E. Fenton and S. L. Pfleeger,

Software Metrics: A Rigorous and

Practical Approach, 2nd ed. Boston, MA,

USA: PWS Publishing,

1998.

[17] Y. Freund and R. E. Schapire,

“Experiments with a new boosting

algorithm,” in Proc. 13th Int. Conf. Mach.

Learn., Jul. 1996, pp. 148–

156.

[18] Y. Fu, X. Zhu, and B. Li, “A survey on

instance selection for active

learning,” Knowl. Inform. Syst., vol. 35, no.

2, pp. 249–283, 2013.

[19] I. Guyon and A. Elisseeff, “An

introduction to variable and feature

selection,” J. Mach. Learn. Res., vol. 3, pp.

1157–1182, 2003.

[20] M. Grochowski and N. Jankowski,

“Comparison of instance selection

algorithms ii, results and comments,” in

Proc. 7th Int. Conf.

Artif. Intell. Softw. Comput., Jun. 2004, pp.

580–585.

