
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 898

Low Power Montgomery Modular Multiplication
Using Carry Save Adder
M.Y.Krishna Pal, Pg Student

Mr. K. Suresh, Assistant Professor
Dept Of Ece

Malla Reddy College of Engineering &Technology,Secunderabad

ABSTRACT:

This paper proposes a simple and efficient Montgomery multiplication algorithm
such that the low-cost and high-performance Montgomery modular multiplier can
be implemented accordingly. The proposed multiplier receives and outputs the data
with binary representation and uses only one-level carry-save adder (CSA) to avoid
the carry propagation at each addition operation. This CSA is also used to perform
operand precomputation and format conversion from the carrysave format to the
binary representation, leading to a low hardware cost and short critical path delay
at the expense of extra clock cycles for completing one modular multiplication. To
overcome the weakness, a configurable CSA (CCSA), which could be one full-
adder or two serial half-adders, is proposed to reduce the extra clock cycles for
operand precomputation and format conversion by half. In addition, a mechanism
that can detect and skip the unnecessary carry-save addition operations in the one-
level CCSA architecture while maintaining the short critical path delay is
developed. As a result, the extra clock cycles for operand precomputation and
format conversion can be hidden and high throughput can be obtained.
Experimental results show that the proposed Montgomery modular multiplier can
achieve higher performance and significant area–time product improvement when
compared with previous designs.

Index Terms— Carry-save addition, low-cost architecture, Montgomery modular
multiplier, public-key cryptosystem.

INTRODUCTION

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 899

 I N MANY public-key cryptosystems
[1]–[3], modular multiplication (MM)
with large integers is the most critical
and time-consuming operation.
Therefore, numerous algorithms and
hardware implementation have been
presented to carry out the MM more
quickly, and Montgomery’s algorithm
is one of the most well-known MM
algorithms. Montgomery’s algorithm
[4] determines the quotient only
depending on the least significant
digit of operands and replaces the
complicated division in conventional
MM with a series of shifting modular
additions to produce S = A × B × R−1
(mod N), where N is the k-bit
modulus, R−1 is the inverse of R
modulo N, and R = 2k mod N. As a
result, it can be easily implemented
into VLSI circuits to speed up the
encryption/decryption process.
However, the three-operand addition
in the iteration loop of Montgomery’s
algorithm as shown in step 4 of Fig. 1
requires long carry propagation for
large operands in binary
representation. To solve this problem,
several approaches

Carry Save Adders and Redundant
Representation :

The core operation of most algorithms
for modular multiplication is addition.
There are several different methods
for addition in hardware: carry ripple
addition, carry select addition,
carrylook ahead addition and others
[8]. The disadvantage of these
methods is the carry propagation,
which is directly proportional to the
length of the operands. This is not a
big problem for operands of size 32 or
64 bits but the typical operand size in
cryptographic applications range from
160 to 2048 bits. The resulting delay
has a significant influence on the time
complexity of these adders. The carry
save adder seems to be the most cost
effective adder for our application.
Carry save addition is a method for an
addition without carry propagation. It
is simply a parallel ensemble of n full-
adders without any horizontal
connection. Its function is to add three
n-bit integers X, Y, and Z to produce
two integers C and S as results such
that C + S = X + Y + Z, where C
represents the carry and S the sum.

When carry save adders are used in an
algorithm one uses a notation of the
form (S, C) = X + Y + Z to indicate
that two results are produced by the
addition. The results are now

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 900

represented in two binary words, an n-
bit word S and an (n+1) bit word C.
Of course, this representation is
redundant in the sense that we can
represent one value in several
different ways. This redundant
representation has the advantage that
the arithmetic operations are fast,
because there is no carry propagation.
On the other hand, it brings to the fore
one basic disadvantage of the carry
save adder: • It does not solve our
problem of adding two integers to
produce a single result. Rather, it adds
three integers and produces two such
that the sum of these two is equal to
that of the three inputs. This method
may not be suitable for applications
which only require the normal
addition.

Montgomery Multiplication
Algorithm:

 The Montgomery algorithm [1,
Algorithm 1a] computes P = (X*Y*
(2 n) -1) mod M. The idea of
Montgomery [2] is to keep the lengths
of the intermediate results

smaller than n+1 bits. This is achieved
by interleaving the computations and
additions of new partial products with
divisions by 2; each of them reduces

the bitlength of the intermediate result
by one. For a detailed treatment of the
Montgomery algorithm, the reader is
referred to [2] and [1]. The key
concepts of the Montgomery
algorithm [1, Algorithm 1b] are the
following: • Adding a multiple of M
to the intermediate result does not
change the value of the final result;
because the result is computed
modulo M. M is an odd number. •
After each addition in the inner loop
the least significant bit (LSB) of the
intermediate result is inspected. If it is
1, i.e., the intermediate result is odd,
we add M to make it even. This even
number can be divided by 2 without
remainder. This division by 2 reduces
the intermediate result to n+1 bits
again. • After n steps these divisions
add up to one division by 2 n . The
Montgomery algorithm is very easy to
implement since it operates least
significant bit first and does not
require any comparisons.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 901

Fig. 1.MM algorithm.

Montgomery Multiplication :

Fig. 2.SCS-based Montgomery
multiplication algorithm.

Fig. 1 shows the radix-2 version of
the Montgomery MM algorithm
(denoted as MM algorithm). As
mentioned earlier, the Montgomery

modular product S of A and B can be
obtained as S = A × B × R−1 (mod
N), where R−1 is the inverse of R
modulo N. That is, R × R−1 = 1 (mod
N). Note that, the notation Xi in Fig. 1
shows the ith bit of X in binary
representation. In addition, the
notation Xi: j indicates a segment of
X from the ith bit to jth bit. Since the
convergence range of S in MM
algorithm is 0 ≤ S < 2N, an additional
operation S = S − N is required

Fig. 3.SCS-MM-1 multiplier.
to remove the oversize residue if S ≥
N. To eliminate the final comparison
and subtraction in step 6 of Fig. 1,
Walter [22] changed the number of
iterations and the value of R to k + 2
and 2k+2 mod N, respectively.
Nevertheless, the long carry
propagation for the very large operand

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 902

addition still restricts the performance
of MM algorithm.

SCS-Based Montgomery
Multiplication :

To avoid the long carry propagation,
the intermediate result S of shifting
modular addition can be kept in the
carry-save representation (SS, SC), as
shown in Fig. 2. Note that the number
of iterations in Fig. 2 has been
changed from k to k + 2 to remove the
final comparison and subtraction [22].
However, the format conversion from
the carry-save format of the final
modular product into its binary format
is needed, as shown in step 6 of Fig.
2. Fig. 3 shows the architecture of
SCS-based MM algorithm proposed
in [5] (denoted as SCS-MM-1
multiplier) composed of one two-level
CSA architecture and one format
converter, where the dashed line
denotes a 1-bit signal. In [5], a 32-bit
CPA with multiplexers and registers
(denoted as CPA_FC), which adds
two 32-bit inputs and generates a 32-
bit output at every clock cycle, was
adopted for the format conversion.
Therefore, the 32-bit CPA_FC will
take 32 clock cycles to complete the
format conversion of a 1024-bit SCS-
based Montgomery multiplication.

The extra CPA_FC probably enlarges
the area and the critical path of the
SCS-MM-1 multiplier. The works in
[6] and [7] precomputed D = B + N so
that the computation of Ai × B + qi ×
N in step 4 of Fig. 2 can be simplified
into one selection operation. One of
the

Fig. 4.SCS-MM-2 multiplier.

operands 0, N, B, and D will be
chosen if (Ai , qi) = (0, 0), (0, 1), (1,
0), and (1, 1), respectively. As a
result, only one-level CSA
architecture is required in this
multiplier to perform the carry-save
addition at the expense of one extra 4-
to-1 multiplexer and one additional
register to store the operand D.
However, they did not present an
effective approach to remove the
CPA_FC for format conversion and
thus this kind of multiplier still suffers

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 903

from the critical path of CPA_FC. On
the other hand, Zhang et al. [8] reused
the two-level CSA architecture to
perform the format conversion so that
the CPA_FC can be removed. That is,
S[k + 2] = SS[k + 2] + SC[k + 2] in
step 6 of Fig. 2 is replaced with the
repeated carry-save addition operation
(SS[k + 2], SC[k + 2]) = SS[k + 2] +
SC[k + 2] until SC[k + 2] = 0. Fig. 4
shows the architecture of the
Montgomery multiplier proposed in
[8] (denoted as SCS-MM-2
multiplier). Note that the select
signals of multiplexers M1 and M2 in
Fig. 4 generated by the control part
are not shown in Fig. 4 for the sake of
simplicity. However, the extra clock
cycles for format conversion are
dependent on the longest carry
propagation chain in
SS[k+2]+SC[k+2] and about k/2
clock cycles are required in the worst
case because two-level CSA
architecture is adopted in [8]

FCS-Based Montgomery
Multiplication:

 To avoid the format conversion,
FCS-based Montgomery
multiplication maintains A, B, and S
in the carrysave representations (AS,
AC), (BS, BC), and (SS, SC),

respectively. McIvor et al. [9]
proposed two FCSbased Montgomery
multipliers, denoted as FCS-MM-1
and FCS-MM-2 multipliers,
composed of one five-totwo (three-
level) and one four-to-two (two-level)
CSA architecture, respectively. The
algorithm and architecture of the
FCS-MM-1 multiplier are shown in
Figs. 5 and 6, respectively. The barrel
register full adder (BRFA)

Fig. 5.FCS-MM-1 Montgomery
multiplication algorithm.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 904

Fig. 6.FCS-MM-1 multiplier.

in Fig. 6 consists of two shift registers
for storing AS and AC, a full adder
(FA), and a flip-flop (FF). For more
details about BRFA, please refer to
[9] and [10]. On the other hand, the
FCS-MM-2 multiplier proposed in [9]
adds up BS, BC, and N into DS and
DC at the beginning of each MM.
Therefore, the depth of the CSA tree
can be reduced from three to two
levels. Nevertheless, the FCS-MM-2
multiplier needs two extra 4-to-1
multiplexers addressed by Ai and qi
and two more registers to store DS
and DC to reduce one level of CSA
tree. Therefore, the critical path of the
FCS-MM-2 multiplier may be slightly

reduced with a significant increase in
hardware area when compared with
the FCS-MM-1 multiplier. Table I
summarizes and roughly compares the
area complexity and critical path
delay of the above-mentioned radix-2
Montgomery multipliers according to
the normalized area and delay listed
in Table II with respect to the TSMC
90-nm cell library information. In
Table I, the

TABLE I ANALYSIS OF AREA
AND DELAY OF DIFFERENT
DESIGNS

notations AG and TG denote the area
and delay of a cell G, respectively,
and τ () denotes the critical path delay
of circuit . Note that ASR in Table I
denotes the area of a shift register,
and we assume that ASR is
approximate to the sum of AREG and

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 905

AMUX2. In addition, the area and
delay ratios of the SCS-MM-1
multiplier in Table I do not take that
of CPA_FC into consideration
because they are signifi- cantly
dependent on the design of CPA_FC.
Generally speaking, SCS-based
multipliers have lower area
complexity than FCS-based
Montgomery multipliers. However,
extra clock cycles for format
conversion possibly lower the
performance of SCS-based
multipliers. To further enhance the
performance of the SCS-based
multiplier, both the critical path delay
and clock cycles for completing one
multiplication must be reduced while
maintaining the low hardware
complexity.

PROPOSED MONTGOMERY
MULTIPLICATION :

In this section, we propose a new
SCS-based Montgomery MM
algorithm to reduce the critical path
delay of Montgomery multiplier. In
addition, the drawback of more clock
cycles for completing one
multiplication is also improved while
maintaining the advantages of short
critical path delay and low hardware
complexity.

Critical Path Delay Reduction :

The critical path delay of SCS-based
multiplier can be reduced by
combining the advantages of FCS-
MM-2 and SCS-MM-2. That is, we
can precompute D = B + N and reuse
the one-level CSA architecture to
perform B+N and the format
conversion. Fig. 7(a) and (b) shows
the modified SCS-based Montgomery
multiplication (MSCS-MM)
algorithm and one possible hardware
architecture, respectively. The
Zero_D circuit in Fig. 7(b) is used to
detect whether SC is equal to zero,
which can be accomplished using one
NOR operation. The Q_L circuit
decides the qi value according to step
7 of Fig. 7(a). The carry propagation
addition operations of B + N and the
format conversion are performed by
the one-level CSA architecture of the
MSCS-MM multiplier through
repeatedly executing the carry-save
addition (SS, SC) = SS + SC + 0 until
SC = 0. In addition, we also
precompute Ai and qi in iteration i−1
(this will be explained more clearly in
Section III-C) so that they can be used
to immediately select the desired
input operand from 0, N, B, and D

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 906

through the multiplexer M3 in
iteration i. Therefore, the critical path
delay of the MSCS-MM multiplier
can be reduced into TMUX4 + TFA.
However, in addition to performing
the

Fig. 7. (a) Modified SCS-based
Montgomery multiplication
algorithm. (b) MSCS-MM multiplier.

three-input carry-save additions [i.e.,
step 12 of Fig. 7(a)] k + 2 times, many
extra clock cycles are required to
perform B + N and the format
conversion via the one-level CSA
architecture because they must be
performed once in every MM.
Furthermore, the extra clock cycles
for performing B+N and the format
conversion through repeatedly
executing the carry-save addition (SS,
SC) = SS +SC +0 are dependent on
the longest carry propagation chain in
SS + SC. If SS = 111…1112 and SC
= 000…0012, the one-level CSA
architecture needs k clock cycles to
complete SS + SC.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 907

Fig. 8. (a) Conventional FA circuit.
(b) Proposed CFA circuit. (c) Two
serial HAs. (d) Simplified multiplexer
SM3.

That is, ∼3k clock cycles in the worst
case are required for completing one
MM. Thus, it is critical to reduce the
required clock cycles of the MSCS-
MM multiplier.

Clock Cycle Number Reduction:

 To decrease the clock cycle number,
a CCSA architecture which can
perform one three-input carry-save
addition or two serial two-input carry-
save additions is proposed to
substitute for the one-level CSA
architecture in Fig. 7(b). Fig. 8(a)
shows two cells of the one-level CSA
architecture in Fig. 7(b), each cell is
one conventional FA which can
perform the three-input carry-save
addition. Fig. 8(b) shows two cells of
the proposed configurable FA (CFA)
circuit. If α = 1, CFA is one FA and
can perform one three-input carry-
save addition (denoted as 1F_CSA).
Otherwise, it is two half-adders (HAs)
and can perform two serial two-input
carry-save additions (denoted as
2H_CSA), as shown in Fig. 8(c).In
this case, G1 of CFAj and G2 of
CFAj+1 in Fig. 8(b) will act as HA1 j
in Fig. 8(c), and G3, G4, and G5 of
CFAj in Fig. 8(b) will behave as HA2
j in Fig. 8(c). Moreover, we modify
the 4-to-1 multiplexer M3 in Fig. 7(b)
into a simplified multiplier SM3 as
shown in Fig. 8(d) because one of its
inputs is zero, where ∼ denotes the
INVERT operation. Note that M3 has
been replaced

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 908

Fig. 9. Three-to-two carry-save
addition at the ith iteration of Fig. 7.

by SM3 in the proposed one-level
CCSA architecture shown in Fig.
8(b). According to the delay ratio
shown in Table II, TS M3 (i.e., 0.68 ×
TFA) is approximate to TMUX3 (i.e.,
0.63 × TFA) and TMUXI2 (i.e., 0.23
× TFA) is smaller than TXOR2 (i.e.,
0.34×TFA). Therefore, the critical
path delay of the proposed one-level
CCSA architecture in Fig. 8(b) is
approximate to that of the one-level
CSA architecture in Fig. 8(a). As a
result, steps 3 and 15 of Fig. 7(a) can
be replaced with (SS, SC) =
2H_CSA(SS, SC) and (SS[k + 2],
SC[k + 2]) = 2H_CSA (SS[k + 2],
SC[k + 2]) to reduce the required
clock cycles by approximately a
factor of two while maintaining a

short critical path delay. In addition,
we also skip the unnecessary
operations in the for loop (steps 6 to
13) of Fig. 7(a) to further decrease the
clock cycles for completing one
Montgomery MM. The crucial
computation in the for loop of Fig.
7(a) is performing the following
three-to-two carry-save addition:
(SS[i + 1], SC[i + 1]) = (SS[i] + SC[i]
+ x)/2 (1) where the variable x may be
0, N, B, or D depending on the values
of Ai and qi . The computation
process of (1) is shown in Fig. 9.
When Ai = 0 and qi = 0, x is equal to
0 and SS[i]0 must be equal to SC[i]0
because the sum of SS[i]0 + SC[i]0 +
x0 is equal to 0. That is, if Ai = 0 and
qi = 0, then SS[i]0 = SC[i]0. Based on
this observation, we can conclude that
the sum of the carry propagation
addition SS[i +1]k+1:0 + SC[i +
1]k+1:0 is equal to the sum of the
carry propagation addition SS[i]k+1:1
+ SC[i]k+1:1 when Ai = qi = 0 and
SS[i]0 = SC[i]0 = 0. As a result, the
computation of (1) in iteration i can
be skipped if we directly right shift
the outputs of one-level CSA
architecture in the (i − 1)th iteration
by two bit positions (i.e., divided by
4) instead of one bit position (i.e.,
divided by 2) when Ai = qi = 0 and

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 909

SS[i]0 = SC[i]0 = 0. Accordingly, the
signal skipi+1 used in the ith iteration
to indicate whether the carry-save
addition in the (i + 1)th iteration will
be skipped can be expressed as
skipi+1 = ∼(Ai+1 ∨ qi+1 ∨ SS[i +
1]0) (2) where ∨ represents the OR
operation. If skipi+1 generated in the
ith iteration is 0, the carry-save
addition of the (i + 1)th iteration will
not be skipped. In this case, qi+1 and
Ai+1 produced in the ith iteration can
be stored in FFs and then used to fast
select the value of x in the (i +1)th
iteration. Otherwise (i.e., skipi+1 = 1),
SS[i + 1] and SC[i + 1] produced in
the ith iteration must be right shifted
by two bit positions and the next
clock cycle will go to iteration i + 2 to
skip the carry-save addition of the (i +
1)th iteration. In this situation, not
only qi+1 and Ai+1 but also qi+2 and
Ai+2 must be produced and stored to
FFs in the ith iteration to immediately
select the value of x in the (i + 2)th
iteration without lengthening the
critical path. Therefore, the selection
signals (denoted as qˆ and Aˆ) for
choosing the proper value of x in the
next clock cycle must be picked from
(qi+1, Ai+1) or (qi+2, Ai+2)
according to the skipi+1 signal
produced in the ith iteration. That is,

(qˆ, Aˆ) = (qi+2, Ai+2) if skipi+1 = 1.
Otherwise, (qˆ, Aˆ) = (qi+1, Ai+1)

Fig. 11.SCS-MM-New multiplier.

multiplier SM3, one skip detector
Skip_D, one zero detector Zero_D,
and six registers. Skip_D is developed
to generate skipi+1, qˆ, and Aˆ in the
ith iteration. Both M4 and M5 in Fig.
11 are 3-bit 2-to-1 multiplexers and
they are much smaller than k-bit
multiplexers M1, M2, and SM3. In
addition, the area of Skip_D is
negligible when compared with that
of the k-bit one-level CCSA
architecture. Similar to Fig. 4, the
select signals of multiplexers M1 and
M2 in Fig. 11 are generated by the
control part, which are not depicted
for the sake of simplicity.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 910

Fig. 12. Skip detector Skip_D.

At the beginning of Montgomery

multiplication, the FFs stored skipi+1,

qˆ, Aˆ are first reset to 0 as shown in

step 1 of SCS-MM-New algorithm so

that Dˆ = Bˆ +Nˆ can be computed via

the one-level CCSA architecture.

When performing the while loop, the

skip detector Skip_D shown in Fig. 12

is used to produce skipi+1, qˆ, and Aˆ.

The Skip_D is composed of four

XOR gates, three AND gates, one

NOR gate, and two 2-to-1

multiplexers. It first generates the

qi+1, qi+2, and skipi+1 signal in the

ith iteration according to (5), (7), and

(8), respectively, and then selects the

correct qˆ and Aˆ according to

skipi+1. At the end of the ith iteration,

qˆ, Aˆ, and skipi+1 must be stored to

FFs. In the next clock cycle of the ith

iteration, SM3 outputs a proper x

according to qˆ and Aˆ generated in

the ith iteration as shown in steps 8–

11, and M1 and M2 output the correct

SC and SS according to skipi+1

generated in the ith iteration. If

skipi+1 = 0, SC 1 and SS 1 are

selected. Otherwise, SC 2 and SS 2

are selected. That is, the right-shift 1-

bit operations in steps 12 and 15 of

SCS-MM-New algorithm are

performed together in the next clock

cycle of iteration i. In addition, M4

and M5 also select and output the

correct SC[i]2:0 and SS[i]2:0

according to skipi+1 generated in the

ith iteration. Applications:

1. Digital Signal Processing

2. CSA architectures…etc..

Advantages:

 1. Speed

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 911

 2. Cost, delay

CONCLUSION :

FCS-based multipliers maintain the
input and output operands of the
Montgomery MM in the carry-save
format to escape from the format
conversion, leading to fewer clock
cycles but larger area than SCS-based
multiplier. To enhance the
performance of Montgomery MM
while maintaining the low hardware
complexity, this paper has modified
the SCS-based Montgomery
multiplication algorithm and proposed
a low-cost and high-performance
Montgomery modular multiplier. The
proposed multiplier used one-level
CCSA architecture and skipped the
unnecessary carry-save addition
operations to largely reduce the
critical path delay and required clock
cycles for completing one MM
operation. Experimental results
showed that the proposed approaches
are indeed capable of enhancing the
performance of radix-2 CSA-based
Montgomery multiplier while
maintaining low hardware
complexity.

references:

[1] R. L. Rivest, A. Shamir, and L.
Adleman, “A method for obtaining
digital signatures and public-key
cryptosystems,” Commun. ACM, vol.
21, no. 2, pp. 120–126, Feb. 1978.

[2] V. S. Miller, “Use of elliptic
curves in cryptography,” in Advances
in Cryptology. Berlin, Germany:
Springer-Verlag, 1986, pp. 417–426.

 [3] N. Koblitz, “Elliptic curve
cryptosystems,” Math. Comput., vol.
48, no. 177, pp. 203–209, 1987.

[4] P. L. Montgomery, “Modular
multiplication without trial division,”
Math. Comput., vol. 44, no. 170, pp.
519–521, Apr. 1985.

 [5] Y. S. Kim, W. S. Kang, and J. R.
Choi, “Asynchronous implementation
of 1024-bit modular processor for
RSA cryptosystem,” in Proc. 2nd
IEEE Asia-Pacific Conf. ASIC, Aug.
2000, pp. 187–190.

[6] V. Bunimov, M. Schimmler, and
B. Tolg, “A complexity-effective
version of Montgomery’s algorihm,”
in Proc. Workshop Complex.
Effective Designs, May 2002.

[7] H. Zhengbing, R. M. Al Shboul,
and V. P. Shirochin, “An efficient

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 912

architecture of 1024-bits
cryptoprocessor for RSA
cryptosystem based on modified
Montgomery’s algorithm,” in Proc.
4th IEEE Int. Workshop Intell.Data
Acquisition Adv. Comput. Syst., Sep.
2007, pp. 643–646.

 [8] Y.-Y. Zhang, Z. Li, L. Yang, and
S.-W.Zhang, “An efficient CSA
architecture for Montgomery modular
multiplication,” Microprocessors
Microsyst., vol. 31, no. 7, pp. 456–
459, Nov. 2007.

 [9] C. McIvor, M. McLoone, and J.
V. McCanny, “Modified Montgomery
modular multiplication and RSA
exponentiation techniques,” IEE
Proc.-Comput. Digit.Techn., vol. 151,
no. 6, pp. 402–408, Nov. 2004.

 [10] S.-R. Kuang, J.-P.Wang, K.-
C.Chang, and H.-W. Hsu, “Energy-
efficient high-throughput
Montgomery modular multipliers for
RSA cryptosystems,” IEEE Trans.
Very Large Scale Integr. (VLSI)
Syst., vol. 21, no. 11, pp. 1999–2009,
Nov. 2013.

 [11] J. C. Neto, A. F. Tenca, and W.
V. Ruggiero, “A parallel k-partition

method to perform Montgomery
multiplication,” in Proc. IEEE Int.
Conf. Appl.-Specific Syst., Archit.,
Processors, Sep. 2011, pp. 251–254.
[12] J. Han, S. Wang, W. Huang, Z.
Yu, and X. Zeng, “Parallelization of
radix-2 Montgomery multiplication
on multicore platform,” IEEE Trans.
Very Large Scale Integr. (VLSI)
Syst., vol. 21, no. 12, pp. 2325–2330,
Dec. 2013.

[13] P. Amberg, N. Pinckney, and D.
M. Harris, “Parallel high-radix
Montgomery multipliers,” in Proc.
42nd Asilomar Conf. Signals, Syst.,
Comput., Oct. 2008, pp. 772–776.

 [14] G. Sassaw, C. J. Jimenez, and
M. Valencia, “High radix
implementation of Montgomery
multipliers with CSA,” in Proc. Int.
Conf. Microelectron., Dec. 2010, pp.
315–318.

[15] A. Miyamoto, N. Homma, T.
Aoki, and A. Satoh, “Systematic
design of RSA processors based on
high-radix Montgomery multipliers,”
IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 19, no. 7,

pp. 1136–1146, Jul. 2011.

