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ABSTRACT: 

This paper proposes a simple and efficient Montgomery multiplication algorithm 
such that the low-cost and high-performance Montgomery modular multiplier can 
be implemented accordingly. The proposed multiplier receives and outputs the data 
with binary representation and uses only one-level carry-save adder (CSA) to avoid 
the carry propagation at each addition operation. This CSA is also used to perform 
operand precomputation and format conversion from the carrysave format to the 
binary representation, leading to a low hardware cost and short critical path delay 
at the expense of extra clock cycles for completing one modular multiplication. To 
overcome the weakness, a configurable CSA (CCSA), which could be one full-
adder or two serial half-adders, is proposed to reduce the extra clock cycles for 
operand precomputation and format conversion by half. In addition, a mechanism 
that can detect and skip the unnecessary carry-save addition operations in the one-
level CCSA architecture while maintaining the short critical path delay is 
developed. As a result, the extra clock cycles for operand precomputation and 
format conversion can be hidden and high throughput can be obtained. 
Experimental results show that the proposed Montgomery modular multiplier can 
achieve higher performance and significant area–time product improvement when 
compared with previous designs. 

Index Terms— Carry-save addition, low-cost architecture, Montgomery modular 
multiplier, public-key cryptosystem. 

INTRODUCTION 
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 I N MANY public-key cryptosystems 
[1]–[3], modular multiplication (MM) 
with large integers is the most critical 
and time-consuming operation. 
Therefore, numerous algorithms and 
hardware implementation have been 
presented to carry out the MM more 
quickly, and Montgomery’s algorithm 
is one of the most well-known MM 
algorithms. Montgomery’s algorithm 
[4] determines the quotient only 
depending on the least significant 
digit of operands and replaces the 
complicated division in conventional 
MM with a series of shifting modular 
additions to produce S = A × B × R−1 
(mod N), where N is the k-bit 
modulus, R−1 is the inverse of R 
modulo N, and R = 2k mod N. As a 
result, it can be easily implemented 
into VLSI circuits to speed up the 
encryption/decryption process. 
However, the three-operand addition 
in the iteration loop of Montgomery’s 
algorithm as shown in step 4 of Fig. 1 
requires long carry propagation for 
large operands in binary 
representation. To solve this problem, 
several approaches  

Carry Save Adders and Redundant 
Representation : 

The core operation of most algorithms 
for modular multiplication is addition. 
There are several different methods 
for addition in hardware: carry ripple 
addition, carry select addition, 
carrylook ahead addition and others 
[8]. The disadvantage of these 
methods is the carry propagation, 
which is directly proportional to the 
length of the operands. This is not a 
big problem for operands of size 32 or 
64 bits but the typical operand size in 
cryptographic applications range from 
160 to 2048 bits. The resulting delay 
has a significant influence on the time 
complexity of these adders. The carry 
save adder seems to be the most cost 
effective adder for our application. 
Carry save addition is a method for an 
addition without carry propagation. It 
is simply a parallel ensemble of n full-
adders without any horizontal 
connection. Its function is to add three 
n-bit integers X, Y, and Z to produce 
two integers C and S as results such 
that C + S = X + Y + Z, where C 
represents the carry and S the sum. 

When carry save adders are used in an 
algorithm one uses a notation of the 
form (S, C) = X + Y + Z to indicate 
that two results are produced by the 
addition. The results are now 
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represented in two binary words, an n-
bit word S and an (n+1) bit word C. 
Of course, this representation is 
redundant in the sense that we can 
represent one value in several 
different ways. This redundant 
representation has the advantage that 
the arithmetic operations are fast, 
because there is no carry propagation. 
On the other hand, it brings to the fore 
one basic disadvantage of the carry 
save adder: • It does not solve our 
problem of adding two integers to 
produce a single result. Rather, it adds 
three integers and produces two such 
that the sum of these two is equal to 
that of the three inputs. This method 
may not be suitable for applications 
which only require the normal 
addition. 

Montgomery Multiplication 
Algorithm: 

 The Montgomery algorithm [1, 
Algorithm 1a] computes P = (X*Y* 
(2 n ) -1 ) mod M. The idea of 
Montgomery [2] is to keep the lengths 
of the intermediate results 

smaller than n+1 bits. This is achieved 
by interleaving the computations and 
additions of new partial products with 
divisions by 2; each of them reduces 

the bitlength of the intermediate result 
by one. For a detailed treatment of the 
Montgomery algorithm, the reader is 
referred to [2] and [1]. The key 
concepts of the Montgomery 
algorithm [1, Algorithm 1b] are the 
following: • Adding a multiple of M 
to the intermediate result does not 
change the value of the final result; 
because the result is computed 
modulo M. M is an odd number. • 
After each addition in the inner loop 
the least significant bit (LSB) of the 
intermediate result is inspected. If it is 
1, i.e., the intermediate result is odd, 
we add M to make it even. This even 
number can be divided by 2 without 
remainder. This division by 2 reduces 
the intermediate result to n+1 bits 
again. • After n steps these divisions 
add up to one division by 2 n . The 
Montgomery algorithm is very easy to 
implement since it operates least 
significant bit first and does not 
require any comparisons. 
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Fig. 1.MM algorithm. 

Montgomery Multiplication : 

 

Fig. 2.SCS-based Montgomery 
multiplication algorithm. 

Fig. 1 shows the radix-2 version of 
the Montgomery MM algorithm 
(denoted as MM algorithm). As 
mentioned earlier, the Montgomery 

modular product S of A and B can be 
obtained as S = A × B × R−1 (mod 
N), where R−1 is the inverse of R 
modulo N. That is, R × R−1 = 1 (mod 
N). Note that, the notation Xi in Fig. 1 
shows the ith bit of X in binary 
representation. In addition, the 
notation Xi: j indicates a segment of 
X from the ith bit to jth bit. Since the 
convergence range of S in MM 
algorithm is 0 ≤ S < 2N, an additional 
operation S = S − N is required 

 

Fig. 3.SCS-MM-1 multiplier. 
to remove the oversize residue if S ≥ 
N. To eliminate the final comparison 
and subtraction in step 6 of Fig. 1, 
Walter [22] changed the number of 
iterations and the value of R to k + 2 
and 2k+2 mod N, respectively. 
Nevertheless, the long carry 
propagation for the very large operand 
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addition still restricts the performance 
of MM algorithm. 

SCS-Based Montgomery 
Multiplication : 

To avoid the long carry propagation, 
the intermediate result S of shifting 
modular addition can be kept in the 
carry-save representation (SS, SC), as 
shown in Fig. 2. Note that the number 
of iterations in Fig. 2 has been 
changed from k to k + 2 to remove the 
final comparison and subtraction [22]. 
However, the format conversion from 
the carry-save format of the final 
modular product into its binary format 
is needed, as shown in step 6 of Fig. 
2. Fig. 3 shows the architecture of 
SCS-based MM algorithm proposed 
in [5] (denoted as SCS-MM-1 
multiplier) composed of one two-level 
CSA architecture and one format 
converter, where the dashed line 
denotes a 1-bit signal. In [5], a 32-bit 
CPA with multiplexers and registers 
(denoted as CPA_FC), which adds 
two 32-bit inputs and generates a 32-
bit output at every clock cycle, was 
adopted for the format conversion. 
Therefore, the 32-bit CPA_FC will 
take 32 clock cycles to complete the 
format conversion of a 1024-bit SCS-
based Montgomery multiplication. 

The extra CPA_FC probably enlarges 
the area and the critical path of the 
SCS-MM-1 multiplier. The works in 
[6] and [7] precomputed D = B + N so 
that the computation of Ai × B + qi × 
N in step 4 of Fig. 2 can be simplified 
into one selection operation. One of 
the 

 

Fig. 4.SCS-MM-2 multiplier. 

operands 0, N, B, and D will be 
chosen if (Ai , qi) = (0, 0), (0, 1), (1, 
0), and (1, 1), respectively. As a 
result, only one-level CSA 
architecture is required in this 
multiplier to perform the carry-save 
addition at the expense of one extra 4-
to-1 multiplexer and one additional 
register to store the operand D. 
However, they did not present an 
effective approach to remove the 
CPA_FC for format conversion and 
thus this kind of multiplier still suffers 
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from the critical path of CPA_FC. On 
the other hand, Zhang et al. [8] reused 
the two-level CSA architecture to 
perform the format conversion so that 
the CPA_FC can be removed. That is, 
S[k + 2] = SS[k + 2] + SC[k + 2] in 
step 6 of Fig. 2 is replaced with the 
repeated carry-save addition operation 
(SS[k + 2], SC[k + 2]) = SS[k + 2] + 
SC[k + 2] until SC[k + 2] = 0. Fig. 4 
shows the architecture of the 
Montgomery multiplier proposed in 
[8] (denoted as SCS-MM-2 
multiplier). Note that the select 
signals of multiplexers M1 and M2 in 
Fig. 4 generated by the control part 
are not shown in Fig. 4 for the sake of 
simplicity. However, the extra clock 
cycles for format conversion are 
dependent on the longest carry 
propagation chain in 
SS[k+2]+SC[k+2] and about k/2 
clock cycles are required in the worst 
case because two-level CSA 
architecture is adopted in [8] 

FCS-Based Montgomery 
Multiplication: 

 To avoid the format conversion, 
FCS-based Montgomery 
multiplication maintains A, B, and S 
in the carrysave representations (AS, 
AC), (BS, BC), and (SS, SC), 

respectively. McIvor et al. [9] 
proposed two FCSbased Montgomery 
multipliers, denoted as FCS-MM-1 
and FCS-MM-2 multipliers, 
composed of one five-totwo (three-
level) and one four-to-two (two-level) 
CSA architecture, respectively. The 
algorithm and architecture of the 
FCS-MM-1 multiplier are shown in 
Figs. 5 and 6, respectively. The barrel 
register full adder (BRFA) 

Fig. 5.FCS-MM-1 Montgomery 
multiplication algorithm. 
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Fig. 6.FCS-MM-1 multiplier. 

 

 

in Fig. 6 consists of two shift registers 
for storing AS and AC, a full adder 
(FA), and a flip-flop (FF). For more 
details about BRFA, please refer to 
[9] and [10]. On the other hand, the 
FCS-MM-2 multiplier proposed in [9] 
adds up BS, BC, and N into DS and 
DC at the beginning of each MM. 
Therefore, the depth of the CSA tree 
can be reduced from three to two 
levels. Nevertheless, the FCS-MM-2 
multiplier needs two extra 4-to-1 
multiplexers addressed by Ai and qi 
and two more registers to store DS 
and DC to reduce one level of CSA 
tree. Therefore, the critical path of the 
FCS-MM-2 multiplier may be slightly 

reduced with a significant increase in 
hardware area when compared with 
the FCS-MM-1 multiplier. Table I 
summarizes and roughly compares the 
area complexity and critical path 
delay of the above-mentioned radix-2 
Montgomery multipliers according to 
the normalized area and delay listed 
in Table II with respect to the TSMC 
90-nm cell library information. In 
Table I, the 

 

TABLE I ANALYSIS OF AREA 
AND DELAY OF DIFFERENT 
DESIGNS 

 

notations AG and TG denote the area 
and delay of a cell G, respectively, 
and τ () denotes the critical path delay 
of circuit . Note that ASR in Table I 
denotes the area of a shift register, 
and we assume that ASR is 
approximate to the sum of AREG and 
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AMUX2. In addition, the area and 
delay ratios of the SCS-MM-1 
multiplier in Table I do not take that 
of CPA_FC into consideration 
because they are signifi- cantly 
dependent on the design of CPA_FC. 
Generally speaking, SCS-based 
multipliers have lower area 
complexity than FCS-based 
Montgomery multipliers. However, 
extra clock cycles for format 
conversion possibly lower the 
performance of SCS-based 
multipliers. To further enhance the 
performance of the SCS-based 
multiplier, both the critical path delay 
and clock cycles for completing one 
multiplication must be reduced while 
maintaining the low hardware 
complexity. 

PROPOSED MONTGOMERY 
MULTIPLICATION : 

In this section, we propose a new 
SCS-based Montgomery MM 
algorithm to reduce the critical path 
delay of Montgomery multiplier. In 
addition, the drawback of more clock 
cycles for completing one 
multiplication is also improved while 
maintaining the advantages of short 
critical path delay and low hardware 
complexity. 

  

Critical Path Delay Reduction : 

The critical path delay of SCS-based 
multiplier can be reduced by 
combining the advantages of FCS-
MM-2 and SCS-MM-2. That is, we 
can precompute D = B + N and reuse 
the one-level CSA architecture to 
perform B+N and the format 
conversion. Fig. 7(a) and (b) shows 
the modified SCS-based Montgomery 
multiplication (MSCS-MM) 
algorithm and one possible hardware 
architecture, respectively. The 
Zero_D circuit in Fig. 7(b) is used to 
detect whether SC is equal to zero, 
which can be accomplished using one 
NOR operation. The Q_L circuit 
decides the qi value according to step 
7 of Fig. 7(a). The carry propagation 
addition operations of B + N and the 
format conversion are performed by 
the one-level CSA architecture of the 
MSCS-MM multiplier through 
repeatedly executing the carry-save 
addition (SS, SC) = SS + SC + 0 until 
SC = 0. In addition, we also 
precompute Ai and qi in iteration i−1 
(this will be explained more clearly in 
Section III-C) so that they can be used 
to immediately select the desired 
input operand from 0, N, B, and D 
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through the multiplexer M3 in 
iteration i. Therefore, the critical path 
delay of the MSCS-MM multiplier 
can be reduced into TMUX4 + TFA. 
However, in addition to performing 
the 

 

 

Fig. 7. (a) Modified SCS-based 
Montgomery multiplication 
algorithm. (b) MSCS-MM multiplier. 

three-input carry-save additions [i.e., 
step 12 of Fig. 7(a)] k + 2 times, many 
extra clock cycles are required to 
perform B + N and the format 
conversion via the one-level CSA 
architecture because they must be 
performed once in every MM. 
Furthermore, the extra clock cycles 
for performing B+N and the format 
conversion through repeatedly 
executing the carry-save addition (SS, 
SC) = SS +SC +0 are dependent on 
the longest carry propagation chain in 
SS + SC. If SS = 111…1112 and SC 
= 000…0012, the one-level CSA 
architecture needs k clock cycles to 
complete SS + SC. 
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Fig. 8. (a) Conventional FA circuit. 
(b) Proposed CFA circuit. (c) Two 
serial HAs. (d) Simplified multiplexer 
SM3. 

That is, ∼3k clock cycles in the worst 
case are required for completing one 
MM. Thus, it is critical to reduce the 
required clock cycles of the MSCS-
MM multiplier. 

Clock Cycle Number Reduction: 

 To decrease the clock cycle number, 
a CCSA architecture which can 
perform one three-input carry-save 
addition or two serial two-input carry-
save additions is proposed to 
substitute for the one-level CSA 
architecture in Fig. 7(b). Fig. 8(a) 
shows two cells of the one-level CSA 
architecture in Fig. 7(b), each cell is 
one conventional FA which can 
perform the three-input carry-save 
addition. Fig. 8(b) shows two cells of 
the proposed configurable FA (CFA) 
circuit. If α = 1, CFA is one FA and 
can perform one three-input carry-
save addition (denoted as 1F_CSA). 
Otherwise, it is two half-adders (HAs) 
and can perform two serial two-input 
carry-save additions (denoted as 
2H_CSA), as shown in Fig. 8(c).In 
this case, G1 of CFAj and G2 of 
CFAj+1 in Fig. 8(b) will act as HA1 j 
in Fig. 8(c), and G3, G4, and G5 of 
CFAj in Fig. 8(b) will behave as HA2 
j in Fig. 8(c). Moreover, we modify 
the 4-to-1 multiplexer M3 in Fig. 7(b) 
into a simplified multiplier SM3 as 
shown in Fig. 8(d) because one of its 
inputs is zero, where ∼ denotes the 
INVERT operation. Note that M3 has 
been replaced 
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Fig. 9. Three-to-two carry-save 
addition at the ith iteration of Fig. 7. 

by SM3 in the proposed one-level 
CCSA architecture shown in Fig. 
8(b). According to the delay ratio 
shown in Table II, TS M3 (i.e., 0.68 × 
TFA) is approximate to TMUX3 (i.e., 
0.63 × TFA) and TMUXI2 (i.e., 0.23 
× TFA) is smaller than TXOR2 (i.e., 
0.34×TFA). Therefore, the critical 
path delay of the proposed one-level 
CCSA architecture in Fig. 8(b) is 
approximate to that of the one-level 
CSA architecture in Fig. 8(a). As a 
result, steps 3 and 15 of Fig. 7(a) can 
be replaced with (SS, SC) = 
2H_CSA(SS, SC) and (SS[k + 2], 
SC[k + 2]) = 2H_CSA (SS[k + 2], 
SC[k + 2]) to reduce the required 
clock cycles by approximately a 
factor of two while maintaining a 

short critical path delay. In addition, 
we also skip the unnecessary 
operations in the for loop (steps 6 to 
13) of Fig. 7(a) to further decrease the 
clock cycles for completing one 
Montgomery MM. The crucial 
computation in the for loop of Fig. 
7(a) is performing the following 
three-to-two carry-save addition: 
(SS[i + 1], SC[i + 1]) = (SS[i] + SC[i] 
+ x)/2 (1) where the variable x may be 
0, N, B, or D depending on the values 
of Ai and qi . The computation 
process of (1) is shown in Fig. 9. 
When Ai = 0 and qi = 0, x is equal to 
0 and SS[i]0 must be equal to SC[i]0 
because the sum of SS[i]0 + SC[i]0 + 
x0 is equal to 0. That is, if Ai = 0 and 
qi = 0, then SS[i]0 = SC[i]0. Based on 
this observation, we can conclude that 
the sum of the carry propagation 
addition SS[i +1]k+1:0 + SC[i + 
1]k+1:0 is equal to the sum of the 
carry propagation addition SS[i]k+1:1 
+ SC[i]k+1:1 when Ai = qi = 0 and 
SS[i]0 = SC[i]0 = 0. As a result, the 
computation of (1) in iteration i can 
be skipped if we directly right shift 
the outputs of one-level CSA 
architecture in the (i − 1)th iteration 
by two bit positions (i.e., divided by 
4) instead of one bit position (i.e., 
divided by 2) when Ai = qi = 0 and 
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SS[i]0 = SC[i]0 = 0. Accordingly, the 
signal skipi+1 used in the ith iteration 
to indicate whether the carry-save 
addition in the (i + 1)th iteration will 
be skipped can be expressed as 
skipi+1 = ∼(Ai+1 ∨ qi+1 ∨ SS[i + 
1]0) (2) where ∨ represents the OR 
operation. If skipi+1 generated in the 
ith iteration is 0, the carry-save 
addition of the (i + 1)th iteration will 
not be skipped. In this case, qi+1 and 
Ai+1 produced in the ith iteration can 
be stored in FFs and then used to fast 
select the value of x in the (i +1)th 
iteration. Otherwise (i.e., skipi+1 = 1), 
SS[i + 1] and SC[i + 1] produced in 
the ith iteration must be right shifted 
by two bit positions and the next 
clock cycle will go to iteration i + 2 to 
skip the carry-save addition of the (i + 
1)th iteration. In this situation, not 
only qi+1 and Ai+1 but also qi+2 and 
Ai+2 must be produced and stored to 
FFs in the ith iteration to immediately 
select the value of x in the (i + 2)th 
iteration without lengthening the 
critical path. Therefore, the selection 
signals (denoted as qˆ and Aˆ) for 
choosing the proper value of x in the 
next clock cycle must be picked from 
(qi+1, Ai+1) or (qi+2, Ai+2) 
according to the skipi+1 signal 
produced in the ith iteration. That is, 

(qˆ, Aˆ) = (qi+2, Ai+2) if skipi+1 = 1. 
Otherwise, (qˆ, Aˆ) = (qi+1, Ai+1) 

 

Fig. 11.SCS-MM-New multiplier. 

multiplier SM3, one skip detector 
Skip_D, one zero detector Zero_D, 
and six registers. Skip_D is developed 
to generate skipi+1, qˆ, and Aˆ in the 
ith iteration. Both M4 and M5 in Fig. 
11 are 3-bit 2-to-1 multiplexers and 
they are much smaller than k-bit 
multiplexers M1, M2, and SM3. In 
addition, the area of Skip_D is 
negligible when compared with that 
of the k-bit one-level CCSA 
architecture. Similar to Fig. 4, the 
select signals of multiplexers M1 and 
M2 in Fig. 11 are generated by the 
control part, which are not depicted 
for the sake of simplicity.  
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Fig. 12. Skip detector Skip_D. 

At the beginning of Montgomery 

multiplication, the FFs stored skipi+1, 

qˆ, Aˆ are first reset to 0 as shown in 

step 1 of SCS-MM-New algorithm so 

that Dˆ = Bˆ +Nˆ can be computed via 

the one-level CCSA architecture. 

When performing the while loop, the 

skip detector Skip_D shown in Fig. 12 

is used to produce skipi+1, qˆ, and Aˆ. 

The Skip_D is composed of four 

XOR gates, three AND gates, one 

NOR gate, and two 2-to-1 

multiplexers. It first generates the 

qi+1, qi+2, and skipi+1 signal in the 

ith iteration according to (5), (7), and 

(8), respectively, and then selects the 

correct qˆ and Aˆ according to 

skipi+1. At the end of the ith iteration, 

qˆ, Aˆ, and skipi+1 must be stored to 

FFs. In the next clock cycle of the ith 

iteration, SM3 outputs a proper x 

according to qˆ and Aˆ generated in 

the ith iteration as shown in steps 8–

11, and M1 and M2 output the correct 

SC and SS according to skipi+1 

generated in the ith iteration. If 

skipi+1 = 0, SC  1 and SS  1 are 

selected. Otherwise, SC  2 and SS  2 

are selected. That is, the right-shift 1-

bit operations in steps 12 and 15 of 

SCS-MM-New algorithm are 

performed together in the next clock 

cycle of iteration i. In addition, M4 

and M5 also select and output the 

correct SC[i]2:0 and SS[i]2:0 

according to skipi+1 generated in the 

ith iteration. Applications: 

1. Digital Signal Processing 

2. CSA architectures…etc.. 

Advantages: 

      1. Speed 
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      2. Cost, delay 

CONCLUSION : 

FCS-based multipliers maintain the 
input and output operands of the 
Montgomery MM in the carry-save 
format to escape from the format 
conversion, leading to fewer clock 
cycles but larger area than SCS-based 
multiplier. To enhance the 
performance of Montgomery MM 
while maintaining the low hardware 
complexity, this paper has modified 
the SCS-based Montgomery 
multiplication algorithm and proposed 
a low-cost and high-performance 
Montgomery modular multiplier. The 
proposed multiplier used one-level 
CCSA architecture and skipped the 
unnecessary carry-save addition 
operations to largely reduce the 
critical path delay and required clock 
cycles for completing one MM 
operation. Experimental results 
showed that the proposed approaches 
are indeed capable of enhancing the 
performance of radix-2 CSA-based 
Montgomery multiplier while 
maintaining low hardware 
complexity. 
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