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ABSTRACT: 

In this paper, an efficient numerical method for the solution of nonlinear partial dif-

ferential equations based on the Haar wavelets approach is proposed. Approximate 

solutions of the generalized haar equation are compared with exact solutions. The 

proposed scheme can be used in a wide class of nonlinear reaction–diffusion equa-

tions. These calculations demonstrate that the accuracy of the Haar wavelet solutions 

is quite high even in the case of a small number of grid points. The present method is 

a very reliable, simple, small computation costs, flexible, and convenient alternative 

method. The study also compares the haar and wavelet transformation equations. 

INTRODUCTION: 

 The past decade has witnessed 

the development of wavelet analysis, a 

new tool that emerged from mathemat-

ics and was quickly adopted by diverse 

fields of science and engineering. In 

the brief period since its creation in 

1987-88, it has reached a certain level 

of maturity as a well-defined mathe-

matical discipline, with its own confer-

ences, journals, research monographs, 
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and textbooks proliferating at a rapid 

rate. Wavelet analysis has begun to 

play a serious role in a broad range of 

applications, including signal process-

ing, data and image compression, solu-

tion of partial differential equations, 

modelling multiscale phenomena, and 

statistics. There seem to be no limits to 

the subjects where it may have utility.  

 In this chapter we shall ex-

plore some additional topics that ex-

tend the basic ideas of wavelet analy-

sis. We described the theory of wavelet 

packet transforms, which sometimes 

provide superior performance beyond 

that provided by wavelet transforms. A 

wavelet packet transform is a simple 

generalization of a wavelet transform. 

In this section I discussed the defini-

tion of wavelet transforms, and in the 

next section examine some examples 

illustrating their applications. All 

wavelet packet transforms are calcu-

lated in a similar way. Therefore we 

shall concentrate initially on the Haar 

wavelet packet transform, which is the 

easiest to describe. The Haar wavelet 

packet transform is usually referred to 

as the Walsh transform. [2] 

Haar System: 

The Haar orthogonal system begins with  (t),the characteristic function of 

the unit interval 

 (t) = x [0 , 1)(t).                                            (1.1) 

It is clear that  (t) and  (t - n), n  0, nZ are orthogonal since their prod-

uct is zero.  It is  also clear that   ( t – n) is not a  complete orthogonal  system in 

L2 (R) since its closed linear span Vo consists of 2 piecewise constant functions with 

possible jumps only at the integers. The characteristic function of (0,1/2), for exam-

ple, with a jump at  1/2, can not have a convergent expansion. 
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In order to include more functions we consider the dilated version of  (t) as 

well,  (2m t) where mZ. Then by a change of variable we see that 2m/2  (2m t – n) 

is an orthonormal system. Vm will denote its closed linear span. Since any function in 

L2 (R) may be approximated by a piecewise constant function fm with jumps at binary 

rationals, it follows that           is dense in L2 (R). Thus the system  mn where  

 mn (t) = 2m/2   (2m t - n),                                     (1.2) 

is complete in L2 (R), but, since  (t) and  ( 2t ) are not orthogonal, it is not an or-

thogonal system. We must modify it somehow to convert it into an orthogonal system. 

 Fortunately the cure is simple; we let t    2t  -   2t - 1. Then every-

thing works;  t - n is orthonormal system, and  2t - k and  t - n are or-

thogonal for all k and n. This enables us to deduce that mnm,nZ, where 

mn (t) = 2m/2  (2mt – n),                                             (1.3) 

is a complete orthonormal system in L2 (R). this is the Haar system; the expansion of f 

 L2 (R)is 

 (1.4) 

with convergence in the sense of L2 (R). the standard approximation is the series 

given by  

(1.5) 

 

 

The  (t) is usually called the scaling function in wavelet terminology while 

(t) is the mother wavelet. [5] 
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FIGURE 1: (a) The scaling function and (b) mother wavelet for the Haar system. 

The Haar Transform to get that Wavelet feel  

 Suppose for simplicity we assume an input vector kx  with 70  k .  This is 

readily decomposed into an obvious basis set as shown. 
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 Other basis systems are of course possible (remember your QM and spinors?). In 

1910 Haar proposed the following decomposition. 
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or  knkn aHx   with the columns of H being simply the above basis vectors and the 

ka obtained by matrix inversion of H. 

Amplitude

Time
1

1

-1

-1

Amplitude

Time1

1

-1

-1



  International Journalof Research 
 Availableat 
https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 
Volume 03 Issue 14 

October2016 

 

Available online: http://edupediapublications.org/journals/index.php/IJR/P a g e  | 1101  

 These basis vectors have characteristic “shapes” when drawn on their side as 

shown in the figure on the next page and it is these shapes which show the 

essential features of what DWT decomposition does. 

Notice: 

1) A mother or scaling function at the start with a non-zero average. This will 

normally be normalised to 1. 

2) Wavelet functions with zero average which are both compressed and 

translated. It is this compression and translation which finds peaks or pulses 

well. 

3) The wavelet functions are orthogonal. You can see this directly by multiplying 

any two together. 

4) The wavelet functions have compact support which means they are all 

localised. This is unlike the FT in which the basis functions 

)/2exp( Nnk are continuous. 
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 How do we use other shapes and make a wavelet basis system out of them? 

step 1: Mother functions 

Let )(x be some mother function. The )2( x  is the same function compressed by a 

factor of 2. Binary compression can therefore be denoted as )2( xj
j   . Likewise 

)12( x  is our compressed function translated by 1. Multiple translation and 

compression of the mother function can therefore be denoted as )2( kxj
jk    

We do not choose )(x  arbitrarily but impose two conditions. 

1)  
k

k kxcx )2()(   or  more generally   

k

jj
k

j kxcx )2()2( 1  . That is it 

lends itself to a fractal like summing behaviour. 

2)  1)( dxx , the normalisation condition. This leads to 2
k

kc . Alas, life is not 

easy and there is much confusion in the literature at this point. If you accept this as is 
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then you will NOT get coefficients which produce a reversible transform. Since this is 

desirable in physics we need to  do what Numerical Recipes suggests and force 

12 
k

kc .  This means reducing the coefficients by a further factor 
2

1 . The reason 

lies buried deep in matrix inversion. 

 Here are two examples, our friend Haar and the “top hat” 

 

 

 Again a 21  multiplication factor ensures reversibility of the transform 

 Ingrid Daubechies invented a four coefficient fractal which is not a simple mother 

function shape as above, but instead must be constructed by working backwards 

from the coefficients. They are: 

)31(4
1),33(4

1),33(4
1),31(4

1
3210  cccc  

 Again “Numerical Recipes” surreptitiously adds a further 21  and with good 

reason! 
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step2: Wavelet functions 

 From the mother or scaling function and the coefficients we construct wave-

let functions )(x . 

)2()1()( kxcx kM
k

k     or at other compression  levels  

)2()1()2( 1 kxcx j
kM

k

kj  
    with generally 

)2()1( kxc j
kM

k

k
jk     

Three things to note: 

1) The introduction of an alternating negative sign on the coefficients. 

2) The inversion of the order of coefficients assuming there are M coefficients. 

3) If you have multiplied by the requisite fudge factor to get a reversible 

transform you don’t need to do any more on these coefficients. 

 Here are the basic wavelet shapes at the highest level. The Daubechies wavelet is 

a construction. 
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Please note the wavelet function for the top hat is strictly 

)22(2
1)12()2(2

1)(  xxxx    and inverted to the above diagram. The areas 

sum to zero as does the sum of the coefficients. 

step3: Multi Resolution Analysis (MRA) 

 Although we have quite general definitions for jk  and jk  we need only use the 

j=0 level over and over again. This was a discovery by Mallet. 

Here is the technique: 

1) Multiply each a pair of input coefficients  with the mother function coefficients 

on the top line and the wavelet coefficients in the bottom line. 

Eg: For the non-reversible Haar transform this is  
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2) Now sort (an effective permutation) the above column matrix and bring all the 

mother generated coefficients  to the top. 
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3) Now  repeat step 2 only on the coefficients labelled ‘m’  
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4) repeat step 2) and 3) until only the top coefficient has the ‘m’ label.  

 The complete sequence looks like: 
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 Reversing the above procedure is used to compose the original vector. In this case 

the multiplying matrix has to be.  









 2121

2121
  

which is the inverse of the original coefficient matrix. But this is messy and could 

be fixed with a universal 2/1  to retain the symmetry of the mathematics and is 

why “Numerical Recipes” adds the factor to the coefficients. 

 Check for yourself reverse sequence is: 











































































































































































































1
3
2
4
1
4
2
3

2
4
2
6
3
5
1
5

2
2
3
1
4
6
5
5

2
2
3
1
2

10
0

10

2
2
3
1
2
0

10
10

2
2
3
1
2
0
0

20

TPTPT
 

 The Haar Transform  is square. If we have multiplying coefficients which do not 

form a neat square (eg., the Daubechies coefficients) we still use the same 

technique of producing the ‘m’ and ‘w’ terms. “Numerical Recipes” illustrates 

how this is done. Also shown is how to handle the end points in this case. 
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 The reverse procedure is created by multiplying pairs by the transpose of the 

original matrix of coefficients as shown. This also effectively changes the order of 

the coefficients. 

 

 One of the intrinsic advantages of the wavelet transform is that  only requires an 

order(N) computational effort and is much faster than the FFT at vector 

transformation.. 

Walsh Function: 

The Rademacher functions are an orthogonal system on (0, 1) obtained by 

adding up all the Haar functions at the same scale. The Rademacher functions were 

obtained by combining the Haar functions by simply adding them at a given scale. 

The Walsh functions take sums and differences of the Haar functions to obtain a com-

plete system. We define 

 Wo (t)  :  =   (t), w1 (t) :  =  (t), 

                       W2 (t)  :  =  (2t) +  (2t - 1), 
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                           W3 (t)  :  =  (2t) -  (2t - 1), 

 W2n (t) :  = Wn (2t) + Wn (2t - 1), 

                 W2n+1 (t) :  = Wn (2t) - Wn (2t - 1).  

 (1.6) 

Thus these Walsh functions also belong to the wavelet subspaces of the Haar system: 

W0  V0 , W1 W0, W2 , W3  W1 , W4 , W5 , W6, W7  W2 ,...................        

W2m, W2m+1,.............................., W2
m+1

-1 Wm,........................................   

(1.7) 

 Notice that these defining relations (1.7) are exactly the same as those in the 

two dilation equations of the Haar system,   

 (t) =  (2t) +  (2t – 1),                      (1. 8a) 

 (t) =  (2t) -  (2t - 1).     (1. 8b) 

Since all functions defined by (1.8a) are orthogonal to all defined by (1.8b), 

it follows that W2n and W2n+1 are orthogonal. Also if Wn and Wm are orthogonal so are 

W2m, W2m+1, …, W2m+1-1 are orthogonal in Wn. Since all of these functions have sup-

port contained in [0,1], the {Wn} are an orthogonal system in L2 (0,1). Moreover, 

there are exactly 2m Haar functions in Wm whose support lies in [0,1], and therefore 

the Walsh functions in Wm form a basis of this space. Since the Haar functions are 

complete in L2 (0,1) so are the Walsh functions. [5] 
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FIGURE 2 One of the Rademacher functions 

 

Comparing Haar Transform with Walsh Transform: 

The Haar wavelet packet transform is usually referred to as the Walsh trans-

form. A Walsh transform is calculated by performing a 1-level Haar transform on all 

subsignals, both trends and fluctuations. 

For example, consider the signal f defined by 

f = (4, 6, 8, 10, 12, 14, 16, 18).                    (1.9) 

A 1-level Haar transform:  

 

(1.10) 

A 1-level Haar transform and a 1-level Walsh transform of f are identical, 

producing the following signal:  

(1.11) 

A 2-level Walsh transform is calculated by performing 1-level Haar trans-

forms on both the trend and the fluctuation sub signals, as follows: 
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(1.12) 

Hence the 2-level Walsh transform of the signal f is the following signal: 

 (14, 30 | -4, -4 | -2, -2 | 0, 0).                                (1.13) 

It is interesting to compare this 2-level Walsh transform with the 2-level 

Haar transform of the signal f. The 2-level Haar transform of f is the following signal 

:  

(1.14) 

comparing this Haar transform with the Walsh transform in (1.13), we see that the 

Walsh transform is slightly more compressed in terms of energy, since the last two 

values of the Walsh transform are zeros. We could, for example, achieve 25 % com-

pression of signal f by discarding the two zeros from its 2-level Walsh transform, but 

we could not discard any zeros from its 2-level Haar transform. Another advantage of 

the 2-level Walsh transform is that it is more likely that all of its non-zero values 

would stand out form a random noise background, because these values have larger 

magnitudes than the values of the 2-level Haar transform. 

A 3-level Walsh transform is performed by calculating 1-level Haar trans-

forms on each of the four sub signals that make up the 2-level Walsh transform. For 

example, applying 1-level Haar transforms to each of the four sub signals of the 2-

level Walsh transform, we obtain 

 

 

(1.15) 

Hence the 3-level Walsh transform of the signal f in (1.5) is : 
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(1.16) 

Here, at the third level, the contrast between the Haar and Walsh transforms 

is even shaper than at the second level. The 3-level Haar transform of this signal is  

 (1.17) 

comparing the transforms (1.16) and (1.17) we can see, at least for this particular sig-

nal f, that the 3-level Walsh transform achieves a more compact redistribution of the 

energy of the signal than the Haar transform.  

APPLICATIONS OF HAAR TRANSFORMS 

In this section we shall discuss two examples of applying wavelet packet 

transforms to audio and image compression. While wavelet packet transforms can be 

used for other purposes, such as noise removal, because of space limitations we shall 

limit our discussion to the arena of compression. 

First example, we shall use a Coif 30 wavelet packet transform to compress 

the audio signal greasy. If we found that a 4-level Coif 30 wavelet transform – with 

trend values quantized at 8 bpp and fluctuations quantized at 6 bpp, and with separate 

entropies computed for all sub signals achieved a compression of greasy requiring an 

estimated 11,305 bits. That is, this compression required an estimated 0.69 bpp (in-

stead of 8 bpp in the original). However, if we use a 4-level Coif 18 wavelet packet 

transform and quantize in the same way, then the estimated number of bits is 10.158 

i.e, 0,62 bpp. This represents a slight improvement over the wavelet transform. 

In several respects – in bpp, in RMS Error, and in total number of – signifi-

cant values – the wavelet packet compression of greasy is nearly as good as or slightly 

better than the wavelet transform compression. See Table1.1 

),2,2,2,24,428222( 
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Transform  Sign.Values  Bpp  RMS Error 

wavelet 3685 0.69 0.839 

  

w.packet 3072 0.62 0.868  

TABLE 1.1 Wavelet and wavelet packet compressions of greasy  

Second example, we consider a compression of a fingerprint image. Using 

the quantizations 9bpp for the trend and 6bpp fort the fluctuations, we obtain an esti-

mated 0.49bpp. That represents a 36 % improvement over the 0,77bpp estimated for 

the wavelet compression. In Table 1.2 I show a comparison of these two compres-

sions of Fingerprint 1. Although the wavelet packet transform compression does not 

produce as small a relative 2-norm error as the wavelet transform compression, never-

theless, a value of 0.043 is still better than the 0.05 rule of thumb value for an accept-

able approximation. Taking into account the other data from Table 1.2 – the number 

of significant transform values and the number of bpps – it is clear that the wavelet 

packet compression of Fingerprint 1 is superior to the wavelet compression. [2] 

Transform  Sign.Values  Bpp       Rel.2 – norm error 

wavelet 33330 0.77 0.35 

w.packet 20796 0.49 0.043 

TABLE  2: Two compressions of Fingerprint 1 

CONTINUOUS WAVELET TRANSFORM 

In the continuous wavelet transform, a function  (“psi“), which in practice 

looks like a little wave, is used to create a family of wavelets  (at + b) where a and b 

are real number, “a“ dilating (compressing or stretching) the function  and “b“ 



  International Journalof Research 
 Availableat 
https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 
Volume 03 Issue 14 

October2016 

 

Available online: http://edupediapublications.org/journals/index.php/IJR/P a g e  | 1114  

translating (displacing) it. The word continuous refers to transform, not the wavelets, 

although people sometimes speak of “continuous wavelets”. 

The continuous wavelet transform turns a signal f (t) into a function with two 

variables (scale and time), which one can call c (a,b) : 

(2.1) 

This transformation is in theory infinitely redundant, but it can be useful in 

recognizing certain characteristics of o signal. In addition, the extreme redundancy is 

less of a problem than one might imagine, a number of researchers have found ways 

of rapidly extracting the essential information from these redundant transforms.  

One such method reduces a redundant transform to its skeleton. When certain 

signals are represented by a continuous wavelet transform, all the significant informa-

tion of the signal is contained in curves, or “ridges” says Bruno Torréssani of the 

French Centre National de Recherché Scientifique, who works at the University of 

Aix – Marseille II. These are essentially the points in the time – frequency plane 

where the natural frequency of the translated and dilated wavelet coincides with the 

local frequencies, or one of the local frequencies, of the transform. [3] 

Haar wavelet is the simplest wavelet. The Haar wavelet transform, proposed in 1909 

by Alfred Haar, is the first known wavelet. Haar transform or Haar wavelet transform 

has been used as an earliest example for orthonormal wavelet transform with compact 

support. The Haar wavelet family for x ϵ [0, 1] is defined as follows: 

 

 

.dt)bat()t(f)b,a(c  



  International Journalof Research 
 Availableat 
https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 
Volume 03 Issue 14 

October2016 

 

Available online: http://edupediapublications.org/journals/index.php/IJR/P a g e  | 1115  

where  and . In these formulae integer m = 2j, j = 0, 1, … J 

indicates the level of the wavelet; k = 0, 1, … m − 1 is the translation parameter. Max-

imal level of resolution is J and 2J is denoted as M = 2J. The index i is calculated from 

the formula i = m + k + 1; in the case of minimal values m = 1, k = 0 we have i = 2. 

The maximal value of i is i = 2M = 2J+1. It is assumed that the value i = 1 corresponds 

to the scaling function for which h1(x) = 1. 

It must be noticed that all the Haar wavelets are orthogonal to each other: 

 

Therefore, they construct a very good transform basis. Any function y(x), which is 

square integrable in the interval [0, 1), namely  is finite, can be expanded in 

a Haar series with an infinite number of terms 

 

Where the Haar coefficients, 

 

are determined in such a way that the integral square error 

equation(10) 

 

is minimized. 
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In general, the series expansion of y(x) contains infinite terms. If y(x) is a piecewise 

constant or may be approximated as a piecewise constant during each subinterval, 

then y(x) will be terminated at finite terms, that is 

 

where the coefficient and the Haar function vectors are defined as: 

 

respectively and x∈[0,1)x∈[0,1). 

The integrals of Haar function hi(x) can be evaluated as: 

pi,1(x)=∫0xhi(x)dx 

 

Carrying out these integrations with the aid, it is found that 

  

 

 

 



  International Journalof Research 
 Availableat 
https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 
Volume 03 Issue 14 

October2016 

 

Available online: http://edupediapublications.org/journals/index.php/IJR/P a g e  | 1117  

 

 

Let us define the collocation points xl = (l − 0.5)/(2M), l = 1, 2, …, 2M. By these col-

location points, a discretizised form of the Haar function hi(x) can be obtained. Hence, 

the coefficient matrix H(i, l) = (hi(xl)), which has the dimension 2M × 2M, is 

achieved. The operational matrices of integrations Pυ, which are 2M square matrices, 

are defined by the equation Pυ(i, l) = pi,υ(xl), where υ shows the order of integration. 

 

CONCLUSION: 

In this paper, Haar equation is pro-

posed for the generalized wavelet 

transformation equation. Comparisons 

of the haar and wavelet transformation 

show that our method is efficient 

method. These calculations demon-

strate that the accuracy of the Haar 

wavelet solutions is quite high even in 

the case of a small number of grid 

points. Applications of this method are 

very simple, and also it gives the im-

plicit form of the approximate solu-

tions of the problems. These are the 

main advantages of the method. Hence, 

the present method is a very reliable, 

simple, fast, minimal computation 

costs, flexible, and convenient alterna-

tive method. 

 
REFERENCES 

 Walter, Gilbert G. & Shen, Xiaop-

ing, Wavelets and Other Orthogo-

nal Systems, Chapman & Hall / 

CRC, 2001. 



  International Journalof Research 
 Availableat 
https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 
Volume 03 Issue 14 

October2016 

 

Available online: http://edupediapublications.org/journals/index.php/IJR/P a g e  | 1118  

 Walker, J.S., A Primer on Wavelets 

and Their Scientific Applications, 

Printice-Hall Inc., 1999. 

 Resnikoff, Howard L. & Wells, 

Raymond O., Wavelet Analysis, 

Springer-Verlag New York Inc., 

1998. 

 Hubband, Barbara Burke,  The 

World According to Wavelets, 

AK Peters Ltd., 1995. 

 Vetterli, Martin & Kovacevic, 

Jelena, Wavelets and Subband 

Coding, Printice Hall Inc., 1995. 

 Benedetto, John J. & Frazier, 

Micheal W., Wavelets : Mathe-

matics and Applications, CRC 

Press Inc., 1994. 

 7. Daubechies, Ingrid, Ten Lec-

tures on Wavelets, Capital City 

Press, 1992. 

 Bredon, Glen E. "A new treatment 

of the Haar integral." The Michi-

gan Mathematical Journal 10.4 

(1963): 365-373. 

 Dubins, Lester E. "Measurable tail 

disintegrations of the Haar 

integral are purely finitely addi-

tive." Proceedings of the Ameri-

can Mathematical Society 62, no. 

1 (1977): 34-36. 

 Williams, David, and John F. 

Cornwell. "The Haar integral for 

Lie supergroups." Journal of ma-

thematical physics 25, no. 10 

(1984): 2922-2932. 

 


