

Analysis of Problems in Homotopy Theory

Zahrah Ismael Salman
Department OfMathematics
College Of Basic Education, University Of Missan, Iraq

Abstract

: In this paper, by system for the Homotopy Analysis Method (HAM), the courses of action was of some nonlinear. In this article, another homotopy structure is presented for the numerical examination of finding the course of action of a first-organize in Partial

\section*{Differential Equation (PDE) $u_{x}(x$,} $y)+a(x, y) u_{y}(x, y)+b(x, y) g(u)=f(x, y)$. The

 Homotopy Analysis Method (HPM) and the separating of a source most inaccessible show are utilized together build up this new system. The homotopy made in this structure depends on upon the ruin of a source work. Particular weakening of source limits impel to different homotopies. Utilizing the way that the deteriorating of a source work impacts the union of an answer drives us to change of another system for the disintegrating of a source capacity to revive the meeting of an answer. The enlightenment behind this study is to demonstrate that building the best homotopy by isolating $\mathrm{f}(\mathrm{x}, \mathrm{y})$ undeniably picks the game-plan with less computational workthan utilizing the present approach while giving quantitatively solid results. Furthermore, this procedure can be summed up to all inhomogeneous PDE issues.
Keywords: Homotopy Analysis Method (HAM), Partial differential equation, Parabolic-Hyperbolic.

Introduction:

Nonlinear fragmentary differential conditions are known to portray a wide gathering of miracles not just in material science, where applications stretch out over magneto uiddynamnics, water surface gravity waves, electromagnetic radiation responses, and atom acoustic waves in plasma, just to give a couple of outlines, moreover in science and science, and two or three different fields. Not very many issues in physics, or surely in any branch of natural science, can be illuminated straightforwardly therefore, one typically first study a perfect model, which is reflected however much as could reasonably be expected of the natural of the genuine logical

framework, as a fitting estimate and after that handle different impacts through some powerful perturbative or potentially non perturbative strategies.

Perturbance Theory (PT) is broadly used to ask about physical systems that can be definitively comprehended yet contain little irritations parameters while applying PT to such a structure, change around the trouble parameter is consolidated, and approximants are passed on as power course of action of these parameters. Then again, non perturbative techniques have been produced to investigate physical issues which don't to some degree physical parameter to be utilized as the aggravation parameter. The non-parameter increase approach, the upgraded trouble hypothesis (OPT) the Variational Disturbance Theory (VPT) and the straight δ-advancement method (LDE), are run of the mill nonperturbative systems, and have been made as fit gadgets in quantum field hypothesis and in move physical settings amidst the previous three decades.

These procedures do exclude annoyance course of action in powers of physical parameters, and the union of gathered is controlled by some made parameters which don't exists in the primary issues. The recreated parameters are settled toward the
end of figurings as demonstrated by some worldview, for instance, principle of minimal sensitivity (PMS), which requires the approximants have insignificant dependence on these parameters over irritation strategies. A champion among the most surely understood non perturbative systems is homotopy analysis method (HAM), at first proposed a viable logical method for seeing straight and nonlinear differential and essential conditions.

The HAM was effectively connected to take care of numerous nonlinear issues, for example, nonlinear Riccati differential condition with partial request, nonlinear Vakhnenko condition, the Glauert-stream issue, fragmentary KdV-Burgers-Kuramoto Equation, a summed up Hirota-Satsuma coupled KdV condition, nonlinear warmth exchange, to shot movement with the quadratic law, to limit layer stream of nano liquid past an extending sheet, to the PoissonBoltzmann condition of semiconductor gadgets, lone arrangement of discrete MKdV condition, to the arrangement of Fractional differential conditions, to the Oldroyd 6consistent liquid with attractive field, MHDstream of an Oldroyd 8 -steady liquid, to the nonlinear streams with slip limit condition etc.

Motivic Homotopy Theory:

One vital setting for homotopy theory is the stable homotopy characterization; this is the logical universe in which the current homotopy-researcher works. The fundamental jump forward inciting to the making of the subject of motivic homotopy speculation was the improvement by Morel-Voevodsky of new types of this characterization, which brought the "customary" variations from homotopy theory together with commitments from arithmetical geometry. Voevodsky's advancement of the motivic stable homotopy characterization enabled one shockingly to work with the vital material of scientific geometry, plans of polynomial conditions, with the flexibility and power officially only available in homotopy hypothesis.

The motivic theory has been a noticeable accomplishment. The Fields Medalist Voevodsky used these homotopical techniques as a piece of his affirmation of the watched Milnor figure, and motivic homotopy speculation had significantly more central influence in his dedication to the check of the Bloch-Kato figure, the productive peak of thirty years of heightened research. Other than these completely stunning applications, the way that one could now use the musings and techniques for homotopy speculation to deal
with issues in arithmetical geometry has pulled in mathematicians from both fields and has incited to a plenitude of new improvements and applications, for instance, course of action comes to fruition for logarithmic vector bunches. Motivic homotopy theory has been profitable for the conventional homotopy researchers as well. The late work of Hill, Hopkins and Ravenel on the Kervaire invariant one figure, settling one of the major open issues in stable homotopy speculation, used as a part of a urgent way the "cut filtration" in equivariant stable homotopy theory, which therefore was moved by Voevodsky's cut filtration in motivic stable homotopy hypothesis[3].

Homotopy analysis method

With a specific extreme goal to display the key considered HAM, consider the running with differential condition

$$
\mathrm{N}[\mathrm{u}(\mathrm{x})]=0
$$

Where \mathcal{N} is a nonlinear administrator, x and t recommends the autonomous variables and u is an abscure capacity dark limit. For straightforwardness, we ignore all most extraordinary or beginning conditions, which can be managed in the indistinguishable way? By procedure for the HAM, we first shape the collected $z^{\text {zero }}{ }^{\text {th }}$ request turning condition

$$
\begin{gathered}
(1-\mathrm{q}) \mathcal{L}\left[\varnothing(\mathrm{x} ; \mathrm{t} ; \mathrm{q})-\mathrm{u}_{0}(\mathrm{x} ; \mathrm{t})\right]+\mathrm{q} \mathcal{N}[\varnothing(\mathrm{x} ; \mathrm{t} ; \mathrm{q})] \\
=0, \mathrm{x} \in \Omega, \mathrm{q} \in[0,1]
\end{gathered}
$$

Where $\mathrm{q} \in[0 ; 1]$ is the installing parameter, is a helper parameter, L is an assistant direct administrator, $\mathrm{H}(\mathrm{x} ; \mathrm{q})$ is an obscure capacity, $\mathrm{u}_{0}(\mathrm{x} ; \mathrm{t})$ is an underlying supposition of and $\mathrm{H}(\mathrm{x} ; \mathrm{t})$ means a nonzero helper work. Clearly when the installing parameter $\mathrm{q}=0$ and $\mathrm{q}=1$, condition gets to be individually. Along these lines as q increments from 0 to 1 , the arrangement fluctuates from the underlying supposition $\mathrm{u}_{0}(\mathrm{x} ; \mathrm{t})$ to the arrangement $\mathrm{u}(\mathrm{x} ; \mathrm{t})$. Growing $\Phi(\mathrm{x} ; \mathrm{t} ; \mathrm{q})$ in Taylor arrangement concerning q , one has $\phi(x ; t ; 0)=u_{0}(x ; t) ; \phi(x ; t ; 1)=u(x ; t) ;$

It should be highlighted that $u m(x ; t)$ for $m \geq 1$ is managed by the straight condition with direct reason for constraint conditions that comes outline the basic issue, which can be fathomed by the fundamental figuring programming, for instance, Mathematical or Maple. For the meeting of the above method we insinuate the peruser to Liao. In the occasion that condition yields unique course of action, then this system will convey the amazing game plan. If condition does not group a stand-out course of action, the HAM will give a reply among various other possible game plans.

Differential homotopy theory and Arakelov theory

Differential homotopy hypothesis depends on refining the limitation to manifolds of traditional homotopy invariants of spaces by consolidating extra structures, for example, differential structures or associations. In one course, this approach shows up in arithmetical geometry through Arakelov hypothesis, while file hypothesis frames another essential bearing. As of late this hypothesis has gone up against a "motivic" character, in that items are developed as presheaves on different classifications of smooth manifolds, generally as the motivic hypothesis depends on presheaves on the class of smooth plans. From both perspectives, the trading of thoughts and methods between motivic homotopy hypothesis and differential homotopy is both regular and alluring [4].

Conventional differential

 cohomology has been presented by Cheeger and Simons as a refinement of normal cohomology with necessary coefficients, and serves as an objective for refined trademark classes and trademark frames. This approach depends on an express depiction of the important gatherings by cycles and relations. Utilizing a more homotopy theoretic approach, Hopkins and Singer demonstratehow one can refine a summed up cohomology hypothesis, for example, K-hypothesis, to a differential one. Associations with material science are talked about and a uniqueness hypothesis for differential cohomology speculations is accomplished. In a general setup utilizing boundlessness classes is produced to characterize differential expansions as a stack of spectra on the classification of smooth manifolds and is connected to the development of differential arithmetical K-hypothesis of number rings. Speculations to standard plans over the whole numbers are given. Work of HolmstromScholbach utilizes parts of motivic homotopy hypothesis to develop Arakelov motivic cohomology and Arakelov K-hypothesis; a comparative approach is utilized by HopkinsQuick as a part of their development of "Deligne"- cobordism[5].

New homotopy perturbation method

To depict the essential thoughts of the homotopy analysis method, we consider the going with nonlinear differential condition: $A(u)-f(r)=0, r \in \Omega$
with the boundary conditions
$B\left(u, \frac{\partial u}{\partial n}\right)=0, r \in \Gamma$,
Where $\mathrm{A}=$ General different Operator
$B=$ Limit Operator
$\mathrm{F}(\mathrm{r})=$ Analytical function, and Γ is also known as the boundary of domain Ω. [6]
Th operator A in this condition (1) can be patched up in general of L and N , where L and N are immediate and nonlinear parts of A , independently, as takes after:

$$
L(u)+N(u)-f(r)=0
$$

By this equation of the homotopy method, we build the homotopy
$H(v$,
$p)=(1-p)(L(v)-L(L 0))+p(A(v)-f(t))=0,(3)$
which is equivalent to

$H(v$,

$p)=L(v)-L(u))+p L(u 0)+p(N(V)-f(r))=0,(4)$

Where

$$
\begin{gathered}
v(r, p) ; \Omega \mathrm{x}[0,1] \rightarrow \Re \\
\mathrm{p} \in[0,1], \mathrm{r} \in \Omega
\end{gathered}
$$

p is an inserting parameter, u_{0} is a central estimation of (1), which fulfills the most remote point conditions. As p changes from zero to solidarity, $\mathrm{v}(\mathrm{r}, \mathrm{p})$ changes from u_{0} to $u(r)$. In this technique, the union of an answer relies on upon the decision of u_{0}, that is, we can have unmistakable assessed answers for various u_{0}.

Give us a chance to disintegrate the source work as $f(r)=f_{1}(r)+f_{2}(r)$. In the event that we take $L\left(u_{0}\right)=f_{1}(r)$ in (3), we get the accompanying homotopy:
$H(v, p)=(1-p)\left(L(v)-f_{1}(r)\right)+p(A(v)-f(r))=0$,
which is equivalent to

$$
\begin{equation*}
H(v, p)=L(v)-\AA_{1}(r)+p\left(N(V)-\AA_{2}(r)\right)=0 \tag{6}
\end{equation*}
$$

Obviously, from (6) we have
$\mathrm{H}(\mathrm{v}, 0)=\mathrm{L}(\mathrm{v})-f_{l}(\mathrm{r})=0$,
$H(v, 1)=A(v)-f r)=0$,

As the embedding parameter p changes from zero to unity, $v(r, p)$ changes from $L^{-1}\left(f_{1}(r)\right)$ to $u(r)$.

As indicated by He's homotopy perturbation method, we can first utilize the presenting introducing parameter p as a little parameter and recognize that the course of action of (6) can be made as a power approach in p as takes after:

$$
V=V_{0}+p V_{1}+p^{2} V_{2}+p^{3} V_{3}+\cdots .
$$

Setting $\mathrm{p}=1$, we get the approximate arrangement of (1)

$$
\mathrm{U}==\mathrm{v}_{0}+\mathrm{v}_{1}+\mathrm{v}_{2}+\mathrm{v}_{3}+\cdots
$$

In the going with part in the portion, it is demonstrated that the formation of the righthand side also called a limit essentially impacts the measure of figuring and the speed of meeting of the course of action [8].

Improvement of another homotopy in light of

 the decay of a source workAllow us to consider the going with breaking point regard issue with the accompanying in homogeneous PDE:
$\mathrm{U}_{\mathrm{x}}(\mathrm{x}, \mathrm{y})+\mathrm{a}(\mathrm{x}, \mathrm{y}) \mathrm{u}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})+\mathrm{b}(\mathrm{x}, \mathrm{y}) \mathrm{g}(\mathrm{u})=$
(x, y)(8)

$$
\begin{equation*}
\mathrm{u}(0, \mathrm{y})=\mathrm{h}(\mathrm{y}) \tag{9}
\end{equation*}
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{g}$ and f are steady capacities in some region of the plane and $g(0)=0$. By dealing with this farthest point regard issue by the homotopy annoyance technique, we acquire a, we get an inaccurate or correct arrangement $\mathrm{u}(\mathrm{x}, \mathrm{y})$. Before proceeding with further, let us integral operator S characterized in the going with shape:

$$
\begin{equation*}
S(.)=\int_{0}^{x}(.) d x \tag{10}
\end{equation*}
$$

At that point the subsidiary of operator S as for y is characterized as

$$
S_{y}(.)=\frac{\partial}{\partial y} \int_{0}^{x}(.) d x
$$

Creating $f(x, y)$ as a total of two points of confinement $f(x, y)=f_{1}(x, y)+f_{2}(x, y)$ and after that building a homotopy in condition, we have
$H(v, p)=(1-p)\left(v_{x}-f_{1}\right)+p\left(v_{x}+a(x, y) v y+b(x, y) g(v\right.$)- f,
which is equivalent to
$H(v, p)=v_{x}(x, y)-f_{1}(x, y)+p(a(x, y) v y(x, y)+b(x, y$ $) g((x, y))-\ell(x, y))=0$.

Substituting (7) into (12), and looking coefficient of the terms by a relative power in p , we have

$$
\begin{gathered}
p^{0}:\left(v_{0}(x, y)\right)_{x}-f_{1}(x, y)=0, v_{0}(0, y) \\
=h(y) \Rightarrow v_{0}(x, y) \\
=S\left(f_{1}(x, y)\right)+h(y) \\
p^{1}:\left(v_{1}(x, y)\right)_{x}+a(x, y)\left(v_{0}(x, y)\right)_{y} \\
+ \\
b(x, y) g\left(v_{0}(x, y)\right) \\
- \\
\Rightarrow\left(f_{1}(x, y)\right)=0, v_{1}(0, y)=0 \\
\left.v_{1}\right)_{x}+a(x, y)\left[S_{y}\left(f_{1}\right)+h_{y}(y)\right] \\
+b(x, y) g\left(S\left(f_{1}\right)+h(y)\right) \\
-f_{2}(x, y)=0
\end{gathered}
$$

If at all there would be a relationship which exists then
$a(x, y)\left[S_{y}\left(f_{1}(x, y)\right)+h_{y}(y)\right]+b(x, y) g\left(S\left(f_{1}(x, y)\right)+h(\right.$ $y)=\hbar_{2}(x, y)$

Between $\AA_{1}(x, y)$ and $\ell_{2}(x, y)$, then we have from (13)
$\left(И_{1}\right) x=0, \nu_{1}(0, y)=0 \Rightarrow V_{i}=0$
and

$$
\begin{aligned}
& p^{2}:\left(v_{2}\right)_{x}+a\left(v_{1}\right)_{y}+b g\left(v_{1}\right) \\
& =0, \quad v_{2}(0, y)=0 \\
& \Rightarrow v_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& p^{3}:\left(v_{3}\right)_{x}+a\left(v_{2}\right)_{y}+b g\left(v_{2}\right) \\
& =0, \quad v_{3}(0, y)=0 \\
& \Rightarrow v_{3}=0
\end{aligned}
$$

Then we can consider that the estimation or also called as correct arrangement of issue is (8)- (9) which can be termed as
$u(x, y)=\omega(x, y)$,
the main source capacity which is obtained from the previous equation in the same structure.

$$
\begin{align*}
f(x, y)= & f+a(x, y)\left[S_{y}(f i)+h_{y}(y)\right]+b(x, y) g(\\
& \left.S\left(f_{1}\right)+h(y)\right) \tag{15}
\end{align*}
$$

Along these lines condition is a fundamental condition to enliven the merging. In the
occasion that condition has an arrangement, then we gain the estimated or right course of action of issue in two phases [9].

In any case, it is not by and large possible to detach the source work $f(x, y)$ in a way that the limits $f_{1}(x, y)$ and $f_{2}(x, y)$ have the relationship. If we have such a case, then we are hunting down a self-conclusive $P(x, y)$ with the bona fide focus on that the purposes of repression $f_{1}(x, y)$ and $f_{2}(x, y)$ have the running with relationship:

$$
\begin{align*}
& a(x, y)\left[S_{y}\left(f_{1}\right)+h_{y}(y)\right]+b(x, y) g\left(S\left(f_{1}\right)+h(y)\right)=f_{2}+P \\
& (x, y) \tag{16}
\end{align*}
$$

For this condition, we get the unforgiving or right game plan of the issue in more than two phases. In addition, we can get the blueprint as strategy.

A Detailed Examination of the new homotopy perturbation method for linear problems

In this area we address the hypothesis of the new homotopy inconvenience system given for some wonderful $f(x, y)$ in the running with straight issue:

$$
U_{x}(x, y)+a u_{y}(x, y)+b u(x, y)=f(x, y)
$$

$\mathrm{u}(0, \mathrm{y})=\mathrm{h}(\mathrm{y})$, where a and b are constants.

Case 1: the source work $f(x, y)$ is a polynomial

We consider that $\mathrm{h}(\mathrm{y})=0$ and $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is a n thorchestrate polynomial in issue (17)- (18). From this time forward $f(x, y)$ can be formed in the going with structure:

Where $A \alpha \beta$ are constants and α, β are standard numbers. On the off chance that the polynomial $f(x, y)$ is deteriorated as

$$
f(x, y)=f_{l}(x, y)+a S_{y}\left(f_{l}(x, y)\right)+b S\left(f_{l}(x, y)\right)
$$

from (15), we can get the arrangement of the issue in two stages. We take $\mathrm{fl}(\mathrm{x}, \mathrm{y})$ as a n thcoordinate polynomial given as [10]
where $c_{\alpha \beta}$ are constants. Then $S\left(f_{l}(x, y)\right)$
becomesand $\mathrm{S}_{\mathrm{y}}(f(\mathrm{x}, \mathrm{y}))$ becomes

Keeping in mind the end goal to decide the obscure coefficients c $\alpha \beta$ in terms of $A \alpha \beta$, we substitute:

$$
f(x, y)=f_{l}(x, y)+a S_{y}\left(f_{l}(x, y)+b S\left(f_{l}(x, y)\right)\right.
$$

With this homotopy which is constructed by the result:

$$
\begin{gathered}
H(v, p)=(1-p)\left(v_{x}-f_{l}(x, y)\right)+p\left(v_{x}+a v_{y}+b_{v}-f(x, y)\right) \\
=0
\end{gathered}
$$

leads us to reaching the solution in two steps [11].

Problem 1:

Consider the inhomogeneous straight boundary value problem (BVP) with steady coefficients
$u_{x}-u_{y}+u=e_{y}+e_{x}, u(0, y)=e_{y}$

The homotopy given below is constructed:
$H(v, p)=(1-p)\left(v_{x}-n(x)-t_{1}(y)\right)+p\left(v_{x}-v_{y}+v^{-} e_{x}-e\right.$
$y)=0$,
which is equivalent to
$H(v, p)=v_{x}-n(x)-t_{1}(y)+p\left(-v_{y}+v+n(x)+t_{1}(y)\right.$
$\left.-e_{x}-e_{y}\right)=0$,
we get the capacities $r_{1}(x), t_{1}(y)$ as it is cleared up. Plainly $\mathrm{t}_{1}(\mathrm{y})=\mathrm{e}_{\mathrm{y}}$ satisfies condition. Also, from condition, $\mathrm{r}_{1}(\mathrm{x})$ can be found as takes after: then we get the given below equation

$$
\begin{gathered}
p^{0}:\left(v_{0}\right)_{x}-\frac{e^{x}+e^{-x}}{2}-e^{y}=0, \quad v_{0} \\
=\frac{e^{x}-e^{-x}}{2}+e^{y} x+e^{y} \\
p^{1}:\left(v_{1}\right)_{x}-\left(v_{0}\right)_{y}+\frac{e^{x}+e^{-x}}{2}=0 \Rightarrow v_{1}=0 \\
p^{2}:\left(v_{2}\right)_{x}-\left(v_{1}\right)_{y}+v_{1}=0 \Rightarrow v_{2}=0,
\end{gathered}
$$

Hence, the solution $u(x, y)$

The answer we get out of the problem which will be with an minimum amount of calculation.

Problem 2:

From the given below equation that is the inhomogenous linear BVP with coefficients of variables.

$$
u(0, y)=0
$$

In the given below equation which is on the right hand capacity $\mathrm{f}(\mathrm{x}, \mathrm{y})$ the polynomial is a thirdarranged. It is given as

$$
f(x, y)=f_{1}(x, y)+y S_{y}(f(x, y))-S(f(x, y))
$$

From the main function $f(x, y)=2 y^{2}+2 x y^{2}$, if we take $f(x, y)$ as
$f(x, y)=a_{1} x^{3}+a_{2} x^{2} y+a_{3} x y^{2}+a_{4} y^{3}+a_{5} x^{2}+a_{6} x y+a_{7} y$
${ }^{2}+a_{8} x+a 9 y+a_{0}$
and substitute (40) into (39), we obtain
$a_{7} a_{1}=2, a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=a_{8}=a_{9}=a_{0}=0$.
The outcome we get is given as $f(x, y)=2 y^{2}$, The Homotopy is given in the format that is $f_{2}(x, y)=2 y^{2}$
$H(v, p)=v_{x}-2 y^{2}+p\left(y v_{y}-v-2 x y^{2}\right)=0,(41)$ and the result is :

$$
p^{0}:\left(v_{0}\right)_{x}-2 y^{2}=0 \Rightarrow v_{0}=2 x y^{2},
$$

$$
\begin{gathered}
p^{1}:\left(v_{1}\right)_{x}+y\left(v_{0}\right)_{y}-v_{0}-2 x^{2} y=0 \Rightarrow v_{1} \\
=0
\end{gathered}
$$

Finally we get the corrected equaiton in this format such as with the help of Calculation of short-length:
$(x, y)=w=2 x y^{2}$

CONCLUSION:

In this paper, we use another homotopy perturbation procedure to get the methodology of a first-make inhomogeneous PDE. In this system, each decay of the source work $f(x, y)$ prompts to another homotopy. In any case, we develop a framework to get the best decay of $f(x, y)$ which grants us to get the procedure with scarcest estimation and empower the meeting of the approach. This study displays that the destroy of the source work in a general sense impacts the measure of estimations and the engaging of the meeting of the strategy.Veering from the standard one, breaking disconnected the source work $\mathrm{f}(\mathrm{x}, \mathrm{y})$ truly is a direct and to an incredible degree inciting instrument for figuring the great position or antagonistic outlines with less computational work. Exceptional in association with all other exact frameworks, it gives us a reasonable approach to manage adjust and control the meeting zone obviously of activity by picking appropriate estimations of partner parameter h, helper work $\mathrm{H}(\mathrm{t})$ and right hand coordinate regulator L. In addition
we displayed that homotopy trouble strategy is the magnificent event of homotopy examination framework. here are some imperative focuses to make here. In the first place, we have incredible flexibility to pick the helper parameter h, assistant capacity $\mathrm{H}(\mathrm{t})$ and assistant straight administrator L and the underlying conjectures. Second the HAM was appeared to be straightforward, yet capable investigative numeric plan for tackling different nonlinear issues.

REFERENCE:

1. Biazar, J., \& Ghazvini, H. (2009). Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Analysis: Real World Applications, 1a(5), 2633-2640.
2. He, J. H. (2003). Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and computation, 135(1), 73-79.
3. Biazar, J., \& Ghazvini, H. (2008). Homotopy perturbation method for solving hyperbolic partial differential equations. Computers \& Mathematics with Applications, 56(2), 453-458.
4. Liao, S. (2003). Beyond perturbation: introduction to the homotopy analysis method. CRC press.
5. Berger, M. S. (1977). Nonlinearity \& Functional Analysis: Lectures on Nonlinear Problems in Mathematical Analysis (Vol. 74). Academic press.
6. Harker, P. T., \& Pang, J. S. (1990). Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Mathematical programming, 48(1-3), 161-220.
7. Whitehead, G. W. (2012). Elements of homotopy theory (Vol. 61). Springer Science \& Business Media.
8. Pólya, G., \& Szegö, G. (1997).

Problems and Theorems in Analysis II:
Theory of Functions. Zeros.
Polynomials. Determinants. Number Theory. Geometry. Springer Science \& Business Media.
9. Liao, S. (2012). Homotopy analysis method in nonlinear differential equations (pp. 153-165). Beijing: Higher education press.
10. Liao, S. J., \& Cheung, K. F. (2003).

Homotopy analysis of nonlinear progressive waves in deep water.

Journal of Engineering Mathematics, 45(2), 105-116.
11. Ayub, M., Rasheed, A., \& Hayat, T. (2003). Exact flow of a third grade fluid past a porous plate using homotopy analysis method. International Journal of Engineering Science, 41(18), 2091-2103.
12. He, J. H. (2005). Homotopy perturbation method for bifurcation of nonlinear problems. International Journal of Nonlinear Sciences and Numerical Simulation, $\sigma(2), 207-208$.

